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Copyright © 2013 G. Alpı́zar and L. F. Gordillo.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Social distancing, vaccination, and medical treatments have been extensively studied and widely used to control the spread of
infectious diseases. However, it is still a difficult task for health administrators to determine the optimal combination of these
strategieswhen confronting disease outbreakswith limited resources, especially in the case of interconnected populations, where the
flow of individuals is usually restricted with the hope of avoiding further contamination.We consider two coupled populations and
examine them independently under two variants of well-knowndiscrete time diseasemodels. In both exampleswe compute approx-
imations for the control levels necessary to minimize costs and quickly contain outbreaks. The main technique used is simulated
annealing, a stochastic search optimization tool that, in contrast with traditional analytical methods, allows easy implementation
to any number of patches with different kinds of couplings and internal dynamics.

1. Introduction
In contrast with the tremendous benefits that modern trans-
portation systems have brought to our society, their potential
as contributors to the global and fast spread of infectious
agents has become a major concern [1, 2]. This has been
evidenced, for instance, with the recent SARS and swine flu
outbreaks in 2003 and 2009, respectively. In those occasions,
careful monitoring and efficient control of individuals’ flow
among cities were implemented, although it has been deter-
mined that introducing travel restrictions does not have a
drastic impact on a pandemic development, [3, 4]. However,
this kind of measures may introduce a delay in the spread of
the disease [5], providing additional time to implement non-
pharmaceutical interventions. The important role that trans-
portation has on the spread of infectious diseases has been
extensively studied in particular cases. Remarkable efforts are
currently made to understand the spread of pandemic and
seasonal influenza in spatial structured populations, [6–8].
The detailed study made in [9] shows how social distancing
policies implanted inMexico in 2009, combined with control
in the transportation of individuals, lead to the effective inter-
ruption of the first two waves of the influenza’s emergence.

Health administrators face the nontrivial task of control-
ling disease spread through optimal responses during the
first stages of an outbreak, which include the implementation
of social distancing, travel restrictions, medical treatments,
and vaccination. Coupled populations scenarios may be
difficult to assess if confronted with scarce resources. One
of our goals is to show that simulated annealing, a well-
known computational optimization technique, may be useful
in the search of appropriate responses for some diseases
modeled in discrete time. We use variants of two exten-
sively studied models: SIR and SIS in coupled populations,
which are introduced in Section 2.The computational results
obtained by application of simulated annealing are presented
in Section 3. This technique has the advantage of combining
easy implementation and simple theoretical principles [10].

Although theoretical models that describe disease
dynamics in metapopulations have been studied in detail, the
problem of optimal deployment of control combining epi-
demiological and economic factors has barely been touched.
For continuous time, the SIS formulation with two inter-
connected patches is successfully addressed in [11], and the
optimal allocation of resources for SIRS models in metapop-
ulations has been recently studied in [12]. For discrete time
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epidemic models, optimal control techniques have been
employed only for one patch populations [13, 14]. The usual
approach in this cases is to use Pontryagin’s maximum prin-
ciple adapted to discrete systems [14, 15], which establishes
necessary conditions for the existence of an optimal condition
that can be recovered using a forward-backward algorithm.
This theoretical formulation might turn out to be cumber-
some if a large number of interconnected patches combined
with a high number of model parameters in each patch
are involved. In contrast, the alternative of approximating
optimal solutions with numerical simulations only requires
a very general framework, easily adaptable to any situation.

2. Coupled Populations: Two Examples

For the sake of simplicity, we consider the case of only two
coupled populations, for example 𝑥 and 𝑦. The disease
dynamics in each patch are describedwith discrete time equa-
tions, capturing the processes of infection and migration at
each unit in time (day). We assume that the system does
not allow the introduction of individuals from outside these
patches and that, within each population, individuals are
homogeneously mixed.

The technique used below to find optimal control param-
eter values is very general and independent of the type of
discrete time model describing the disease dynamics within
each patch. Thus the method could be, in principle, adjusted
to numberless possible modeling situations. In this paper,
we consider separately for analysis two instances of simple
but plausible schemes largely employed to describe dynamics
of infectious diseases. For both models we assume that the
epidemic evolves fast enough to ignore demographic effects,
and consequently our attention is focused on the disease
spread between populations only for the first few days after
an outbreak appears in one of the patches. The first model,
referred to here as Model A, is a mechanistic extension of
a discrete approximation to the basic Susceptible-Infected-
Removed (SIR), which is valid for short periods of time and
examined here due to its simplicity. The motivation for this
model comes from the ideas originally explored in [16]. The
secondmodel, Model B, is a Susceptible-Infected-Susceptible
(SIS) type, derived originally in [17], which might be useful
indescribing infectious diseases where almost immediate
host reinfection is possible.

In addition to each model we define functionals that rep-
resent the economic impact caused by the disease, which
include the costs of direct intervention and those generated
by reducing susceptibility of individuals. Direct intervention
practices include the reduction of contact rates through social
distancing, decreasing individual infectiousness with appro-
priate treatment, or isolation. Vaccination and preventive
care, which in contrast reduce the susceptibility of a popu-
lation [18, 19], are not going to be taken into account here.

2.1. Model A: Dispersal in Two Patches with SIR. In this case,
the disease dynamics in each patch are described with a basic
discrete numerical approximation to the SIR model, valid for
a short period of time. Susceptible and infected individuals
are allowed to leave their original (home) group at a certain

rate and return to it, taking an active part in the infectious
process while visiting the second (temporary) group. Under
these assumptions [16] presents a description for the mix-
ing patterns among patches in continuous time, where the
original mechanistic model (which includes demography)
generates results that are successfully linked to the classical
phenomenological formulations.

Following the ideas in [16], we formulate the discrete
time model: let 𝐴 be the class to which an individual may
belong (𝐴 = 𝑆: susceptible or 𝐴 = 𝐼: infected), and let
𝐴
𝑥𝑦

𝑘
represent the number of individuals that belong to patch

𝑥 being currently located in patch 𝑦 at time 𝑘. Sometimes,
the flow of individuals from one patch to another may not
be symmetrical and it would be desirable to keep track of
the amount of individuals from one population that are in a
different location.Thus, let 𝜏𝐴

𝑥𝑦
be the rate atwhich individuals

of class 𝐴 return from group 𝑥 to group 𝑦 and 𝜌𝐴
𝑥𝑦

the rate
at which individuals leave group 𝑥 towards group 𝑦. Similar
definitions are made for 𝜏𝐴

𝑦𝑥
and 𝜌𝐴
𝑦𝑥
. Let 𝛽 be the contact rate

for both groups and 𝑑 the natural removal rate of infectives. It
is important to notice that variations in patch populationmay
cause changes in the effective average contact rates. However,
we assume that each patch has a large number of individuals
and that travelers excursions to other patches are made only
by a small amount of individuals in each population. Thus,
we neglect fluctuations on 𝛽.

The following equations capture the process of infection
and subsequentmovement of individuals between patches, in
that order, at each time step for patch 𝑥:

𝑆
𝑥𝑥

𝑘+1
= (1 − 𝜌

𝑆

𝑥𝑦
) (𝑆
𝑥𝑥

𝑘
− 𝛽𝑆
𝑥𝑥

𝑘
(𝐼
𝑥𝑥

𝑘
+ 𝐼
𝑦𝑥

𝑘
))

+ 𝜏
𝑆

𝑦𝑥
(𝑆
𝑥𝑦

𝑘
− 𝛽𝑆
𝑥𝑦

𝑘
(𝐼
𝑥𝑦

𝑘
+ 𝐼
𝑦𝑦

𝑘
)) ,

𝑆
𝑥𝑦

𝑘+1
= (1 − 𝜏

𝑆

𝑦𝑥
) (𝑆
𝑥𝑦

𝑘
− 𝛽𝑆
𝑥𝑦

𝑘
(𝐼
𝑥𝑦

𝑘
+ 𝐼
𝑦𝑦

𝑘
))

+ 𝜌
𝑆

𝑥𝑦
(𝑆
𝑥𝑥

𝑘
− 𝛽𝑆
𝑥𝑥

𝑘
(𝐼
𝑥𝑥

𝑘
+ 𝐼
𝑦𝑥

𝑘
)) ,

𝐼
𝑥𝑥

𝑘+1
= (1 − 𝜌

𝐼

𝑥𝑦
) (𝐼
𝑥𝑥

𝑘
+ 𝛽𝑆
𝑥𝑥

𝑘
(𝐼
𝑥𝑥

𝑘
+ 𝐼
𝑦𝑥

𝑘
) − 𝑑𝐼

𝑥𝑥

𝑘
)

+ 𝜏
𝐼

𝑦𝑥
(𝐼
𝑥𝑦

𝑘
+ 𝛽𝑆
𝑥𝑦

𝑘
(𝐼
𝑦𝑦

𝑘
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𝑘
) − 𝑑𝐼

𝑥𝑦

𝑘
) ,

𝐼
𝑥𝑦

𝑘+1
= (1 − 𝜏

𝐼

𝑦𝑥
) (𝐼
𝑥𝑦

𝑘
+ 𝛽𝑆
𝑥𝑦

𝑘
(𝐼
𝑥𝑦

𝑘
+ 𝐼
𝑦𝑦

𝑘
) − 𝑑𝐼

𝑥𝑦

𝑘
)
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𝐼
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) .

(1)

Similar equations for patch 𝑦 are obtained interchanging 𝑥
and𝑦. Although at each step in timewe assume that the infec-
tion process runs first and then the dispersal, the order does
not matter.

Figure 1 shows a reemergence of the total number of
infected individuals fromboth patches, caused by a decreased
flow of infected individuals from patch 𝑥 to patch 𝑦, which
is assumed initially to be disease-free. Relaxing the control
on the infected individuals flow towards group 𝑦 causes an
apparent merge of the two peaks, as it would be expected.
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Figure 1: The impact of the variation in 𝜌𝐼
𝑥𝑦

(here = 𝜏𝐼
𝑥𝑦
) on the total number of infected individuals along 30 days for different initial values

of infected individuals in patch 𝑥: (a) 𝐼𝑥𝑥
0

= 1, (b) 𝐼𝑥𝑥
0

= 10, and (c) 𝐼𝑥𝑥
0

= 100. Varying individuals’ flow intensity from one patch to another
causes a notably increased appearance of infectives in the SIR model, due to the delayed entrance of infecteds. For this example we assume
that patch 𝑦 is initially to be disease-free and that we are interested in controlling the flow of infected individuals towards it. Accordingly, we
take 𝐼𝑦𝑦

0
= 𝐼
𝑥𝑦

0
= 𝐼
𝑦𝑥

0
= 0. The other initial values are 𝑆𝑥𝑥 = 1, 500, 𝑆𝑦𝑥 = 𝑆

𝑥𝑦

= 0, and 𝑆𝑦𝑦 = 1, 000. The parameter values are chosen from
a particular influenza episode modeled with an SIR scheme [20], 𝛽 = 10

−3

/day, 𝑑 = 0.44/day. The values for the fractions of individuals
moving between patches are chosen in a range estimated for patches with high interconnectivity [9]: 𝜏𝑆

𝑥𝑦
= 𝜌
𝑆

𝑥𝑦
= 0.03, 𝜏𝑆

𝑦𝑥
= 𝜌
𝐼

𝑦𝑥
= 0.02, and

𝜌
𝑆

𝑦𝑥
= 𝜌
𝐼

𝑦𝑥
= 0.02.
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2.1.1. Cost Functional forModel A. For each time step, the flow
of infected individuals is described by the associated parame-
ters 𝜏𝐼 and 𝜌

𝐼. Thus, we define the control vectors 𝜏
𝑥𝑦

=

(𝜏
𝐼

𝑥𝑦
(0), . . . , 𝜏

𝐼

𝑥𝑦
(𝑇 − 1)) and 𝜌

𝑥𝑦
= (𝜌
𝐼

𝑥𝑦
(0), . . . , 𝜌

𝐼

𝑥𝑦
(𝑇 − 1)) to

keep track in time of themovement allowed between patches,
corresponding to the fraction of individuals that originally
belong to group 𝑦 and are returning and the fraction of
individuals that belong to group 𝑥 and are leaving towards
group𝑦, respectively.We define 𝜏

𝑦𝑥
and 𝜌
𝑦𝑥

similarly. For this
model, it is assumed that we have only control on the flow of
individuals, and no other intervention strategy is adopted.

Let 𝐼𝑦
𝑘
= (𝐼
𝑦𝑦

𝑘
+ 𝐼
𝑥𝑦

𝑘
)/𝑇
𝑦

𝑘
be the prevalence in the group 𝑦

at time 𝑘. Also, define the cost functional associated with the
epidemic impact and control of dispersal for the patch y by

𝐽
𝑦
(𝐼
𝑦

, 𝜏
𝑥𝑦
, 𝜌
𝑥𝑦
) =

𝑇−1

∑

𝑘=0

(𝐵
1
(𝐼
𝑦

𝑘
)

2

+ 𝐵
2
(𝜏
𝐼

𝑥𝑦
(𝑘) − 𝜏

𝑆

𝑥𝑦
)

2

+𝐵
3
(𝜌
𝐼

𝑥𝑦
(𝑘) − 𝜌

𝑆

𝑥𝑦
)

2

) + (𝐼
𝑦

𝑇
)

2

.

(2)

For simplicity, we set 𝐵
1
= 1 and consider the costs of the

spread, 𝐵
2
and 𝐵

3
, relative to those generated directly by

each infected individual. A similar expression for the cost
functional can be written for patch 𝑥, 𝐽

𝑥
(𝐼
𝑥

, 𝜏
𝑦𝑥
, 𝜌
𝑦𝑥
), and the

functional to minimize is 𝐽
𝑦
+ 𝐽
𝑥
.

2.2. Model B: Dispersal in Two Patches with SIS. The second
model considered is a slight variant of the SIS model for
two coupled patches originally presented and analyzed in
[17]. The underlying motivation to consider this example is
given by infectious diseases that are likely to behave as in a
pandemic influenza scenario: an individualmay be reinfected
with the same virus strain if an infectious contact occurs
before her/his primary antibody response matures, a stage
that usually should be reached after three to four weeks
since the first infection. Reinfections are more likely to occur
during pandemic influenza because the virus circulates more
extensively than in nonpandemic events [21].

For patch 𝑥, let 𝑆𝑥
𝑘
and 𝐼

𝑥

𝑘
represent the population of

susceptible and infected individuals at time 𝑘. Recall that we
do not take into accoutn the effects of demographic changes
and denote by 𝑇𝑥

𝑘
= 𝑆
𝑥

𝑘
+ 𝐼
𝑥

𝑘
> 0 the total population in

patch 𝑥 at time 𝑘. Let 0 ≤ 1 − 𝜎
𝑥
≤ 1 represent the fraction

of individuals that recover naturally from the disease at each
time step and 0 ≤ 𝛽 ≤ 1 a constant that weights the role of
prevalence 𝐼𝑥

𝑘
/𝑇
𝑥

𝑘
on disease transmission at time 𝑘 for both

groups. First, we write the equations for the dynamics of the
disease within a unit of time:

𝑆
𝑥

𝑘
= 𝑆
𝑥

𝑘
exp(

−𝛽𝐼
𝑥

𝑘

𝑇
𝑥

𝑘

) + (1 − 𝜎
𝑥
) 𝐼
𝑥

𝑘
,

𝐼
𝑥

𝑘
= (1 − exp(

−𝛽𝐼
𝑥

𝑘

𝑇
𝑥

𝑘

))𝑆
𝑥

𝑘
+ 𝜎
𝑥
𝐼
𝑥

𝑘
.

(3)

Similar equations are obtained for patch 𝑦 replacing 𝑥 by 𝑦.
The dynamics ofmore general equations than these have been
studied for a single population in [22]. Now, we introduce

the diffusion of individuals between patches: assume that
fractions 𝐷

𝑆
and 𝐷

𝐼
of susceptible and infected individuals

from each population are exchanged at each step time.
We assign superscripts to distinguish the diffusing fractions
associated to each patch:

𝑆
𝑥

𝑘+1
= (1 − 𝐷

𝑥

𝑆
) 𝑆
𝑥

𝑘
+ 𝐷
𝑦

𝑆
𝑆
𝑦

𝑘
,

𝐼
𝑥

𝑘+1
= (1 − 𝐷

𝑥

𝐼
) 𝐼
𝑥

𝑘
+ 𝐷
𝑦

𝐼
𝐼
𝑦

𝑘
,

𝑆
𝑦

𝑘+1
= 𝐷
𝑥

𝑆
𝑆
𝑥

𝑘
+ (1 − 𝐷

𝑦

𝑆
) 𝑆
𝑦

𝑘
,

𝐼
𝑦

𝑘+1
= 𝐷
𝑥

𝐼
𝐼
𝑥

𝑘
+ (1 − 𝐷

𝑦

𝐼
) 𝐼
𝑦

𝑘
.

(4)

Notice that although the disease may disappear locally in one
location, global persistence may be maintained throughout
the dispersion of infected individuals [17, 23].

2.2.1. Cost Functional for Model B. The impact of direct inter-
vention measures, like social distancing, produces changes
in the value of 𝛽. More precisely, let 𝛽

𝑥
= (1 − 𝑓

𝑥
)𝛽 be

the transmission parameter within group 𝑥 after intervention
strategies have been applied to reduce transmission, which
are measured by the parameter 𝑓

𝑥
. Let 1−𝜎 be the fraction of

infected individuals that recover naturally from the disease.
Suppose that a fraction 1 − 𝜏 of the infected individuals that
did not recover by natural means is effectively treated and
returns to the susceptible class. The motivation behind this is
the treatments that only inhibit virus replication but immune
response is still needed to control the infection.

After the introduction of these controls, the equations for
patch 𝑥 read as

𝑆
𝑥

𝑘
= 𝑆
𝑥

𝑘
exp(

−𝛽
𝑥
𝐼
𝑥

𝑘

𝑇
𝑥

𝑘

) + (1 − 𝜏𝜎
𝑥
) 𝐼
𝑥

𝑘
,

𝐼
𝑥

𝑘
= (1 − exp(

−𝛽
𝑥
𝐼
𝑥

𝑘

𝑇
𝑥

𝑘

))𝑆
𝑥

𝑘
+ 𝜏𝜎
𝑥
𝐼
𝑥

𝑘
.

(5)

Similar equations result for patch 𝑦. As in Model A, our
interest is to include the possible restriction of infected
individuals movements between patches.The impact of these
measures is directly captured by the parameters𝐷𝑥

𝐼
and𝐷𝑦

𝐼
.

Let f
𝑥
= (𝑓
𝑥

1
, . . . , 𝑓

𝑥

𝑇−1
) and f

𝑦
= (𝑓
𝑦

1
, . . . , 𝑓

𝑦

𝑇−1
) be the

vectors that have in each entry the level of direct intervention
at each time step. Then, a cost functional can be written as

𝐽 (𝐼, f
𝑥
, f
𝑦
, 𝜏) = ∑

𝑤=𝑥,𝑦

(

𝑇−1

∑

𝑘=0

(𝐵
1
(𝐼
𝑤

𝑘
)

2

+ 𝐵
2
(𝑓
𝑤

𝑘
)
2

+ 𝐵
3
(1 − 𝜏

𝑘
)
2

+𝐵
4
(𝐷
𝑤

𝐼
(𝑘) − 𝐷

𝑤

𝑆
)
2

) + (𝐼
𝑤

𝑇
)

2

) ,

(6)

where hats indicate the prevalence of the disease in the patch
considered at time 𝑘. The proportion of infected individuals
who move from one patch to another is low when the
restrictions of traveling are high, and consequently a high
cost should be expected. For this reason the term in the
functional corresponding to the application of restrictions
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on the dispersion of infected individuals is defined by
(𝐷
𝑤

𝐼𝑘

− 𝐷
𝑤

𝑆
)
2: we require that (1) 𝐷𝑤

𝐼𝑘

is at most equal to 𝐷𝑤
𝑆

when no restrictions are applied and (2) the costs should
increase when𝐷𝑤

𝐼𝑘

decreases from𝐷
𝑤

𝑆
to 0.

In the objective functional, the constants 𝐵
𝑖
represent the

relative costs of the control measures: 𝐵
1
is the associated

cost produced by a new infection, 𝐵
2
is the cost of the

implementation of social distancing, 𝐵
3
is the relative cost

associatedwith the application of treatment, and𝐵
4
is the cost

of applying restrictions on infected individuals movement.
We set𝐵

1
= 1, and let𝐵

2
,𝐵
3
,𝐵
4
be the relative costs in respect

to 𝐵
1
[14].

3. Numerical Results

In this section we use simulated annealing to assess the
challenge of finding appropriate control efforts levels that
minimize the cost functionals for each model previously
described. Simulated annealing is a stochastic search tech-
nique derived from the well-known Metropolis algorithm
see the (appendix for a brief review or [10, 24, 25] for more
detailed and complete accounts). This computational tool
becomes very helpful for finding approximations to function
extrema when the number of parameters in the system is
large and consequently the model turns out to be analytically
intractable.

Simulations for Model A are made only considering
movement restrictions on individuals, and the results are
comparedwith theworst case scenario (nomovement restric-
tion). In practice, it is very likely that the introduction of
direct intervention measures during the first days of an epi-
demic development would be delayed because of practical or
economic constrains. This observation motivates excluding
this type of measures for this case.

ForModel B, simulations combinemovement restrictions
with direct intervention, motivated by the practices and
results obtained for pandemic influenza, and compare the
results to the worst case scenario (no control of any sort
applied).

3.1. Numerical Results for Model A. The simulations are
obtained considering the particular case of one patch starting
at the disease-free state, say population 𝑦, and then applying
control on the dispersal of infected individuals towards this
patch from 𝑥, which initially had a positive number of infec-
tives.We assign an arbitrary small positive lower bound to the
spread of infectives, 𝜌𝐼

𝑥𝑦
, 𝜏𝐼
𝑥𝑦

≥ 0.001, considering that com-
plete restriction of infected individuals flow is frequently an
unavoidable fact in real scenarios. Other parameter values are
taken the same as in Figure 1.The simulation results are sum-
marized in Figure 2: the worst case scenario (no movement
restriction) is compared to the disease evolution obtained by
using the optimal control efforts computed by the algorithm.
It is observed that restriction in the movement from patch
𝑥 to 𝑦 is imposed only several days after the start of the
epidemic in patch 𝑥. In contrast, the restriction of movement
from 𝑦 to 𝑥 is complete since the beginning; see Figure 2(c).
The values 𝐵

2
= 𝐵
3
= 0.2 were used for the simulations.

3.2. Numerical Results for Model B. For the simulations in
this example we use the parameter and baseline values given
in [14] for pandemic influenza. The model studied in [14]
describes the disease dynamics for a long period time, with-
out taking into account reinfection during the first weeks,
and includes additional compartments in the population
(asymptomatic, treated, recovered, and dead). We emphasize
that our interest is on the first weeks after the pandemic
started, when individuals’ reinfection is still plausible. We
consider the values (1−𝜎

𝑥
) = (1−𝜎

𝑦
) = 1/7 for the fraction of

infected individuals recovered by natural means. In absence
of controls, the basic reproductive number range considered
in [14] for high transmission is [2.4, 3.2], which agrees with
known estimates [26]. The corresponding transmission rate
for the worst case 𝛽 = 1.94 is used here. Assuming
large populations allows for regarding possible variations in
the transmission rate as negligible. The control bounds are
interpreted as the maximum and minimum daily rates, also
chosen here as presented in [14] for the social distancing and
treatment: 𝑓

𝑥
, 𝑓
𝑦
∈ [0, 0.2] and 𝜏

𝑥
, 𝜏
𝑦
∈ [0.95, 1]. Remember

that 1 − 𝜏
𝑥
is the fraction of the infected individuals that

recover by the application of treatment. The bounds for the
spread of infectives are the same used in Model A, 𝐷𝑥

𝐼
∈

[0.001, 𝐷
𝑦

𝑆
] and 𝐷𝑥

𝐼
∈ [0.001, 𝐷

𝑦

𝑆
], where 𝐷𝑥

𝑆
= 𝐷
𝑦

𝑆
= 0.03.

For the simulations we choose the values 𝐵
2
= 0.04, 𝐵

4
=

0.0004, and 𝐵
3
= 0.004, suggested by [14], and assume that

the costs associated with restrictions on the dispersion of
infected individuals are higher than those associated with
social distancing and treatment.

We fix the initial conditions 𝐼𝑥
1
= 100 and 𝐼𝑦

1
= 0 and

also 𝑆
𝑥

1
= 1, 500 and 𝑆

𝑦

1
= 1, 500. With these values we

observe in Figure 3(a) how optimal levels of control efforts
drastically reduce infected individuals in the population
𝑦 compared to the worst case scenario. The impact of the
optimal control efforts on the infected population size is
presented in Figure 3(b): implementing control measures
delays the appearance of a reduced maximum number of
total infecteds. Figure 3(c) shows the optimal control values.
In population 𝑥, where initially 𝐼𝑥

1
= 100, it is required to

apply maximum treatment, social distancing and restriction
in movement towards the population 𝑦. Population 𝑦 should
apply maximum social distancing, but treatment should
gradually grow and reach its maximum around the tenth
day. No restrictions apply for infecteds’ flow starting at 𝑦.

4. Discussion

The increased extensivity and intensity of global interconnec-
tions jointly with the extreme dynamic character of current
transportation systems turn out to be important to under-
stand the role of mobility in the spread of infectious diseases,
as illustrated with the SARS outbreak in 2003 [1]. Currently,
many countries have developed or adapted response plans
for pandemics of infectious diseases, which generally include
the monitoring and control of travelers flow from abroad
and between its own cities. Generally, in the early stages of a
pandemic development, local health departments implement
domestic travel-related measures to slow disease spread [27],
like determining travelers’ condition through fast laboratory
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Figure 2: (a)The evolution of the worst case scenario, that is, when no control is applied, is shown in bullets (∙) for susceptibles and infected
classes in each patch. Using the parameter values found by the algorithm provides the scenario shown in (). (b)The total amount of infected
individuals in both populations. Again, the worst case scenario is in (∙) and the minimized results in (). The appearance of a second bump
is due to the delay of introducing infective individuals in the initially disease-free population. (c) These are the strategy levels that minimize
the total cost.

tests followed by movement restriction. Fast disease spread
may require quick computation of good approximations to
the resulting dynamics from the application of combined
strategies under conditions of scarce resources.These approx-
imations may turn into a valuable tool to assess the risk of
disease spread and gain understanding on the consequences
of policies impact within the contemporary contexts of
globalization.

In this note we show how stochastic search techniques
may provide valuable insight into the quest of finding

optimal strategies formetapopulations epidemic control with
discrete time models, when a quick response is needed
and analytical tools are not viable. We provide approximate
solutions computed for two independent recurrent systems
where restriction on individuals’ flow between populations is
regulated and combined in one of the examples with direct
intervention measures.

The huge complexity involved in the spread of diseases
among populations is reflected in the analytically untractable
number of equations that would result in the modeling
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Figure 3: (a) The population of susceptible and infected individuals for the worst case (∙) and the results of applying the minimizing
algorithm (). (b) Total of infected individuals in both populations presents the worst case (∙) and the minimized results (). The delay
in the introduction of infective individuals produces an apparent reemergence. (c) Strategy that minimizes the combined costs of the disease
impact and the control of the disease spread.
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process. Optimizing functionals over these systems may
therefore turn into a very complicated task. As initially
remarked, optimal control techniques have been used only to
explore one patch populations [13, 14], evidencing analytical
difficulties in more complicated models. Our approach to
overcome this problem consists in suggesting the use of
stochastic search techniques. Stochastic search allows not
only for considering different population sizes for each patch
as well as different ways of coupling but aslo any number of
populations (if provided with enough computational power),
each with its own dynamics. This advantage is not found in
the current analytical methods.

The numerical results for the SIR extension presented
here suggest that the optimal travel restrictions create a
sudden increase in the total number of infected individuals:
the dynamics of the disease in the second patch are delayed
for several days.Thedelay in the transmission of the disease to
the second patch can be used to prepare and implementmore
efficient nonpharmaceutical strategies to reduce the disease
impact, like developing public awareness, instituting social
distancing, or organizing vaccination centers [5]. For the SIS
example, the total number of infected individuals stabilizes at
a lower level than theworst case scenario, after the appearance
of a little bump generated by the delayed introduction of
infected individuals into the second population.

Appendix

The Simulated Annealing Algorithm

For the sake of completeness we include a brief description of
how simulated annealing works. For more detailed accounts
the reader is encouraged to have look at the cited references.
Essentially, the algorithm runs a search in a space of states for
an element that globally minimize (or maximize) the value
of a function. In our case, the space of states is given by a
multidimensional lattice where each point is a vector with
the feasible controls at each time as entries. For instance, in
Model A we look for the 4𝑇-dimensional vector:
(𝜏
𝐼

𝑥𝑦
(0) , . . . , 𝜏

𝐼

𝑥𝑦
(𝑇 − 1) , 𝜌

𝐼

𝑥𝑦
(0) , . . . , 𝜌

𝐼

𝑥𝑦
(𝑇 − 1) ,

𝜏
𝐼

𝑦𝑥
(0) , . . . , 𝜏

𝐼

𝑦𝑥
(𝑇 − 1) , 𝜌

𝐼

𝑦𝑥
(0) , . . . , 𝜌

𝐼

𝑦𝑥
(𝑇 − 1))

(A.1)

that minimizes the cost functional defined by 𝐽 = 𝐽
𝑦
+ 𝐽
𝑥
;

see (2). The grid is evidently chosen in such a way that has
practical significance and computational feasibility.

Once the cost functional and the finite set of states have
been defined, the following algorithm can be used to find
the minimum. First choose an initial state and define an
inhomogeneousMarkov chain𝑋(𝑘) that evolves as follows: if
𝑋(𝑘) is state 𝑖, that is, 𝑋(𝑘) = 𝑖, choose randomly a neighbor
state 𝑗 that can be reached in one transition step. If 𝐽(𝑖) ≤ 𝐽(𝑖),
then set 𝑋(𝑘 + 1) = 𝑗. Otherwise, if 𝐽(𝑖) > 𝐽(𝑖), then set
𝑋(𝑘 + 1) = 𝑗 with probability

𝑞 = exp(−
𝐽 (𝑗) − 𝐽 (𝑖)

𝑇 (𝑘)

) ,

where 𝑇 (𝑘) > 0 is a temperature parameter,

(A.2)

and 𝑋(𝑘 + 1) = 𝑖 with probability 1 − 𝑞. It can be shown
[10] that the probability of choosing an element from state
space that minimizes 𝐽 approaches 1 when the temperature
parameter tends to 0. The choice of an appropriate sequence
𝑇(𝑘), called cooling schedule, is important: if the cooling is too
fast, the chainmay get stuck in a local minimum. So there is a
balance that has to be reached, where you want a reasonable
time of computation to observe convergence but slow enough
to avoid convergence to an element that is not a global
minimizer. For the analysis of cooling functions see [25].
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