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The paper is dedicated to study of the Cauchy problem for the magneto-micropolar fluid equations in three-dimensional spaces. A
new logarithmically improved regularity criterion for themagneto-micropolar fluid equations is established in terms of the pressure
in the homogeneous Besov space ̇

𝐵

−1

∞,∞

.

1. Introduction

This paper concerns with the regularity of weak solutions to
the magneto-micropolar fluid equations in three dimensions
as

𝜕

𝑡

V − (𝜇 + 𝜒) ΔV + V ⋅ ∇V − 𝑏 ⋅ ∇𝑏 + ∇ (𝑝 + 𝑏
2

)

− 𝜒∇ × 𝜔 = 0,

𝜕

𝑡

𝜔 − 𝛾Δ𝜔 − 𝜅∇ div 𝜔 + 2𝜒𝜔 + V ⋅ ∇𝜔 − 𝜒∇ × V = 0,

𝜕

𝑡

𝑏 − ]Δ𝑏 + V ⋅ ∇𝑏 − 𝑏 ⋅ ∇V = 0,

div V = div 𝑏 = 0,

V (0, 𝑥) = V
0

(𝑥) , 𝜔 (0, 𝑥) = 𝜔

0

(𝑥) ,

𝑏 (0, 𝑥) = 𝑏

0

(𝑥) ,

(1)

where V(𝑡, 𝑥) = (V
1

(𝑡, 𝑥), V
2

(𝑡, 𝑥), V
3

(𝑡, 𝑥)) ∈ R3 denotes the
velocity of the fluid at a point 𝑥 ∈ R3, 𝑡 ∈ [0, 𝑇), 𝜔(𝑡, 𝑥) ∈
R3, 𝑏(𝑡, 𝑥) ∈ R3, and 𝑝(𝑡, 𝑥) ∈ R denote, respectively, the
microrotational velocity, the magnetic field, and the hydro-
static pressure. 𝜇, 𝜒, 𝜅, 𝛾, ] are positive numbers associated
to properties of the material: 𝜇 is the kinematic viscosity, 𝜒 is
the vortex viscosity, 𝜅 and 𝛾 are spin viscosities, and 1/] is the
magnetic Reynold. 𝑢

0

, 𝜔

0

, 𝑏

0

are initial data for the velocity,

the angular velocity, and the magnetic field with properties
div 𝑢
0

= 0 and div 𝑏
0

= 0. For more detailed background,
we refer the readers to [1–3].

As we know, the problem of global regularity or finite
time singularity for theweak solutions of themagneto-micro-
polar fluid equations model with large initial data still
remains unsolved since (1) includes the 3D Navier-Stokes
equations. It is of interest that the regularity of the weak solu-
tions is under preassumption of certain growth conditions.
There are a lot of lectures to study the regularity of weak
solutions of themagneto-micropolar fluid equations (see, [4–
6]). The purpose of this paper is to establish a new logarith-
mically improved regularity criterion for themicropolar fluid
equations in terms of the pressure in Besov space ̇

𝐵

−1

∞,∞

. Now
we state the main results as follows.

Theorem 1. Let (V
0

(𝑥), 𝜔

0

(𝑥), 𝑏

0

(𝑥)) ∈ 𝐻

1

(R3). Let𝑇 > 0 and
(V, 𝜔, 𝑏) be a weak solution to the system (1). If the pressure filed
𝑃 satisfies the following condition:

∫

𝑇

0

‖𝑃 (𝑡, ⋅)‖

2

̇

𝐵

−1

∞,∞

1 + ln (𝑒 + ‖𝑃 (𝑡, ⋅)‖
̇

𝐵

−1

∞,∞

)

𝑑𝑡 < ∞, (2)

then the weak solution (V, 𝜔, 𝑏) is regular on [0, 𝑇].
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Remark 2. Since the space ̇

𝐵

−1

∞,∞

is wider than ̇M
2,3

, so our
result resolves the limit case 𝑟 = 1 in [7], which greatly
improves the result in [7].

Remark 3. Since the space ̇

𝐵

−1

∞,∞

is wider than 𝐿3/𝑟,∞, hence
our result extends and improves the recent results given by
[4].

2. Preliminaries and Lemmas

Throughout this paper, we introduce some function spaces,
notations, and important inequalities.

Let 𝑒𝑡Δ denote the heat semigroup defined by

𝑒

𝑡Δ

𝑓 = 𝐾

𝑡

∗ 𝑓, 𝐾

𝑡

= (4𝜋𝑡)

−3/2 exp(−|𝑥|
2

4𝑡

) (3)

for 𝑡 > 0 and 𝑥 ∈ R3, where ∗ denotes the convolution of
functions defined on R3.

We now recall the definition of the homogeneous Besov
space with negative indices ̇

𝐵

−𝛼

∞,∞

on R𝑛 and the homoge-
neous Sobolev space ̇

𝐻

𝛼

𝑞

of exponent 𝛼 > 0. It is known (p.
192 of [8]) that 𝑓 ∈ S(R3) belongs to ̇

𝐵

−𝛼

∞,∞

if and only if
𝑒

𝑡Δ

∈ 𝐿

∞ for all 𝑡 > 0 and 𝑡𝛼/2‖𝑒𝑡Δ‖
∞

∈ 𝐿

∞

(0,∞; 𝐿

∞

). The
norm of ̇

𝐵

−𝛼

∞,∞

is defined, up to equivalence, by









𝑓









̇

𝐵

−𝛼

∞,∞

= sup
𝑡>0

(𝑡

𝛼/2











𝑒

𝑡Δ









∞

) . (4)

We introduce now the homogeneous Sobolev space ̇

𝐻

𝛼

𝑞

(R3),
which is defined by the set of functions 𝑓 ∈ 𝐿

𝑟

(R3), 1/𝑟 =

(1/𝑞) − (𝑠/3) such that (−Δ)𝑠/2𝑓 ∈ 𝐿

𝑞

(R3). This space is
endowed with the norm









𝑓









̇

𝐻

𝛼

𝑞

=











(−Δ)

𝑠/2

𝑓









𝐿

𝑞

, (5)

and when 𝑞 = 2, we just let ̇

𝐻

𝛼

2

(R3) = ̇

𝐻

𝛼

(R3). Additionally,
we have the following inclusion relations (see, e.g., [9]):

̇

𝐻

1/2

(R
3

) ⊂ 𝐿

3

(R
3

) ⊂ 𝐿

3,∞

(R
3

) ⊂

̇

𝐵

−1

∞,∞

(R
3

) ,

̇

𝐻

1/2

(R
3

) ⊂ 𝐿

3

(R
3

) ⊂

̇M
2,3

(R
3

) ⊂

̇

𝐵

−1

∞,∞

(R
3

)

(6)

with continuous injection.

Lemma 4 (see [10]). Let 1 < 𝑝 < 𝑞 < ∞ and 𝑠 = 𝛼((𝑞/𝑝) −

1) > 0. Then there exists a constant 𝐶 depending only on 𝛼, 𝑝,
and 𝑞 such that for all 𝑓 ∈

̇

𝐻

𝛼

𝑝

(R3) ∩ ̇

𝐵

−𝛼

∞,∞

(R3),









𝑓







𝐿

𝑞

≤ 𝐶











(−Δ)

𝑠/2

𝑓











𝑝/𝑞

𝐿

𝑝









𝑓









1−(𝑝/𝑞)

̇

𝐵

−𝛼

∞,∞

. (7)

In particular, for 𝑠 = 1, 𝑝 = 2, and 𝑞 = 4, we get 𝛼 = 1 and









𝑓







𝐿

4

≤ 𝐶









𝑓









1/2

̇

𝐻

1









𝑓









1/2

̇

𝐵

−1

∞,∞

. (8)

Lemma 5 (see [11]). Let 𝑓 ∈ 𝑊

1,𝑠

(R3) (𝑠 ≥ 1), and 𝑟 ≥ 1,
then there exists a positive constant 𝐶 independent of 𝑓 such
that









𝑓







𝐿

𝛾

≤ 𝐶









𝑓









1−𝛼

𝐿

2









∇𝑓









𝛼

𝐿

2

,

(9)

where

𝛼 =

(1/𝑟) − (1/𝛾)

(1/3) − (1/𝑠) − (1/𝑟)

.

(10)

3. Proof of Theorem 1

For given initial data (V
0

, 𝜔

0

, 𝑏

0

) ∈ 𝐻

1

(R3), the weak solution
is the same as the local strong solution (V, 𝜔, 𝑏) in a local
interval (0, 𝑇) as in the discussion ofNavier-Stokes equations.
For the uniqueness and existence of local strong solution,
we refer to [1]. Thus, it proves that Theorem 1 is reduced
to establish a priori estimates uniformly in (0, 𝑇) for strong
solutions. With the use of the a priori estimates, the local
strong solution (V, 𝜔, 𝑏) can be continuously extended to 𝑡 =
𝑇 by a standard process to obtain global regularity of theweak
solution. Therefore, we assume that the solution (V, 𝜔, 𝑏) is
sufficiently smooth on (0, 𝑇).

Proof of Theorem 1. We show that Theorem 1 holds under
condition (1). To prove the theorem, we need the 𝐿4-estimate.
For this purpose, taking the inner product of the first equa-
tion of (1) with |𝑢|2𝑢 and integrating by parts, it can be dedu-
ced that

1

4

𝑑

𝑑𝑡

‖𝑢‖

4

𝐿

4

+ (𝜇 + 𝜒) ‖|∇𝑢| |𝑢|‖

2

𝐿

2

+

1

2

(𝜇 + 𝜒)











∇|𝑢|

2











2

𝐿

2

≤ 2∫

R3
|𝑃| |𝑢|

2

|∇𝑢| 𝑑𝑥 + 3𝜒∫

R3
|𝑤| |𝑢|

2

|∇𝑢| 𝑑𝑥

− ∫

R3
|𝑏|











∇ (|𝑢|

2

𝑢)











|𝑏| 𝑑𝑥,

(11)

where we used the following relations by the divergence-free
condition div 𝑢 = 0:

∫

R3
𝑢 ⋅ ∇𝑢 ⋅ |𝑢|

2

𝑢𝑑𝑥 =

1

2

∫

R3
𝑢 ⋅ ∇|𝑢|

4

𝑑𝑥 = 0,

∫

R3
Δ𝑢 ⋅ |𝑢|

2

𝑢𝑑𝑥 = −∫

R3
|∇𝑢|

2

|𝑢|

2

𝑑𝑥 −

1

2

∫

R3











∇|𝑢|

2











2

𝑑𝑥,

∫

R3
∇ × 𝜔 ⋅ |𝑢|

2

𝑢𝑑𝑥

= −∫

R3
|𝑢|

2

𝜔 ⋅ ∇ × 𝑢𝑑𝑥 − ∫

R3
𝜔 ⋅ ∇|𝑢|

2

× 𝑢𝑑𝑥,

|∇ × 𝑢| ≤ |∇𝑢| , |∇ |𝑢|| ≤ |∇𝑢| .

(12)
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Similarly, taking the inner product of the second equation of
(1) with |𝜔|2𝜔 and integrating by parts, it can be inferred that

1

4

𝑑

𝑑𝑡

‖𝜔‖

4

𝐿

4

+ 𝛾‖|∇𝜔| |𝜔|‖

2

𝐿

2

+

𝛾

2











∇|𝜔|

2











2

𝐿

2

+ 𝑘‖ div 𝜔‖2
𝐿

2

+ 2𝜒‖𝜔‖

4

𝐿

4

≤ 3𝜒∫

R3
|𝑢| |𝜔|

2

|∇𝜔| 𝑑𝑥.

(13)

Using an argument similar to that used in deriving the esti-
mate (11)–(13), it can be obtained for the third equation of (1)
that

1

4

𝑑

𝑑𝑡

‖𝑏‖

4

𝐿

4

+ ‖|∇𝑏| |𝑏|‖

2

𝐿

2

+ 2‖∇ |𝑏| |𝑏|‖

2

𝐿

2

≤ ∫

R3
|𝑏|











∇ (|𝑏|

2

𝑏)











|𝑢| 𝑑𝑥.

(14)

Adding up (11), (13), and (14), then we obtain

1

4

𝑑

𝑑𝑡

(‖𝑢‖

4

𝐿

4

+ ‖𝜔‖

4

𝐿

4

+ ‖𝑏‖

4

𝐿

4

) + (𝜇 + 𝜒) ‖|∇𝑢| |𝑢|‖

2

𝐿

2

+

1

2

(𝜇 + 𝜒)











∇|𝑢|

2











2

𝐿

2

+ 𝛾‖|∇𝜔| |𝜔|‖

2

𝐿

2

+

𝛾

2











∇|𝜔|

2











2

𝐿

2

+ 𝑘‖ div 𝜔‖2
𝐿

2

+ 2𝜒‖𝜔‖

4

𝐿

4

+ ‖|∇𝑏| |𝑏|‖

2

𝐿

2

+ 2‖∇ |𝑏| |𝑏|‖

2

𝐿

2

≤ 2∫

R3
|𝑃| |𝑢|

2

|∇𝑢| 𝑑𝑥 + 3𝜒∫

R3
|𝑤| |𝑢|

2

|∇𝑢| 𝑑𝑥

+ 3𝜒∫

R3
|𝑢| |𝜔|

2

|∇𝜔| 𝑑𝑥 − ∫

R3
|𝑏|











∇ (|𝑢|

2

𝑢)











|𝑏| 𝑑𝑥

+ ∫

R3
|𝑏|











∇ (|𝑏|

2

𝑏)











|𝑢| 𝑑𝑥

≜ 𝐼

1

+ 𝐼

2

+ 𝐼

3

+ 𝐼

4

+ 𝐼

5

.

(15)

Applying the Hölder inequality and the Young inequality for
𝐼

2

, it follows that

𝐼

2

≤

𝜒 + 𝜇

2

‖|∇𝑢| |𝑢|‖

2

𝐿

2

+ 𝐶 (‖𝑢‖

4

𝐿

4

+ ‖𝜔‖

4

𝐿

4

) . (16)

Arguing similarly to above, it can be derived for 𝐼
3

that

𝐼

3

≤

𝛾

2

‖|∇𝜔| |𝜔|‖

2

𝐿

2

+ 𝐶 (‖𝑢‖

4

𝐿

4

+ ‖𝜔‖

4

𝐿

4

) . (17)

Considering the term 𝐼

1

, by virtue of the Cauchy inequality,
we have

𝐼

1

≤

1

2

∫

R3











∇|V|
2











2

𝑑𝑥 +

1

2

∫

R3
|𝑃|

2

|V|
2

𝑑𝑥. (18)

Let us bound the integral (1/2) ∫
R3
|𝑃|

2

|V|2𝑑𝑥. Applying the
divergence operator div to the first equation of (1), one form-
ally has 𝑃 = ∑

3

𝑖,𝑗=1

𝑅

𝑖

𝑅

𝑗

(𝑢

𝑖

𝑢

𝑗

− 𝑏

𝑖

𝑏

𝑗

), where 𝑅
𝑗

denotes the
𝑗th Riesz operator. By the Calderon-Zygmund inequality, we
have

‖∇𝑃‖

𝐿

2 ≤ 𝐶 (‖|V| |∇V|‖
𝐿

2 + ‖|𝑏| |∇𝑏|‖

𝐿

2) . (19)

With the help of (8) and (19), by the Hölder inequality and
the Young inequality, we deduce that

1

2

∫

R3
|𝑃|

2

|V|
2

𝑑𝑥

≤

1

2

‖𝑃‖

2

𝐿

4
‖V‖
2

𝐿

4

≤ 𝐶‖∇𝑃‖

𝐿

2‖𝑃‖

̇

𝐵

−1

∞,∞

‖V‖
2

𝐿

4

≤ 𝐶 (‖|V| |∇V|‖
𝐿

2 + ‖|𝑏| |∇𝑏|‖

𝐿

2) ‖𝑃‖

̇

𝐵

−1

∞,∞

‖V‖
2

𝐿

4

= (‖|V| |∇V|‖
𝐿

2 + ‖|𝑏| |∇𝑏|‖

𝐿

2) (𝐶‖𝑃‖

2

̇

𝐵

−1

∞,∞

‖V‖
4

𝐿

4

)

1/2

≤

1

4

(‖|V| |∇V|‖
2

𝐿

2

+ ‖|𝑏| |∇𝑏|‖

2

𝐿

2

) + 𝐶‖𝑃‖

2

̇

𝐵

−1

∞,∞

‖V‖
4

𝐿

4

.

(20)

So the term 𝐼

1

can be estimated as

𝐼

1

≤

1

2

∫

R3











∇|V|
2











2

𝑑𝑥 +

1

4

(‖|V| |∇V|‖
2

𝐿

2

+ ‖|𝑏| |∇𝑏|‖

2

𝐿

2

)

+ 𝐶‖𝑃‖

2

̇

𝐵

−1

∞,∞

‖V‖
4

𝐿

4

.

(21)

Next we have the following estimate for the term 𝐼

4

:

𝐼

4

≤ ∫

R3
|𝑏|

2

|𝑢|











∇|𝑢|

2











𝑑𝑥. (22)

Since 𝑢 ∈ 𝐿2(R3) ∩ 𝐿6(R3) and using Cauchy inequality, gen-
eralized Hölder inequality, Gagliardo-Nirenberg inequality,
and Sobolev imbedding theorem, we obtain

𝐼

4

≤ 𝐶











|𝑏|

2

|𝑢|









𝐿

2











∇|𝑢|

2









𝐿

2

≤ 𝐶











|𝑏|

2

|𝑢|











2

𝐿

2

+

𝜒 + 𝜇

4











∇|𝑢|

2











2

𝐿

2

≤ 𝐶











|𝑏|

2











2

𝐿

6

‖𝑢‖

2

𝐿

3

+

𝜒 + 𝜇

4











∇|𝑢|

2











2

𝐿

2

≤ 𝐶











∇|𝑏|

2











2

𝐿

2

‖𝑢‖

𝐿

2‖∇𝑢‖

𝐿

2 +

𝜒 + 𝜇

4











∇|𝑢|

2











2

𝐿

2

≤ 𝐶‖|𝑏| ∇ |𝑏|‖

2

𝐿

2

+

𝜒 + 𝜇

4











∇|𝑢|

2











2

𝐿

2

.

(23)

The last term of (15) can be treated in the same way as

𝐼

5

≤ 𝐶∫

R3
|𝑏|

2

|𝑢|











∇|𝑏|

2











𝑑𝑥 ≤ 𝐶











|𝑏|

2

|𝑢|











2

𝐿

2

+

1

8











∇|𝑏|

2









𝐿

2

≤ 𝐶‖|𝑏| ∇ |𝑏|‖

2

𝐿

2

.

(24)
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Inserting the estimates (15) and (21) into (14), it follows that

𝑑

𝑑𝑡

(‖V‖
4

4

+ ‖𝜔‖

4

4

+ ‖𝑏‖

4

4

)

≤ 𝐶‖𝑃‖

2

̇

𝐵

−1

∞,∞

‖V‖
4

𝐿

4

+ 𝐶 (‖V‖
4

4

+ ‖𝜔‖

4

4

+ ‖𝑏‖

4

4

)

≤ 𝐶‖𝑃‖

2

̇

𝐵

−1

∞,∞

(‖V‖
4

4

+ ‖𝜔‖

4

4

) + 𝐶 (‖V‖
4

4

+ ‖𝜔‖

4

4

+ ‖𝑏‖

4

4

)

≤ 𝐶(1 +

‖𝑃 (𝑡, ⋅)‖

2

̇

𝐵

−1

∞,∞

1 + ln (𝑒 + ‖𝑃 (𝑡, ⋅)‖
̇

𝐵

−1

∞,∞

)

)

× [1 + ln (𝑒 + ‖𝑃 (𝑡, ⋅)‖
̇

𝐵

−1

∞,∞

)] (‖V‖
4

4

+ ‖𝜔‖

4

4

+ ‖𝑏‖

4

4

)

≤ 𝐶(1 +

‖𝑃 (𝑡, ⋅)‖

2

̇

𝐵

−1

∞,∞

1 + ln (𝑒 + ‖𝑃 (𝑡, ⋅)‖
̇

𝐵

−1

∞,∞

)

)

× [1 + ln (𝑒 + ‖𝑃 (𝑡, ⋅)‖
𝐿

3)] (‖V‖
4

4

+ ‖𝜔‖

4

4

+ ‖𝑏‖

4

4

)

≤ 𝐶(1 +

‖𝑃 (𝑡, ⋅)‖

2

̇

𝐵

−1

∞,∞

1 + ln (𝑒 + ‖𝑃 (𝑡, ⋅)‖
̇

𝐵

−1

∞,∞

)

)

× [1 + ln (𝑒 + ‖V (𝑡, ⋅)‖2
𝐿

6

)] (‖V‖
4

4

+ ‖𝜔‖

4

4

+ ‖𝑏‖

4

4

)

≤ 𝐶(1 +

‖𝑃 (𝑡, ⋅)‖

2

̇

𝐵

−1

∞,∞

1 + ln (𝑒 + ‖𝑃 (𝑡, ⋅)‖
̇

𝐵

−1

∞,∞

)

)

× [1 + ln (𝑒 + 𝑦 (𝑡))] (‖V‖4
4

+ ‖𝜔‖

4

4

+ ‖𝑏‖

4

4

) ,

(25)

where 𝑦(𝑡) is defined by

𝑦 (𝑡) =: sup
𝑇

0

≤𝑠≤𝑡

(











Λ

3

V










2

𝐿

2

+











Λ

3

𝜔











2

𝐿

2

+











Λ

3

𝑏











2

𝐿

2

) . (26)

Applying Gronwall’s inequality on (25) for the interval [𝑇
0

, 𝑡],
one has

sup
𝑇

0

≤𝑠≤𝑡

(‖V‖
4

4

+ ‖𝜔‖

4

4

+ ‖𝑏‖

4

4

) ≤ 𝐶

0

exp (𝐶𝜀 (1 + ln (𝑒 + 𝑦 (𝑡))))

≤ 𝐶

0

exp (2𝐶𝜀 ln (𝑒 + 𝑦 (𝑡)))

≤ 𝐶

0

(𝑒 + 𝑦 (𝑡))

2𝐶𝜀

(27)

provided that

∫

𝑡

𝑇

0

‖𝑃 (𝑡, ⋅)‖

2

̇

𝐵

−1

∞,∞

1 + ln (𝑒 + ‖𝑃 (𝑡, ⋅)‖
̇

𝐵

−1

∞,∞

)

𝑑𝑠 < 𝜀 ≪ 1, (28)

where 𝐶
0

is a positive constant depending on 𝑇
0

.
Next we will estimate the 𝐿2-norm of ∇V, ∇𝜔, and ∇𝑏. We

multiply both sides of the first equation of (1) by (−ΔV), the

second equation of (1) by (−Δ𝜔), and the third equation of (1)
by (−Δ𝑏), by integration by parts over R3, we get

1

2

𝑑

𝑑𝑡

‖∇V‖
2

𝐿

2

+ ‖ΔV‖
2

𝐿

2

= ∫

R3
(V ⋅ ∇) V ⋅ ΔV 𝑑𝑥

+ ∫

R3
(𝑏 ⋅ ∇) 𝑏 ⋅ ΔV 𝑑𝑥 − ∫

R3
curl𝜔ΔV 𝑑𝑥

≤ ‖V‖
𝐿

4‖∇V‖
𝐿

4‖ΔV‖
𝐿

2

+ ‖𝑏‖

𝐿

4‖∇𝑏‖

𝐿

4‖ΔV‖
𝐿

2 + ‖∇𝜔‖

𝐿

2‖ΔV‖
𝐿

2

≤ ‖V‖
𝐿

4‖V‖
1/8

𝐿

2

‖ΔV‖
7/8

𝐿

2

‖ΔV‖
𝐿

2

+ ‖𝑏‖

𝐿

4‖𝑏‖

1/8

𝐿

2

‖Δ𝑏‖

7/8

𝐿

2

‖ΔV‖
𝐿

2

+

1

16

‖ΔV‖
2

𝐿

2

+ 𝐶‖∇𝜔‖

2

𝐿

2

≤

1

8

‖ΔV‖
2

𝐿

2

+

1

8

‖Δ𝜔‖

2

𝐿

2

+

1

8

‖Δ𝑏‖

2

𝐿

2

+ 𝐶‖𝑏‖

16

𝐿

4
‖𝑏‖

2

𝐿

2

+ 𝐶‖V‖
16

𝐿

4
‖V‖
2

𝐿

2

+ 𝐶‖𝜔‖

2

𝐿

2

,

(29)

1

2

𝑑

𝑑𝑡

‖∇𝜔‖

2

𝐿

2

+ ‖Δ𝜔‖

2

𝐿

2

+ ‖∇ div 𝜔‖2
𝐿

2

+ 2‖∇𝜔‖

2

𝐿

2

= ∫ (V ⋅ ∇) 𝜔 ⋅ Δ𝜔𝑑𝑥 − ∫ curl VΔ𝜔𝑑𝑥

≤ ‖V‖
𝐿

4‖∇𝜔‖

𝐿

4‖Δ𝜔‖

𝐿

2 + ‖∇V‖
𝐿

2‖Δ𝜔‖

𝐿

2

≤ ‖V‖
𝐿

4‖𝜔‖

1/8

𝐿

2

‖Δ𝜔‖

7/8

𝐿

2

‖Δ𝜔‖

𝐿

2

+ 𝐶‖V‖
1/2

𝐿

2

‖ΔV‖
1/2

𝐿

2

‖Δ𝜔‖

𝐿

2

≤

1

8

‖ΔV‖
2

𝐿

2

+

1

8

‖Δ𝜔‖

2

𝐿

2

+ 𝐶‖V‖
16

𝐿

4
‖𝜔‖

2

𝐿

2

+ 𝐶‖V‖
2

𝐿

2

,

(30)

1

2

𝑑

𝑑𝑡

‖∇𝑏‖

2

𝐿

2

+ ‖Δ𝑏‖

2

𝐿

2

= ∫

R3
(V ⋅ ∇𝑏) Δ𝑏 𝑑𝑥 − ∫

R3
(𝑏 ⋅ ∇V) Δ𝑏 𝑑𝑥

≤ ‖V‖
𝐿

4‖∇𝑏‖

𝐿

4‖Δ𝑏‖

𝐿

2 + ‖𝑏‖

𝐿

4‖∇V‖
𝐿

4‖Δ𝑏‖

𝐿

2

≤ ‖V‖
𝐿

4‖𝑏‖

1/8

𝐿

2

‖Δ𝑏‖

7/8

𝐿

2

‖ΔV‖
𝐿

2

+ ‖𝑏‖

𝐿

4‖V‖
1/8

𝐿

2

‖ΔV‖
7/8

𝐿

2

‖Δ𝑏‖

𝐿

2

≤

1

8

‖ΔV‖
2

𝐿

2

+

1

8

‖Δ𝑏‖

2

𝐿

2

+ 𝐶‖V‖
16

𝐿

4
‖𝑏‖

2

𝐿

2

+ 𝐶‖𝑏‖

16

𝐿

4
‖V‖
2

𝐿

2

,

(31)

where we have used the Gagliardo-Nirenberg inequality:









∇𝑓







𝐿

4

≤ 𝐶









𝑓









1/8

𝐿

2









Δ𝑓









7/8

𝐿

2

.

(32)
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Combining (29), (30), and (31) and using the definition of the
weak solution, we deduce that

‖∇V‖
2

𝐿

2

+ ‖∇𝜔‖

2

𝐿

2

+ ‖∇𝑏‖

2

𝐿

2

≤ 𝐶𝐶

0

(𝑒 + 𝑦 (𝑡))

6𝐶𝜀

(𝑡 − 𝑇

0

)

+









∇V (⋅, 𝑇
0

)









2

𝐿

2

+









∇𝜔 (⋅, 𝑇

0

)









2

𝐿

2

.

(33)

Finallywe go to the estimate for𝐻3-normof V,𝜔, and 𝑏. In the
following calculations, we will use the following commutator
estimate due to Kato and Ponce [12]:









Λ

𝑠

(𝑓𝑔) − 𝑓Λ

𝑠

𝑔







𝐿

𝑝

≤ (









∇𝑓







𝐿

𝑝

1











Λ

𝑠−1

𝑔









𝐿

𝑞

1

+









Λ

𝑠

𝑓







𝐿

𝑝

2









𝑔







𝐿

𝑞

2

) ,

(34)

with 𝑠 > 0, Λ𝑠 = (−Δ)

𝑠/2 and (1/𝑝) = (1/𝑝

1

) + (1/𝑞

1

) =

(1/𝑝

2

) + (1/𝑞

2

). Taking the operation Λ3 on both sides of (1),
then multiplying them byΛ3V,Λ3𝜔, andΛ3𝑏, and integrating
by parts over R3, we have

1

2

𝑑

𝑑𝑡

∫

R3











Λ

3

V










2

+











Λ

3

𝜔











2

+











Λ

3

𝑏











2

𝑑𝑥

+ ∫

R3











Λ

4

V










2

𝑑𝑥 + ∫

R3











Λ

4

𝜔











2

𝑑𝑥 + ∫

R3











Λ

4

𝑏











2

𝑑𝑥

+ ∫

R3











Λ

3 div V




2

𝑑𝑥 + 2∫

R3











Λ

3

𝜔











2

𝑑𝑥

= −∫

R3
[Λ

3

(V ⋅ ∇V) − V ⋅ ∇Λ
3

V] Λ
3

V 𝑑𝑥

+ ∫

R3
Λ

3 curl𝜔 ⋅ Λ

3

V 𝑑𝑥

− ∫

R3
[Λ

3

(V ⋅ ∇𝜔) − V ⋅ ∇Λ
3

𝜔]Λ

3

𝜔𝑑𝑥

+ ∫

R3
Λ

3 curl V ⋅ Λ3𝜔𝑑𝑥

+ ∫

R3
[Λ

3

(𝑏 ⋅ ∇𝑏) − 𝑏 ⋅ ∇Λ

3

𝑏]Λ

3

V 𝑑𝑥

− ∫

R3
[Λ

3

(V ⋅ ∇𝑏) − V ⋅ ∇Λ
3

𝑏]Λ

3

𝑏 𝑑𝑥

+ ∫

R3
[Λ

3

(𝑏 ⋅ ∇V) − 𝑏 ⋅ ∇Λ
3

V] Λ
3

𝑏 𝑑𝑥

≡ 𝐴

1

+ 𝐴

2

+ 𝐴

3

+ 𝐴

4

+ 𝐴

5

+ 𝐴

6

+ 𝐴

7

.

(35)

Hence 𝐴
1

can be estimated as

𝐴

1

≤ 𝐶‖∇V‖
𝐿

3











Λ

3

V










2

𝐿

3

≤ 𝐶‖∇V‖
13/2

𝐿

2











Λ

3

V










1/4

𝐿

2











Λ

4

V










5/3

𝐿

2

≤

1

6











Λ

4

V










2

𝐿

2

+ 𝐶‖∇V‖
13/2

𝐿

2











Λ

3

V










3/2

𝐿

2

,

(36)

where we used (33) with 𝑠 = 3, 𝑝 = 3/2, 𝑝

1

= 𝑞

1

= 𝑝

2

=

𝑞

2

= 3 and the following inequalities:

‖∇V‖
𝐿

3 ≤ 𝐶‖∇V‖
3/4

𝐿

2











Λ

3

V










1/4

𝐿

2

,











Λ

3

V








𝐿

3

≤ 𝐶‖∇V‖
1/6

𝐿

2











Λ

4

V










5/6

𝐿

2

.

(37)

If we use the existing estimate (31) for𝑇
0

< 𝑡 < 𝑇, (36) reduces
to

𝐴

1

≤

1

6











Λ

4

V










2

𝐿

2

+ 𝐶𝐶

0

(𝑒 + 𝑦 (𝑡))

(3/4)+(39/2)𝐶𝜀

.
(38)

Using (37) again, we have

𝐴

3

+ 𝐴

5

+ 𝐴

6

+ 𝐴

7

≤

1

6

(











Λ

4

V










2

𝐿

2

+











Λ

4

𝜔











2

𝐿

2

+











Λ

4

𝑏











2

𝐿

2

)

+ 𝐶𝐶

0

(𝑒 + 𝑦 (𝑡))

(3/4)+(39/2)𝐶𝜀

.

(39)

For 𝐴
2

and 𝐴
4

, we have

𝐴

2

+ 𝐴

4

≤

1

6

(











Λ

4

V










2

𝐿

2

+











Λ

4

𝜔











2

𝐿

2

) + 𝐶 (











Λ

3

V










2

𝐿

2

+











Λ

3

𝜔











2

𝐿

2

)

≤

1

6

(











Λ

4

V










2

𝐿

2

+











Λ

4

𝜔











2

𝐿

2

) + 𝐶𝐶

0

(𝑒 + 𝑦 (𝑡)) .

(40)

Inserting the above estimates (38)–(40) into (35), we obtain

𝑑

𝑑𝑡

∫

R3











Λ

3

V










2

+











Λ

3

𝜔











2

𝑑𝑥

≤ 𝐶𝐶

0

(𝑒 + 𝑦 (𝑡))

(3/4)+(39/2)𝐶𝜀

+ 𝐶𝐶

0

(𝑒 + 𝑦 (𝑡)) .

(41)

Gronwall’s inequality implies the boundness of 𝐻3-norm of
V, 𝜔, and 𝑏 provided that 39𝐶𝜀 < (1/2), which can be
achieved by the absolute continuous property of integral (2).
This completes the proof of Theorem 1.

Acknowledgment

The authors thank Professor Xiaohong Fan for his profitable
discussion and suggestions.

References

[1] G. P. Galdi and S. Rionero, “A note on the existence and uni-
queness of solutions of themicropolar fluid equations,” Interna-
tional Journal of Engineering Science, vol. 15, no. 2, pp. 105–108,
1977.

[2] M. A. Rojas-Medar, “Magneto-micropolar fluid motion: exis-
tence and uniqueness of strong solution,” Mathematische
Nachrichten, vol. 188, pp. 301–319, 1997.

[3] E. E. Ortega-Torres and M. A. Rojas-Medar, “Magneto-micro-
polar fluid motion: global existence of strong solutions,” Ab-
stract and Applied Analysis, vol. 4, no. 2, pp. 109–125, 1999.

[4] B. Yuan, “On regularity criteria for weak solutions to the micro-
polar fluid equations in Lorentz space,” Proceedings of the
American Mathematical Society, vol. 138, no. 6, pp. 2025–2036,
2010.



6 Discrete Dynamics in Nature and Society

[5] B. Yuan, “Regularity of weak solutions to magneto-micropolar
fluid equations,”ActaMathematica Scientia. Series B, vol. 30, no.
5, pp. 1469–1480, 2010.

[6] F. Xu, “Regularity criterion of weak solution for the 3D mag-
neto-micropolar fluid equations in Besov spaces,” Communica-
tions in Nonlinear Science and Numerical Simulation, vol. 17, no.
6, pp. 2426–2433, 2012.

[7] J. Geng, X. Chen, and S. Gala, “On regularity criteria for the
3D magneto-micropolar fluid equations in the critical Morrey-
Campanato space,” Communications on Pure and Applied Anal-
ysis, vol. 10, no. 2, pp. 583–592, 2011.

[8] H. Triebel, Interpolation Theory, Function Spaces, Differential
Operators, vol. 18, North-Holland Publishing, Amsterdam, The
Netherlands, 1978.

[9] Z. M. Chen and Z. Xin, “Homogeneity criterion for the Navier-
Stokes equations in the whole spaces,” Journal of Mathematical
Fluid Mechanics, vol. 3, no. 2, pp. 152–182, 2001.

[10] Y. Meyer, P. Gerard, and F. Oru, “Inégalités de Sobolev
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