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Spatial cluster analysis is an important data mining task. Typical techniques include CLARANS, density- and gravity-based
clustering, and other algorithms based on traditional von Neumann’s computing architecture. The purpose of this paper is to
propose a technique for spatial cluster analysis based on sticker systems of DNA computing.Wewill adopt the Bin-Packing Problem
idea and then design algorithms of sticker programming. The proposed technique has a better time complexity. In the case when
only the intracluster dissimilarity is taken into account, this time complexity is polynomial in the amount of data points, which
reduces the NP-completeness nature of spatial cluster analysis. The new technique provides an alternative method for traditional
cluster analysis.

1. Introduction

Spatial cluster analysis is a traditional problem in knowledge
discovery from databases [1]. It has wide applications since
increasingly large amounts of data obtained from satellite
images, X-ray crystallography, or other automatic equipment
are stored in spatial databases. The most classical spatial
clustering technique is due to Ng and Han [2] who developed
a variant PAM algorithm called CLARANS, while new
techniques are proposed continuously in the literature aiming
to reduce the time complexity or to fit for more complicated
cluster shapes.

For example, Bouguila [3] proposed some model-based
methods for unsupervised discrete feature selection. Wang et
al. [4] developed techniques to detect clusters with irregular
boundaries by a minimum spanning tree-based clustering
algorithms. By using an efficient implementation of the cut
and the cycle property of the minimum spanning trees, they
obtain a performance better than 𝑂(𝑁

2
), where 𝑁 is the

number of data points. In another paper, Wang and Huang
[5] developed a new density-based clustering framework by
a level set approach. By a valley seeking method, data points
are grouped into corresponding clusters.

Adleman [6] and Lipton [7] pioneer a new era of DNA
computing in 1994 with their experiments which demon-
strated that the tools of laboratory molecular biology could

be used to solve computation problems. Based on Adleman
and Lipton’s research, a number of applications of DNA com-
puting in solving combinatorially complex problems such
as factorization, graph theory, control, and nanostructures
have emerged.There appeared also theoretical studies includ-
ing DNA computers which are programmable, autonomous
computing machines with hardware in biological molecules
mode; see [8] for details.

According to Păun et al. [8], common DNA systems in
DNA computing include the sticker system, the insertion-
deletion system, the splicing system, and H systems. Among
those, the sticker systemhas the ability to represent bits which
is similar to the silicon computer memory. In a recent work,
Alonso Sanches and Soma [9] propose an algorithm based on
the sticker model of DNA computing [10] to solve the Bin-
Packing Problem (BPP), which belongs to the class NP-Hard
in the strong sense. The authors show that their proposed
algorithms have time complexities bounded by 𝑂(𝑛2) which
are the first attempt to use DNA computing for the Bin-
Packing Problem. Here the integer 𝑛 is the number of items
to be put in the bins.

Inspired by the work of Alonso Sanches and Soma [9], we
propose a new DNA computing approach for spatial cluster
analysis in this paper by the Bin-Packing Problem technique.
The basic idea is to take clusters as bins and locate data
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points into bins. In order to complete evaluation of clustering,
we need to accumulate dissimilarities within clusters. By the
sticker system we can accomplish these tasks. We also show
that our algorithm has a time complexity in polynomial in
the case when only intracluster dissimilarity is considered,
relative to the amount of data points. Notice that cluster
analysis is NP-complete. It is interesting to notice that the
method in this paper is new in cluster analysis.

The rest of this paper is organized as follows: in Section 2,
we present the Bin-Packing Problem formulation of spatial
clustering problem for the purpose of this paper. Then in
Section 3 some basic facts on stickermodel are presentedwith
implementation of some new operations. The following two
sections are devoted to the coding of the problem and the
algorithms of clustering with sticker system. Finally, a brief
conclusion is reached.

2. Formulation of the Problem

Let 𝑅𝑛 be the real Euclidean space of dimension 𝑛. A subset
Ω ⊂ 𝑅

𝑛 is called a spatial dataset with 𝑁 points and Ω =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}, where 𝑥

𝑖
= (𝜉
𝑖1
, 𝜉
𝑖2
, . . . , 𝜉

𝑖𝑛
) ∈ 𝑅
𝑛 for each 𝑖 =

1, . . . , 𝑁. A clustering problem overΩ is to group the dataset
Ω into 𝑘 partitions called clusters where the intracluster simi-
larity is maximal and the intercluster similarity is minimal. In
this sense, clustering is an optimization process in two levels:
one is maximization and the other is minimization. Here the
integer 𝑘 indicates the number of clusters.There are two kinds
of clusteringwhenwe consider 𝑘 as a parameter.Thefirst kind
is fixed number clustering, where the number of clusters 𝑘
is a priori determined. The second kind is flexible clustering
where the number 𝑘 is chosen as one of the parameters to
meet the two level optimization problem.

Now we denote a partition of Ω by C : C = (𝐶
1
, . . . , 𝐶

𝑘
)

withΩ = 𝐶
1
∪ ⋅ ⋅ ⋅ ∪ 𝐶

𝑘
and 𝐶

𝑖
⊆ Ω for 1 ≤ 𝑖 ≤ 𝑘. If we define

Asim(𝐶
𝑖
) as the intracluster dissimilarity measure for 𝐶

𝑖
∈ C

and Simm(𝐶
𝑖
, 𝐶
𝑗
) as the intercluster similarity measure for

𝐶
𝑖
, 𝐶
𝑗
∈ C, then the two kinds of clustering problems are

formulated as follows:

min
C

Asim (𝐶
𝑖
) for 1 ≤ 𝑖 ≤ 𝑘,

min
C

Simm (𝐶
𝑖
, 𝐶
𝑗
) for 1 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ̸= 𝑗,

(1)

min
C,𝑘

Asim (𝐶
𝑖
) for 1 ≤ 𝑖 ≤ 𝑘,

min
C,𝑘

Simm (𝐶
𝑖
, 𝐶
𝑗
) for 1 ≤ 𝑖, 𝑗 ≤ 𝑘, 𝑖 ̸= 𝑗.

(2)

To simplify the multiplicity of optimization, we often use
the following variation of the above problems:

min
C

𝑘

∑

𝑖=1

Asim (𝐶
𝑖
) ,

min
C

∑

1≤𝑖,𝑗≤𝑘,𝑖 ̸= 𝑗

Simm (𝐶
𝑖
, 𝐶
𝑗
) ,

(3)

min
C,𝑘

𝑘

∑

𝑖=1

Asim (𝐶
𝑖
) ,

min
C,𝑘

∑

1≤𝑖,𝑗≤𝑘,𝑖 ̸= 𝑗

Simm (𝐶
𝑖
, 𝐶
𝑗
) .

(4)

Next we only consider the cluster problem (1) or (3). In
order to unite the two optimization formula: we introduce the
following total energy function:

min
C
𝐸
𝑇
(C) :

𝐸
𝑇
(C) =

𝑘

∑

𝑖=1

Asim (𝐶
𝑖
) + ∑

1≤𝑖,𝑗≤𝑘,𝑖 ̸= 𝑗

Simm (𝐶
𝑖
, 𝐶
𝑗
) .

(5)

For the purpose of this paper, we will use a simplified
version of the total energy as shown in the following equation:

min
C
𝐸 (C) : 𝐸 (C) =

𝑘

∑

𝑖=1

Asim (𝐶
𝑖
) . (6)

In the case when the number of clusters 𝑘 is a variable,
the total energy is computed for nonempty clusters and the
optimized number 𝑘 of clusters is the counting of nonempty
bins:

min
C
𝐸 (C) : 𝐸 (C) = ∑

1≤𝑖≤𝑘,𝐶𝑖 ̸= 0

Asim (𝐶
𝑖
) . (7)

We now propose a Bin-Packing Problem (BPP) formula-
tion of the clustering problem as stated above. The classical
one-dimensional BPP is given as a set of 𝑁 items 𝑥

1
, . . . , 𝑥

𝑁

with respective weights 𝑤(𝑥
𝑖
) = 𝑎
𝑖
∈ (0, 𝑐], 1 ≤ 𝑖 ≤ 𝑁. The

aim is to allocate all items into 𝑁 bins with equal capacity 𝑐
and by using a minimum number of bins [9]. For clustering
purpose we assume that there are 𝑘 empty bins and we
allocate all items into the bins with least energy. If we consider
𝑘 as a variable, then the problem is to allocate𝑁 points into𝑁
bins with least energy. The capacity restriction 𝑐 is removed.
For the two cases of clustering, there are altogether 𝑘𝑁 (𝑁𝑁,
resp.) combinations of allocation and the best solution can be
achieved by brute force search.

First we consider the case when 𝑘 is fixed. To solve the
problem, we consider an arrayC of integers

C = 𝑐
1
𝑐
2
⋅ ⋅ ⋅ 𝑐
𝑁
, each 𝑐

𝑖
∈ {1, . . . , 𝑘} . (8)

The 𝑖th bin (cluster) 𝐶
𝑖
is defined as 𝐶

𝑖
= {𝑥
𝑝
: 𝑐
𝑝
=

𝑖, 𝑝 = 1, . . . , 𝑁} for 𝑖 = 1, . . . , 𝑘. We will identify the
allocation C with its corresponding partition. Therefore the
energy function is definedon {C}of all allocations. In order to
guarantee the bins are nonempty, we need to add a restriction
that #(𝐶

𝑖
) > 0 for 𝑖 = 1, . . . , 𝑘, where #(𝐶

𝑖
) denote the

cardinality of the set 𝐶
𝑖
.

Then the final problem is

min𝐸 (C) ,

C = 𝑐
1
𝑐
2
⋅ ⋅ ⋅ 𝑐
𝑁
, each 𝑐

𝑖
∈ {1, . . . , 𝑘} ,

# (𝐶
𝑖
) > 0 for 𝑖 = 1, . . . , 𝑘.

(9)
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weigh(𝑇, 𝑏, 𝑑, 𝑇
𝑙
, 𝑇
𝑔
, 𝑇
𝑒
)

𝑖 ← 1; 𝑇
𝑙
← 0; 𝑇

𝑔
← 0

repeat
𝑇
0
← −(𝑇, 𝑏 + 𝑖), 𝑇

1
← +(𝑇, 𝑏 + 𝑖)

if 𝑑
𝑖
= 0 then

𝑇
𝑔
← 𝑇
𝑔
∪ 𝑇
1
; 𝑇 ← 𝑇

0

else
𝑇
𝑙
← 𝑇
𝑙
∪ 𝑇
0
; 𝑇 ← 𝑇

1

endif
𝑖 ← 𝑖 + 1

until (𝑖 = 𝑞 + 1) or (𝑑𝑒𝑡𝑒𝑐𝑡(𝑇) = no)
𝑇
𝑒
← 𝑇

clearq(𝑇, 𝑏)
𝑖 ← 1; 𝑇

0
← 0;

repeat
𝑇
0
← 𝑐𝑙𝑒𝑎𝑟(𝑇, 𝑏 + 𝑖)

𝑇 ← 𝑇
0

𝑖 ← 𝑖 + 1

until (𝑖 = 𝑞 + 1)

Algorithm 1: Algorithms of weigh and clearq.

Next when 𝑘 is a variable, the arrayC is

C = 𝑐
1
𝑐
2
⋅ ⋅ ⋅ 𝑐
𝑁
, each 𝑐

𝑖
∈ {1, . . . , 𝑁} . (10)

The 𝑖th bin (cluster)𝐶
𝑖
is defined as𝐶

𝑖
= {𝑥
𝑝
: 𝑐
𝑝
= 𝑖, 𝑝 =

1, . . . , 𝑁} for 𝑖 = 1, . . . , 𝑁. The energy function defined on
{C} to be optimized is

min𝐸 (C) ,

C = 𝑐
1
𝑐
2
⋅ ⋅ ⋅ 𝑐
𝑁
, each 𝑐

𝑖
∈ {1, . . . , 𝑁} .

(11)

3. A Sticker DNA Model

First we recall some standard operations of DNA computing
as shown in [8].They are merge, amplify, detect, separate, and
append.

(i) merge: 𝑇 ← 𝑚𝑒𝑟𝑔𝑒 (𝑇
1
, 𝑇
2
). Two given tubes

𝑇
1
and 𝑇

2
are combined into one 𝑇without changing

the strands which.
(ii) amplify: Given a tube 𝑇, amplify (𝑇, 𝑇

1
, 𝑇
2
) produces

two copies 𝑇
1
, 𝑇
2
of 𝑇 and then make 𝑇 empty.

(iii) detect: Given a tube𝑇, return true if𝑇 contains at least
one DNA strand, otherwise return false.

(iv) separate:𝑇 ← +(𝑇,𝑤) and𝑇 ← −(𝑇,𝑤). Given a tube
𝑇 and a word 𝑤, a new tube +(𝑇, 𝑤) (or −(𝑇, 𝑤)) is
produced with the strands in 𝑇 which contain 𝑤 as 𝑠
substring (resp., do not contain).

(v) append: Given a tube 𝑇 and a word 𝑤, 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇, 𝑤)

affixes 𝑤 at the end of each sequence in 𝑇.

The sticker model is based on the paradigm of Watson-
Crick complementarity and was first proposed in [10]. There
are two kinds of single-stranded DNA molecules, the mem-
ory strands and sticker strands, in this model. A memory

strand is 𝐿 bases in length and contains 𝑝 nonoverlapping
substrands, each of which is 𝑚 bases long, where 𝐿 = 𝑝𝑚

[8]. A sticker is 𝑚 bases long and complementary to exactly
one of the 𝑝 substrands in the memory strand. A specific
substrand of a memory strand is either on or off and is called
a bit. If a sticker is annealed to its matching substrand on a
memory strand, then the particular substrand is said to be on.
Otherwise it is said to be off. These partially double strands
are called memory complexes.

The basic operations of the sticker model are merge,
separate, set, and clear and are listed as follows [8]. Among
these, merge is exactly as the standard operation as shown
before.

(i) separate: 𝑇 ← +(𝑇
0
, 𝑖) and 𝑇 ← −(𝑇

0
, 𝑖). Given a tube

𝑇
0
, a new tube +(𝑇

0
, 𝑖) (or −(𝑇

0
, 𝑖)) is produced with

the 𝑖th bit on (resp., off).

(ii) set: 𝑇 ← 𝑠𝑒𝑡(𝑇
0
, 𝑖). A new tube 𝑇 is produced from 𝑇

0

by turning the 𝑖th bit on.

(iii) clear: 𝑇 ← 𝑐𝑙𝑒𝑎𝑟(𝑇
0
, 𝑖). A new tube 𝑇 is produced

from 𝑇
0
by turning the 𝑖th bit off.

Now we consider a test tube 𝑇 consisting memory
complexes 𝛼. We define the length of 𝛼 as the number of bits,
that is, the number of substrands (stickers) contained in 𝛼

denoted by𝑝(𝛼). Each numerical value is represented by 𝑞-bit
stickers, where 𝑞 is a constant designed for a certain problem.
For a 𝑞-bit stickers 𝛼, the corresponding numerical value is
denoted by ℎ(𝛼). The substring in a memory complex from
the (𝑏+1)th bit to the (𝑏+𝑞)th bit of 𝛼 is denoted by 𝑐𝑢𝑡(𝛼, 𝑏),
where 𝑏 is an integer with 0 ≤ 𝑏 ≤ 𝑝(𝛼) − 1. Apart from
the basic operations, we need more operations designed and
inspired by Alonso Sanches and Soma [9] in order to handle
numerical computations.
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(a) generate: Generate multiple copies of all the 𝑘𝑁 combinations asC. Append 1, 2, . . . , 𝑘
as the position numbers ofC. Then append 𝐸

1
, . . . , 𝐸

𝑘
and 𝐸 to store the energies.

(b) energy: Compute the dissimilarities of the 𝑘 clusters and store the energy.
(c) prune: Discard unfeasible partitions, that is, those where there exists empty clusters.
(d) find: Find the best solution.

Now we present algorithms to implement the above procedures.
(a) Generation of all the possible 𝑘𝑁 solutions. Append 𝑘 values in order to store the energies.

generate(𝑇)
𝑇
0
← 𝑇

for 𝑖 ← 1 to 𝑁 do
for 𝑗 ← 1 to 𝑘/2 do

𝑎𝑚𝑝𝑙𝑖𝑓𝑦(𝑇
0
, 𝑇
2𝑗−1

, 𝑇
2𝑗
)

endfor
for 𝑗 ← 1 to 𝑘 do

𝑎𝑝𝑝𝑒𝑛𝑑(𝑇
𝑗
, 𝑠𝑒𝑞(𝑗))

endfor
for 𝑗 ← 1 to 𝑘 do

𝑎𝑝𝑝𝑒𝑛𝑑(𝑇
𝑗
, 𝑠𝑒𝑞(0))

endfor
for 𝑗 ← 𝑘 downto 1 do

𝑇
𝑗−1

← 𝑇
𝑗−1

∪ 𝑇
𝑗

endfor
endfor
𝑇 ← 𝑇

0

𝑎𝑝𝑝𝑒𝑛𝑑(𝑇, 𝑠𝑒𝑞(0)).
for 𝑗 ← 1 to 𝑘 do

𝑎𝑝𝑝𝑒𝑛𝑑(𝑇, 𝑠𝑒𝑞(0))

endfor
𝑎𝑝𝑝𝑒𝑛𝑑(𝑇, 𝑠𝑒𝑞(0))

(b) Energy computation. The problem is to compute totals of energy for those 𝑖 where 𝑐
𝑖
= 𝑗. Hence

𝐸
𝑗
= ∑
𝑟,𝑠∈𝐶𝑗 ,𝑟 ̸= 𝑠

𝑑
𝑟𝑠
and 𝐶

𝑗
= {𝑖 | 𝑐

𝑖
= 𝑗}. The total energy is stored in 𝐸. At the same time,

the counting number of each bin is stored in the following 𝑘 stickers.
energy(𝑇)

for 𝑗 ← 1 to 𝑘 do
𝑇
𝑗
← 0

endfor
for 𝑖 ← 1 to 𝑁 do

for ← 1 to 𝑘 do
𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑇, 𝑞𝑖, 𝑞(𝑁 + 𝑗), 𝑇



1
, 𝑇


2
, 𝑇


3
)

𝑐𝑙𝑒𝑎𝑟𝑞(𝑇


2
, 𝑞𝑖)

𝑇
𝑗
← 𝑇
𝑗
∪ 𝑇


2

if 𝑑𝑒𝑡𝑒𝑐𝑡(𝑇
2
) = yes then

𝑖𝑛𝑐𝑟(𝑇
𝑗
, 𝑞(𝑁 + 2𝑘 + 1 + 𝑗))

endif
endfor

endfor
for 𝑗 ← 1 to 𝑘 do

for 𝑖
1
← 1 to 𝑁 do

for 𝑖
2
← 1 to 𝑁 do

𝑎𝑑𝑑(𝑇
𝑗
, 𝑞(𝑁 + 𝑘 + 𝑗), ∼ (ℎ(𝑐𝑢𝑡(𝑇

𝑗
, 𝑖
1
𝑞) ∨ ℎ(𝑐𝑢𝑡(𝑇

𝑗
, 𝑖
2
𝑞)))𝑑
𝑖1𝑖2
)

endfor
endfor
𝑎𝑑𝑑(𝑇

𝑗
, 𝑞(𝑁 + 𝑘 + 𝑗), 𝑞(𝑁 + 2𝑘 + 1))

𝑇 ← 𝑇 ∪ 𝑇
𝑗

endfor
(c) The third step is to eliminate unfeasible partitions. This is done by checking the last 𝑘 stickers.

prune (𝑇)
𝑇


𝑙
← 0, 𝑇

𝑒
← 0 𝑇



𝑔
← 0

for 𝑖 ← 1 to 𝑘 do

Algorithm 2: Continued.
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𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑇, 𝑞(𝑁 + 2𝑘 + 1) + 𝑖, 𝑞(𝑁 + 3𝑘 + 2), 𝑇


𝑙
, 𝑇


𝑔
, 𝑇


𝑒
)

𝑇 ← 𝑇


𝑔

endfor
(d) The last step is to find the best solution with least energy. If 𝑑𝑒𝑡𝑒𝑐𝑡(𝑇) = yes in the final step,

then we get the optimal solution.
find(𝑇)

𝑇
0
← 0, 𝑇

1
← 0

for 𝑖 ← 1 to 𝑞 do
𝑇
0
← −(𝑇, 𝑞(𝑁 + 2𝑘 + 1) + 𝑖), 𝑇

1
← +(𝑇, 𝑞(𝑁 + 2𝑘 + 1) + 𝑖)

if 𝑑𝑒𝑡𝑒𝑐𝑡(𝑇
0
) = no then

𝑇 ← 𝑇
1

else
𝑇 ← 𝑇

0

endif
endfor
𝑑𝑒𝑡𝑒𝑐𝑡(𝑇).

Algorithm 2

(i) increment: 𝑇 ← 𝑖𝑛𝑐𝑟(𝑇, 𝑏). For each 𝛼 ∈ 𝑇, generate a
strand 𝛽 with ℎ(𝑐𝑢𝑡(𝛽, 𝑏)) = ℎ(𝑐𝑢𝑡(𝛼, 𝑏)) + 1 and let 𝑇
be replaced by the collection of such new strands 𝛽.

(ii) add: 𝑇 ← 𝑎𝑑𝑑(𝑇, 𝑏, 𝑑). For each 𝛼 ∈ 𝑇, generate a
strand 𝛽 with ℎ(𝑐𝑢𝑡(𝛽, 𝑏)) = ℎ(𝑐𝑢𝑡(𝛼, 𝑏)) + 𝑑 and let
𝑇 be replaced by the collection of such new strands 𝛽.
Here 𝑑 is an integer in binary formwith length 𝑝(𝛼)−
𝑏.

(iii) compare: 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑇, 𝑏
1
, 𝑏
2
, 𝑇
𝑙
, 𝑇
𝑔
, 𝑇
𝑒
). For each 𝛼 ∈

𝑇, if ℎ(𝑐𝑢𝑡(𝛼, 𝑏
1
)) < ℎ(𝑐𝑢𝑡(𝛼, 𝑏

2
)), then let 𝛼 ∈ 𝑇

𝑙
; if

ℎ(𝑐𝑢𝑡(𝛼, 𝑏
1
)) > ℎ(𝑐𝑢𝑡(𝛼, 𝑏

2
)), then let 𝛼 ∈ 𝑇

𝑔
; else let

𝛼 ∈ 𝑇
𝑒
.

(iv) weigh: 𝑤𝑒𝑖𝑔ℎ(𝑇, 𝑏, 𝑑, 𝑇
𝑙
, 𝑇
𝑔
, 𝑇
𝑒
). For each 𝛼 ∈ 𝑇, if

ℎ(𝑐𝑢𝑡(𝛼, 𝑏)) < 𝑑, then let 𝛼 ∈ 𝑇
𝑙
; if ℎ(𝑐𝑢𝑡(𝛼, 𝑏)) > 𝑑,

then let 𝛼 ∈ 𝑇
𝑔
; else let 𝛼 ∈ 𝑇

𝑒
.

(v) clearq: 𝑐𝑙𝑒𝑎𝑟𝑞(𝑇, 𝑏). For each strand in the tube𝑇, turn
all bits off from (𝑏 + 1)th bit to (𝑏 + 𝑞)th bit.

We only give a DNA algorithm for 𝑤𝑒𝑖𝑔ℎ and 𝑐𝑙𝑒𝑎𝑟𝑞

as the other algorithms are presented in Alonso Sanches
and Soma [9]. Suppose the binary digits of the integer 𝑑 is
𝑑
𝑏+1

𝑑
𝑏+2

⋅ ⋅ ⋅ 𝑑
𝑏+𝑞

(see Algorithm 1).

4. Sticker Algorithms for Fixed 𝑘

Now we consider solving the spatial clustering problem as
described in Section 2, where the number of clusters 𝑘 is fixed,
and Ω = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
}, 𝑥
𝑖
= (𝜉
𝑖1
, 𝜉
𝑖2
, . . . , 𝜉

𝑖𝑛
) ∈ 𝑅
𝑛 for each

𝑖 = 1, 2, . . . , 𝑁. A partition of the dataset Ω is denoted by C
which is an array of integers

C = 𝑐
1
𝑐
2
⋅ ⋅ ⋅ 𝑐
𝑁
, ∀𝑐

𝑖
∈ {1, . . . , 𝑘} . (12)

For two points 𝑥, 𝑦we use 𝜌(𝑥, 𝑦) to denote the Euclidean
distance between them. We use 𝑀 = max

𝑥,𝑦∈Ω
𝜌(𝑥, 𝑦) to

denote the diameter of Ω. Let the dissimilarity measure of
𝑥, 𝑦 ∈ Ω be �̂�(𝑥, 𝑦) = 𝜌(𝑥, 𝑦)/𝑀 ∈ [0, 1]. Now we convert
the dissimilarity measure into binary string consisting of

“0”s and “1”s. For an acceptable given error rate to measure
the dissimilarity 𝜀 > 0, divide the interval [0, 1] into 2

𝐾1

subintervals with equal width 2
−𝐾1 < 𝜀. Now choose an

integer 𝐾 such that 𝑘𝑁22𝐾1 < 2
𝐾. Then we can use a 𝐾

bits string to represent the subintervals. For 𝑧 ∈ [0, 1] let its
corresponding string be 𝑠(𝑧) = [2

−𝐾1𝑧], where operator [⋅] is
the largest integer without exceeding it. We will use a sticker
systemwith 𝑞 stickers in length that is capable of representing
numbers between 0, 1, . . . , 𝑁 and 0, 1, . . . , 2

𝐾.
Now we define the dissimilarity matrix as

𝐷 = [𝑑
𝑖𝑗
]
𝑁×𝑁

,

𝑑
𝑖𝑗
= 𝑠 (�̂� (𝑥

𝑖
, 𝑥
𝑗
)) ,

𝑖, 𝑗 = 1, . . . , 𝑁.

(13)

For the partition C, the 𝑖th bin (cluster) 𝐶
𝑖
is defined as

𝐶
𝑖
= {𝑥
𝑝
: 𝑐
𝑝
= 𝑖, 𝑝 = 1, . . . , 𝑁} for 𝑖 = 1, . . . , 𝑘. A partition

is called feasible if 𝐶
𝑖
̸= 0 for 𝑖 = 1, 2, . . . , 𝑘. The energy of a

partition defined by (9) has the following form:

𝐸
𝑡
≜ Asim (𝐶

𝑡
) = ∑

𝑖,𝑗∈𝐶𝑡

𝑑
𝑖𝑗
,

𝐸 (C) =
𝑘

∑

𝑡=1

𝐸
𝑡
.

(14)

For an integer 𝑗, we use seq(𝑗) to represent the subse-
quence of 𝑞 stickers corresponding to 𝑗. Conversely, if 𝑠 is a
sequence, we use ℎ(𝑥) to denote the numerical value decoded
by the 𝑞-bit sticker 𝑥. By the sticker model [9], a memory
complex seq(C) is designed as the coding ofC:

seq (C) = seq (𝑐
1
) seq (𝑐

2
) ⋅ ⋅ ⋅ seq (𝑐

𝑁
) . (15)

Thenwe append 𝑘+1 stickers representing𝐸
1
, . . . , 𝐸

𝑘
and

𝐸 = 𝐸(C). Finallywe append 𝑘 stickers to store the cardinality
of clusters.The structure of stickers for our problem is shown
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(a) generate: Generate multiple copies of all the 𝑁𝑁 combinations as C. Append 1, 2, . . . , 𝑁
as the position numbers ofC. Then append 𝐸

1
, . . . , 𝐸

𝑁
and 𝐸 to store the energies.

(b) energy: Compute the dissimilarities of the𝑁 possible clusters and store in energy.
(c) find: Find the best solution.
(d) count: Count the number of clusters.

Now we present algorithms to implement the above procedures.
(a) Generation of all the possible 𝑁𝑁 solutions. Append𝑁 values in order to store the energies.

generate(𝑇)
𝑇
0
← 𝑇

for 𝑖 ← 1 to 𝑁 do
for 𝑗 ← 1 to 𝑁/2

𝑎𝑚𝑝𝑙𝑖𝑓𝑦(𝑇
0
, 𝑇
2𝑗−1

, 𝑇
2𝑗
)

endfor
for 𝑗 ← 1 to 𝑁

𝑎𝑝𝑝𝑒𝑛𝑑(𝑇
𝑗
, 𝑠𝑒𝑞(𝑗))

endfor
for 𝑗 ← 1 to 𝑁

𝑎𝑝𝑝𝑒𝑛𝑑(𝑇
𝑗
, 𝑠𝑒𝑞(0))

endfor
for 𝑗 ← 𝑁 downto 1

𝑇
𝑗−1

← 𝑇
𝑗−1

∪ 𝑇
𝑗

endfor
endfor
𝑇 ← 𝑇

0

𝑎𝑝𝑝𝑒𝑛𝑑(𝑇, 𝑠𝑒𝑞(0)).
for 𝑗 ← 1 to 𝑁

𝑎𝑝𝑝𝑒𝑛𝑑(𝑇
𝑗
, 𝑠𝑒𝑞(0))

endfor
𝑎𝑝𝑝𝑒𝑛𝑑(𝑇, 𝑠𝑒𝑞(𝑁)).
(b) Energy computation. The problem is to compute totals of energy for those 𝑖 where 𝑐

𝑖
= 𝑗.

Hence 𝐸
𝑗
= ∑
𝑟,𝑠∈𝐶𝑗 ,𝑟 ̸= 𝑠

𝑑
𝑟𝑠
and 𝐶

𝑗
= {𝑖 | 𝑐

𝑖
= 𝑗}. The total energy is stored in 𝐸. At the same time,

the counting number of each bin is stored in the following 𝑁 stickers.
energy(𝑇)

for 𝑗 ← 1 to 𝑁 do
𝑇
𝑗
← 0

endfor
for 𝑖 ← 1 to 𝑁 do

for 𝑗 ← 1 to 𝑁 do
𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑇, 𝑞𝑖, 𝑞(𝑁 + 𝑗), 𝑇



1
, 𝑇


2
, 𝑇


3
)

𝑐𝑙𝑒𝑎𝑟𝑞(𝑇


2
, 𝑞𝑖)

𝑇
𝑗
← 𝑇
𝑗
∪ 𝑇


2

if 𝑑𝑒𝑡𝑒𝑐𝑡(𝑇
2
) = yes then

𝑖𝑛𝑐𝑟(𝑇
𝑗
, 𝑞(3𝑁 + 1 + 𝑗))

endif
endfor

endfor
for 𝑗 ← 1 to 𝑁 do

for 𝑖
1
← 1 to 𝑁 do

for 𝑖
2
← 1 to 𝑁 do

𝑎𝑑𝑑(𝑇
𝑗
, 𝑞(2𝑁 + 𝑗), ∼ (ℎ(𝑐𝑢𝑡(𝑇

𝑗
, 𝑖
1
𝑞) ∨ ℎ(𝑐𝑢𝑡(𝑇

𝑗
, 𝑖
2
𝑞)))𝑑
𝑖1𝑖2
)

endfor
endfor
𝑎𝑑𝑑(𝑇

𝑗
, 𝑞(2𝑁 + 𝑗), 𝑞(3𝑁 + 1))

𝑇 ← 𝑇 ∪ 𝑇
𝑗

endfor
(c) The next step is to find the best solution with least energy. If 𝑑𝑒𝑡𝑒𝑐𝑡(𝑇) = yes in the final step,

then we get the optimal solution. The final number 𝑘 of clusters in stored in the last sticker.

Algorithm 3: Continued.
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find(𝑇)
𝑇
0
← 0, 𝑇

1
← 0

for 𝑖 ← 1 to 𝑞 do
𝑇
0
← −(𝑇, 𝑞(3𝑁 + 1) + 𝑖), 𝑇

1
← +(𝑇, 𝑞(3𝑁 + 1) + 𝑖)

if 𝑑𝑒𝑡𝑒𝑐𝑡(𝑇
0
) = no then

𝑇 ← 𝑇
1

else
𝑇 ← 𝑇

0

endif
endfor
𝑑𝑒𝑡𝑒𝑐𝑡(𝑇).
(d) The final step is to count the number of clusters. It is stored in the last sticker while in the variable 𝑘.

count (𝑇)
𝑘 ← 0

for 𝑖 ← 1 to 𝑁 do
𝑤𝑒𝑖𝑔ℎ(𝑇, 𝑞(3𝑁 + 1 + 𝑖), 0, 𝑇

𝑙
, 𝑇
𝑔
, 𝑇
𝑒
)

if 𝑑𝑒𝑡𝑒𝑐𝑡(𝑇
𝑔
) = yes then

𝑖𝑛𝑐𝑟(𝑇, 𝑞(4𝑁 + 2))

𝑘 ← 𝑘 + 1

endif
endfor

Algorithm 3

Position Cluster energies Total energy Counting of items 0-Flag
0𝑐

1
𝑐
2
· · · 𝑐
𝑁

𝐸
1
· · · 𝐸
𝑘 𝐸 𝐼

1
· · · 𝐼
𝑘

𝒞

1, 2, . . ., 𝑘

Figure 1: Coding structure of clusters.

Position Cluster energies Total energy Counting of items Clusters
𝑘𝑐

1
𝑐
2
· · · 𝑐
𝑁

𝐸
1
· · · 𝐸 𝐸 𝐼

1
· · · 𝐼

𝒞

𝑁 𝑁
1, 2, . . .,𝑁

Figure 2: Coding structure when 𝑘 is changing.

in Figure 1. The clustering algorithm consists of four steps as
shown in Algorithm 2.

5. Sticker Algorithms for Variable 𝑘

In this section we consider cluster analysis when 𝑘 is a
variable. In this case a partition of the dataset Ω is denoted
byC which is an array of integers

C = 𝑐
1
𝑐
2
⋅ ⋅ ⋅ 𝑐
𝑁
, ∀𝑐

𝑖
∈ {1, . . . , 𝑁} . (16)

Similar to the previous section, the 𝑖th bin (cluster) 𝐶
𝑖
is

defined as 𝐶
𝑖
= {𝑥
𝑝
: 𝑐
𝑝
= 𝑖, 𝑝 = 1, . . . , 𝑁} for 𝑖 = 1, . . . , 𝑁.

Notice that 𝐶
𝑖
may be empty and the final number of clusters

is the counting of nonempty clusters.The energy of a partition
defined by (11) has the following form:

𝐸 (C) =
𝑘

∑

𝑡=1

𝐸
𝑡
,

𝐸
𝑡
=
{

{

{

∑

𝑖,𝑗∈𝐶𝑡

𝑑
𝑖𝑗

for 𝐶
𝑡
̸= 0,

0 for 𝐶
𝑡
= 0.

(17)

Now the coding is seq(C).Thenwe append𝑁+1numbers
of 𝑞 bits, that is, (𝑁+1)𝑞 stickers representing 𝐸

1
, . . . , 𝐸

𝑁
and

𝐸 = 𝐸(C). Next we append 𝑁 values to store the counting
number of the𝑁 clusters. Finally we append a value to store
the number of valid (nonempty) clusters. The structure of
stickers in this case is shown in Figure 2.

The clustering algorithm consists of four steps as shown
in Algorithm 3.

6. Conclusion

In this paper we presented a new DNA-based technique
for spatial cluster analysis. Two cases when the number of
clusters 𝑘 is predefined and not determined are considered.
If we take the scale of data 𝑁, and the length of bits for a
sticker 𝑞, as a variables, then clearly Algorithm 1 has a time
complexity of 𝑂(𝑞𝑁). Among the four steps of Algorithm 2,
the operator generate (𝑇) has a time complexity of 𝑂(𝑘𝑞𝑁),
and the operator energy (𝑇) has complexity of 𝑂(𝑘𝑞𝑁2).
The remaining two operators all have complexity of 𝑂(𝑘𝑞).
Thus the total time complexity for fixed number of clusters
𝑘 is 𝑂(𝑘𝑞𝑁2). In the other case when 𝑘 is dynamic, time
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complexity for the four algorithms changes to 𝑂(𝑞𝑁
2
),

𝑂(𝑞𝑁
3
), 𝑂(𝑞), and 𝑂(𝑞𝑁). Hence the total complexity is

𝑂(𝑞𝑁
3
). The reason why our complexity is worse than that of

[9] (of course for a different problem) is that the summation
of dissimilarity is time consuming. It is interesting if one can
reduce this complexity to 𝑂(𝑞𝑁2).

Finallywewill point out that up to the authors knowledge,
this is the first research in cluster analysis by sticker DNA
systems. It provides an alternative solution for this traditional
knowledge engineering problem, which is not combinatorial
in nature. Comparing many applications of DNA computing
mainly in combinatorial problems, this is still interesting.
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