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By introducing new definitions of 𝜙 convex and −𝜑 concave quasioperator and V
0
quasilower and 𝑢

0
quasiupper, by means of

the monotone iterative techniques without any compactness conditions, we obtain the iterative unique solution of nonlinear mixed
monotone Fredholm-type integral equations in Banach spaces. Our results are even new to 𝜙 convex and−𝜑 concave quasi operator,
and then we apply these results to the two-point boundary value problem of second-order nonlinear ordinary differential equations
in the ordered Banach spaces.

1. Introduction

In this paper, we will consider the following nonlinear Fred-
holm integral equation:

𝑢 (𝑡) = ∫
𝐼

𝐻(𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼, (1)

where 𝐼 = [𝑎, 𝑏] and 𝐻 ∈ 𝐶[𝐼 × 𝐼 × 𝐸, 𝐸], 𝐸 is a real Banach
space with the norm ‖ ⋅ ‖, and there exists a function 𝐺 ∈
𝐶[𝐼 × 𝐼 × 𝐸 × 𝐸, 𝐸] such that for any (𝑡, 𝑠, 𝑥) ∈ 𝐼 × 𝐼 × 𝐸

𝐻 (𝑡, 𝑠, 𝑥) = 𝐺 (𝑡, 𝑠, 𝑥, 𝑥) . (2)

Guo and Lakshmikantham [1] introduced the definition
of mixed monotone operator and coupled fixed point; there
are many good results (see [1–13]). In the special case where
𝐻(𝑡, 𝑠, 𝑥) is nondecreasing in 𝑥 for fixed 𝑡, 𝑠 ∈ 𝐼, Guo [2]
established an existence theoremof themaximal andminimal
solutions for (1) in the ordered Banach spaces by means of
monotone iterative techniques. Recently, Jingxian and Lishan
[3] and Lishan [4] obtained iterative sequences that converge
uniformly to solutions and coupled minimal and maximal
quasisolutions of the nonlinear Fredholm integral equations
in ordered Banach spaces by using the Möuch fixed point
theorem and establishing new comparison results. But these
all required the compactness conditions and the monotone
conditions in the above papers, and furthermore they did not

obtain the unique solutions. In addition, extensive studies
have also been carried out to study the global or iterative
solutions of initial value problems [8–13].

In this paper, by introducing new definitions of 𝜙 convex
and −𝜑 concave quasioperator and V

0
quasilower and 𝑢

0

quasiupper, by means of the monotone iterative techniques
without any compactness conditions which are of the essence
in [2–4, 7, 8, 14], we obtain the iterative unique solution
of nonlinear mixed monotone Fredholm-type integral equa-
tions in Banach spaces and then apply these results to the two-
point boundary value problem of second-order nonlinear
ordinary differential equations.

2. Preliminaries and Definitions

Let 𝑃 be a cone in 𝐸, that is, a closed convex subset such that
𝜆𝑃 ⊂ 𝑃 for any 𝜆 ≥ 0 and 𝑃 ∩ {−𝑃} = {𝜃}. By means of 𝑃, a
partial order ≤ is defined as 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃.
A cone 𝑃 is said to be normal if there exists a constant 𝑁 >
0 such that 𝑥, 𝑦 ∈ 𝐸, 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖ 𝑥 ‖≤ 𝑁 ‖ 𝑦 ‖,
where 𝜃 denotes the zero element of𝐸 (see [2, 14]), andwe call
the smallest number 𝑁 the normal constant of 𝑃 and denote
𝑁
𝑃
.The cone 𝑃 is normal if and only if every ordered interval

[𝑥, 𝑦] = {𝑧 ∈ 𝐸 : 𝑥 ≤ 𝑧 ≤ 𝑦} is bounded.
Let 𝑃
𝐼

= {𝑢 ∈ 𝐶[𝐼, 𝐸] : 𝑢(𝑡) ≥ 𝜃 for all 𝑡 ∈ 𝐼}, where
𝐶[𝐼, 𝐸] denotes the Banach space of all the continuous
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mapping 𝑢 : 𝐼 → 𝐸 with the norm ‖ 𝑢‖
𝐶

= max
𝑡∈𝐼

|𝑢(𝑡)|.
It is clear that 𝑃

𝐼
is a cone of space 𝐶[𝐼, 𝐸], and so it defines

a partial ordering in 𝐶[𝐼, 𝐸]. Obviously, the normality of 𝑃
implies the normality of 𝑃

𝐼
and the normal constants of 𝑃

𝐼
,

and 𝑃 are the same.
Let 𝑢
0
, V
0

∈ 𝐶[𝐼, 𝐸]. Then, 𝑢
0
, V
0
are said to be coupled

lower and upper quasi-solutions of (1) if

𝑢
0 (𝑡) ≤ ∫

𝐼

𝐺 (𝑡, 𝑠, 𝑢
0 (𝑠) , V0 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼,

V
0 (𝑡) ≥ ∫

𝐼

𝐺 (𝑡, 𝑠, V
0 (𝑠) , 𝑢0 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼.

(3)

If the equality in (3) holds, then 𝑢
0
, V
0
are said to be coupled

quasi-solutions of (1).
We will always assume in this paper that 𝑃 is a normal

cone of 𝐸. For any 𝑢
0
, V
0

∈ 𝐶[𝐼, 𝐸] such that V
0

≤ 𝑤
0
, we

define the ordered interval 𝐷 = [𝑢
0
, V
0
] = {𝑢 ∈ 𝐶[𝐼, 𝐸] : 𝑢

0
≤

𝑢 ≤ V
0
}.

Next, we will give the new definition of 𝜙 convex and
−𝜑 concave quasi operator and V

0
quasi-lower and 𝑢

0
quasi-

upper.

Definition 1. Suppose that, 𝐺 ∈ 𝐶[𝐼 × 𝐼 × 𝐸 × 𝐸, 𝐸]. Then
𝐺 is called 𝜙 convex and −𝜑 concave quasi operator, if there
exist functions

𝜙 : (0,∞) × (0,∞) → (0,∞) ,

𝜑 : (0,∞) × (0,∞) → (0,∞) ,
(4)

such that

(1) 𝐺(𝑡, 𝑠, 𝛼𝑢, 𝛽V) ≥ 𝜙(𝛼, 𝛽)𝐺(𝑡, 𝑠, 𝑢, V), 𝛼 < 𝛽, 𝛼, 𝛽 ∈
(0,∞), for all 𝑢, V ∈ 𝐸,

(2) 𝐺(𝑡, 𝑠, 𝛼𝑢, 𝛽V) ≤ 𝜑(𝛼, 𝛽)𝐺(𝑡, 𝑠, 𝑢, V), 𝛼 ≥ 𝛽, 𝛼, 𝛽 ∈
(0,∞), for all 𝑢, V ∈ 𝐸.

Definition 2. Suppose that𝐺 ∈ 𝐶[𝐼 × 𝐼 × 𝐸 × 𝐸, 𝐸], 𝑢
0
∈ 𝑃.

Then, 𝐺 is called 𝑢
0
quasi-upper, if for any 𝑢, V ∈ 𝐸, 𝑢, V < 𝑢

0

such that ∫
𝐼
𝐺(𝑡, 𝑠, 𝑢, V)𝑑𝑠 < 𝑢

0
.

Definition 3. Suppose that 𝐺 ∈ 𝐶[𝐼 × 𝐼 × 𝐸 × 𝐸, 𝐸], V
0
∈ 𝐸.

Then, 𝐺 is called V
0
quasi-lower, if for any 𝑢, V ∈ 𝐸, 𝑢, V > V

0

such that ∫
𝐼
𝐺(𝑡, 𝑠, 𝑢, V)𝑑𝑠 > V

0
.

Let us list the following assumption for convenience.

(𝐻
1
) 𝐺 is uniformly continuous on 𝐼 × 𝐼 × 𝐸 × 𝐸, and 𝐺 is
𝜙 convex and −𝜑 concave quasi operator.

(𝐻
2
) 𝐺(𝑡, 𝑠, 𝑥, 𝑦) is nondecreasing in 𝑥 ∈ 𝐸 for fixed
(𝑡, 𝑠, 𝑦) ∈ 𝐼 × 𝐼 × 𝐸. 𝐺(𝑡, 𝑠, 𝑥, 𝑦) is nonincreasing in
𝑦 ∈ 𝐸 for fixed (𝑡, 𝑠, 𝑥) ∈ 𝐼 × 𝐼 × 𝐸.

(𝐻
3
) 𝜙(𝛼, 𝛽), 𝜑(𝛼, 𝛽) are all increasing in 𝛼, decreasing in
𝛽, and 𝜙(𝛼

0
, 𝛽
0
) ≥ 𝛼
0
, 𝜑(𝛽

0
, 𝛼
0
) ≤ 𝛽
0
and for 𝛼, 𝛽 ∈

[𝛼
0
, 𝛽
0
], 𝛼 < 𝛽,

𝜑 (𝛽, 𝛼) − 𝜙 (𝛼, 𝛽) ≤ 𝑙 (𝛽 − 𝛼) , 0 < 𝑙 < 1. (5)

3. The Main Result

The main results of this paper are the following three
theorems.

Theorem 4. Let 𝑃 be a normal cone of 𝐸, let 𝑢
0
, V
0

∈ 𝑃
𝐼
be

coupled lower and upper quasi-solutions of (1). Assume that
conditions (𝐻

1
), (𝐻
2
), and (𝐻

3
) hold and

(𝐻
4
) There exists 𝑤

0
∈ 𝑃
𝐼
such that 𝑢

0
≤ 𝑤
0

≤ V
0
, and for

𝛼
0
, 𝛽
0
∈ (0,∞) of (𝐻

3
) such that 𝑢

0
≥ 𝛼
0
𝑤
0
, 𝛽
0
𝑤
0
≥

V
0
.

Then, (1) has a unique solution 𝑥∗(𝑡) ∈ 𝐷 = [𝑢
0
, V
0
], and for

any initial 𝑥
0
, 𝑦
0
∈ [𝑢
0
, V
0
], one has

𝑥
𝑛
(𝑡) → 𝑥

∗
(𝑡) , 𝑦

𝑛
(𝑡) → 𝑥

∗
(𝑡) ,

uniformly on 𝑡 ∈ 𝐼 as 𝑛 → ∞,
(6)

where {𝑥
𝑛
(𝑡)}, {𝑦

𝑛
(𝑡)} are defined as

𝑥
𝑛
(𝑡) = ∫

𝐼

𝐺 (𝑡, 𝑠, 𝑥
𝑛−1

(𝑠) , 𝑦
𝑛−1

(𝑠)) 𝑑𝑠,

𝑦
𝑛
(𝑡) = ∫

𝐼

𝐺 (𝑡, 𝑠, 𝑦
𝑛−1

(𝑠) , 𝑥
𝑛−1

(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼.

(7)

Proof. We first define the operator 𝐴 : [𝑢
0
, V
0
] × [𝑢

0
, V
0
] →

𝐶[𝐼, 𝐸] by the formula

𝐴 (𝑢, V) = ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠. (8)

It follows from the assumption (𝐻
2
) that 𝐴 is a mixed

monotone operator, that is, 𝐴(𝑢, V) is nondecreasing in 𝑢 ∈
[𝑢
0
, V
0
] and nonincreasing in V ∈ [𝑢

0
, V
0
], and 𝑢

0
≤

𝐴(𝑢
0
, V
0
), 𝐴(V

0
, 𝑢
0
) ≤ V
0
.

By (7), we have 𝑥
𝑛
(𝑡) = 𝐴(𝑥

𝑛−1
(𝑡), 𝑦
𝑛−1

(𝑡)), 𝑦
𝑛
(𝑡) =

𝐴(𝑦
𝑛−1

(𝑡), 𝑥
𝑛−1

(𝑡)) and set 𝑤
𝑛
(𝑡) = 𝐴(𝑤

𝑛−1
(𝑡), 𝑤
𝑛−1

(𝑡)) for
initial 𝑤

0
in (𝐻
4
), and we also define that

𝑢
𝑛
(𝑡) = 𝐴 (𝑢

𝑛−1
(𝑡) , V
𝑛−1

(𝑡)) ,

V
𝑛 (𝑡) = 𝐴 (V

𝑛−1 (𝑡) , 𝑢𝑛−1 (𝑡)) .
(9)

Since 𝐴 is a mixed monotone operator, it is easy to see that

𝑢
0
≤ 𝑢
1
≤ ⋅ ⋅ ⋅ ≤ 𝑢

𝑛
≤ ⋅ ⋅ ⋅ ≤ V

𝑛
≤ ⋅ ⋅ ⋅ ≤ V

1
≤ V
0
,

𝑢
𝑛
≤ 𝑤
𝑛
≤ V
𝑛
.

(10)

Obviously, by induction, it is easy to see that

𝑢
𝑛
≥ 𝛼
𝑛
𝑤
𝑛
, V
𝑛
≤ 𝛽
𝑛
𝑤
𝑛
, 𝑛 = 0, 1, . . . , (11)

𝛼
0
≤ 𝛼
1
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑛
≤ ⋅ ⋅ ⋅ ≤ 1 ≤ ⋅ ⋅ ⋅ ≤ 𝛽

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛽

1
≤ 𝛽
0
,
(12)

where 𝛼
𝑛
= 𝜙(𝛼

𝑛−1
, 𝛽
𝑛−1

), 𝛽
𝑛
= 𝜑(𝛽

𝑛−1
, 𝛼
𝑛−1

), 𝑛 = 1, 2, . . ..
In fact, by the assumption (𝐻

4
), we have that inequality

(11) holds as 𝑛 = 0. Suppose that inequality (11) holds as 𝑛 = 𝑘,
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that is, 𝑢
𝑘

≥ 𝛼
𝑘
𝑤
𝑘
, V
𝑘

≤ 𝛽
𝑘
𝑤
𝑘
. Then, as 𝑛 = 𝑘 + 1, by the

assumption (𝐻
3
), we have

𝑢
𝑘+1

= 𝐴 (𝑢
𝑘
, V
𝑘
) = ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑢
𝑘
(𝑠) , V
𝑘
(𝑠)) 𝑑𝑠

≥ ∫
𝐼

𝐺 (𝑡, 𝑠, 𝛼
𝑘
𝑤
𝑘
, 𝛽
𝑘
𝑤
𝑘
) 𝑑𝑠

≥ 𝜙 (𝛼
𝑘
, 𝛽
𝑘
) ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑤
𝑘 (𝑠) , 𝑤𝑘 (𝑠)) 𝑑𝑠 = 𝛼

𝑘+1
𝑤
𝑘+1

,

V
𝑘+1

= 𝐴 (V
𝑘
, 𝑢
𝑘
) = ∫
𝐼

𝐺 (𝑡, 𝑠, V
𝑘
(𝑠) , 𝑢
𝑘
(𝑠)) 𝑑𝑠

≤ ∫
𝐼

𝐺 (𝑡, 𝑠, 𝛽
𝑘
𝑤
𝑘
, 𝛼
𝑘
𝑤
𝑘
) 𝑑𝑠

≤ 𝜑 (𝛽
𝑘
, 𝛼
𝑘
) ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑤
𝑘
(𝑠) , 𝑤

𝑘
(𝑠)) 𝑑𝑠 = 𝛽

𝑘+1
𝑤
𝑘+1

.

(13)

Then, it is easy to show by induction that inequality (11) holds.
For inequality (12), by 𝑢

𝑘+1
≤ 𝑤
𝑘+1

≤ V
𝑘+1

and the above
discussion, we have 0 < 𝛼

𝑘+1
≤ 1 ≤ 𝛽

𝑘+1
. Obviously, it follows

from the assumption (𝐻
4
) that 𝛼

0
≤ 𝛼
1
, 𝛽
1
≤ 𝛽
0
. Suppose that

𝛼
𝑘−1

≤ 𝛼
𝑘
, 𝛽
𝑘
≤ 𝛽
𝑘−1

, so it is easy to show by (𝐻
3
) that

𝜙 (𝛼
𝑘−1

, 𝛽
𝑘−1

) ≤ 𝜙 (𝛼
𝑘
, 𝛽
𝑘
) ,

𝜑 (𝛽
𝑘
, 𝛼
𝑘
) ≤ 𝜑 (𝛽

𝑘−1
, 𝛼
𝑘−1

) ,
(14)

that is, 𝛼
𝑘

≤ 𝛼
𝑘+1

, 𝛽
𝑘+1

≤ 𝛽
𝑘
. Then, it is easy to show by

induction that inequality (12) holds.
Then, it follows from the inequality (12) that there exist

limits of the sequences {𝛼
𝑛
}, {𝛽
𝑛
}. Suppose that there exist

𝛼, 𝛽 such that 𝛼
𝑛

→ 𝛼, 𝛽
𝑛

→ 𝛽, and 𝑛 → ∞, and by
(𝐻
3
), we also have

0 ≤ 𝛽
𝑛
− 𝛼
𝑛
= 𝜑 (𝛽

𝑛−1
, 𝛼
𝑛−1

) − 𝜙 (𝛼
𝑛−1

, 𝛽
𝑛−1

)

≤ 𝑙 (𝛽
𝑛−1

− 𝛼
𝑛−1

) ≤ ⋅ ⋅ ⋅ ≤ 𝑙
𝑛
(𝛽
0
− 𝛼
0
) ,

(15)

they 0 < 𝑙 < 1, and taking limits in the above inequality as
𝑛 → ∞, we have 𝛼 = 𝛽.

Next, we will show that the sequences {𝑢
𝑛
}, {V
𝑛
} are all

Cauchy sequences on 𝐷.
In fact, by (10) and (11), for any natural number 𝑝, we

know that

𝜃 ≤ 𝑢
𝑛+𝑝

− 𝑢
𝑛
≤ V
𝑛
− 𝑢
𝑛
≤ (𝛽
𝑛
− 𝛼
𝑛
) 𝑢
0
,

𝜃 ≤ V
𝑛
− V
𝑛+𝑝

≤ V
𝑛
− 𝑢
𝑛
≤ (𝛽
𝑛
− 𝛼
𝑛
) 𝑢
0
.

(16)

By the normality of 𝑃
𝐼
and (15), we have

𝑢𝑛+𝑝 − 𝑢
𝑛

𝐶 ≤ 𝑁
𝑃
𝑙
𝑛
(𝛽
0
− 𝛼
0
)
𝑢0

𝐶,

V𝑛 − V
𝑛+𝑝

𝐶 ≤ 𝑁
𝑃
𝑙
𝑛
(𝛽
0
− 𝛼
0
)
𝑢0

𝐶,
(17)

where 𝑁
𝑃
is a normal constant. So {𝑢

𝑛
}, {V
𝑛
} are all Cauchy

sequences on 𝐷, and then there exists 𝑢∗, V∗ ∈ [𝑢
0
, V
0
] such

that lim
𝑛→∞

𝑢
𝑛
= 𝑢∗, lim

𝑛→∞
V
𝑛
= V∗.

It is easy to know by (10) and (11) that

𝜃 ≤ V
𝑛
− 𝑢
𝑛
≤ 𝛽
𝑛
𝑤
𝑛
− 𝛼
𝑛
𝑤
𝑛
≤ (𝛽
𝑛
− 𝛼
𝑛
) 𝑢
0
≤ 𝑙
𝑛
(𝛽
0
− 𝛼
0
) 𝑢
0
,

(18)

so by the normality of 𝑃
𝐼
, we have

V𝑛 − 𝑢
𝑛

𝐶 ≤ 𝑁
𝑃
𝑙
𝑛
(𝛽
0
− 𝛼
0
)
𝑢0

𝐶, (19)

and taking limits in the above inequality as 𝑛 → ∞, we have
𝑥∗ = 𝑢∗ = V∗ ∈ [𝑢

0
, V
0
], and for any natural number 𝑛, we

also have 𝑢
𝑛
≤ 𝑥∗ ≤ V

𝑛
, 𝑡 ∈ 𝐼.

Then, by the mixed monotone quality of 𝐴 we have

𝑢
𝑛+1

= 𝐴 (𝑢
𝑛
, V
𝑛
) ≤ 𝐴 (𝑥

∗
, 𝑥
∗
) ≤ 𝐴 (V

𝑛
, 𝑢
𝑛
) = V
𝑛+1

, (20)

and taking limits in above inequality as 𝑛 → ∞, we know
that

𝑥
∗
= 𝐴 (𝑥

∗
, 𝑥
∗
) , (21)

that is, 𝑥∗ ∈ [𝑢
0
, V
0
] is the fixed point of 𝐴; thus, 𝑥∗ is the

solution of (1) on 𝐷 = [𝑢
0
, V
0
].

Furthermore, we will show that the solution is unique.
Suppose that 𝑦∗ ∈ [𝑢

0
, V
0
] satisfy 𝑦∗ = 𝐴(𝑦∗, 𝑦∗). Then,

by the mixed monotone quality of 𝐴 and induction, for any
natural number 𝑛, it is easy to have that 𝑢

𝑛
≤ 𝑦∗ ≤ V

𝑛
.

Then, by the normality of 𝑃
𝐼
and taking limits in the above

inequality as 𝑛 → ∞ and the above discussion, we have
𝑦∗ = 𝑥∗.

For any initial 𝑥
0
, 𝑦
0
∈ [𝑢
0
, V
0
], by (7) and (8), the mixed

monotone quality of𝐴 and induction, for any natural number
𝑛, we have 𝑢

𝑛
(𝑡) ≤ 𝑥

𝑛
(𝑡) ≤ V

𝑛
(𝑡), 𝑢
𝑛
(𝑡) ≤ 𝑦

𝑛
(𝑡) ≤ V

𝑛
(𝑡), 𝑡 ∈ 𝐼.

Then, the normality of 𝑃
𝐼
and (19) imply that

𝑥𝑛 − 𝑢
𝑛

𝐶 ≤ 𝑁
𝑃
𝑙
𝑛
(𝛽
0
− 𝛼
0
)
𝑢0

𝐶,

𝑦𝑛 − 𝑢
𝑛

𝐶 ≤ 𝑁
𝑃
𝑁
𝑃
𝑙
𝑛
(𝛽
0
− 𝛼
0
)
𝑢0

𝐶.
(22)

Thus, the sequence {𝑥
𝑛
(𝑡)}, {𝑦

𝑛
(𝑡)} all converges uniformly to

𝑥∗(𝑡) on 𝑡 ∈ 𝐼. This completes the proof of Theorem 4.

Theorem 5. Let 𝑃 be a normal cone of 𝐸, let 𝑢
0
, V
0

∈ 𝑃
𝐼
be

coupled lower and upper quasi-solutions of (1). Assume that
conditions (𝐻

1
), (𝐻
2
), and (𝐻

3
) hold.

(𝐻
4
) 𝐺 is 𝑢

0
quasi-upper, and there exists 𝑤

0
∈ 𝑃
𝐼
such that

𝑤
0
< 𝑢
0
< V
0
, and there exist 𝛼

0
= sup{𝛼 > 0 : 𝑢

0
≥

𝛼𝑤
0
}, 𝛽
0
= inf{𝛽 > 0 : V

0
≤ 𝛽𝑤
0
}.

Then, (1) has a unique solution 𝑥∗(𝑡) ∈ 𝐷 = [𝑢
0
, V
0
], and for

any initial 𝑥
0
, 𝑦
0
∈ [𝑢
0
, V
0
], one has

𝑥
𝑛 (𝑡) → 𝑥

∗
(𝑡) , 𝑦

𝑛 (𝑡) → 𝑥
∗
(𝑡) ,

uniformly on 𝑡 ∈ 𝐼 as 𝑛 → ∞,
(23)

where {𝑥
𝑛
(𝑡)}, {𝑦

𝑛
(𝑡)} are defined as

𝑥
𝑛
(𝑡) = ∫

𝐼

𝐺 (𝑡, 𝑠, 𝑥
𝑛−1

(𝑠) , 𝑦
𝑛−1

(𝑠)) 𝑑𝑠,

𝑦
𝑛 (𝑡) = ∫

𝐼

𝐺 (𝑡, 𝑠, 𝑦
𝑛−1 (𝑠) , 𝑥𝑛−1 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼.

(24)
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Proof. We first define the operator 𝐴 : [𝑢
0
, V
0
] × [𝑢

0
, V
0
] →

𝐶[𝐼, 𝐸] by the formula

𝐴 (𝑢, V) = ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠. (8)

It follows from the assumption (𝐻
2
) that 𝐴 is a mixed mono-

tone operator, that is, 𝐴(𝑢, V) is nondecreasing in 𝑢 ∈
[𝑢
0
, V
0
] and nonincreasing in V ∈ [𝑢

0
, V
0
] and 𝑢

0
≤

𝐴(𝑢
0
, V
0
), 𝐴(V

0
, 𝑢
0
) ≤ V

0
. By (7), we have 𝑥

𝑛
(𝑡) =

𝐴(𝑥
𝑛−1

(𝑡), 𝑦
𝑛−1

(𝑡)), 𝑦
𝑛
(𝑡) = 𝐴(𝑦

𝑛−1
(𝑡), 𝑥
𝑛−1

(𝑡)) and set
𝑤
𝑛
(𝑡) = 𝐴(𝑤

𝑛−1
(𝑡), 𝑤
𝑛−1

(𝑡)), and we also define

𝑢
𝑛
(𝑡) = 𝐴 (𝑢

𝑛−1
(𝑡) , V
𝑛−1

(𝑡)) ,

V
𝑛
(𝑡) = 𝐴 (V

𝑛−1
(𝑡) , 𝑢
𝑛−1

(𝑡)) .
(25)

Since 𝐴 is a mixed monotone operator, it is easy to see that

𝑢
0
≤ 𝑢
1
≤ ⋅ ⋅ ⋅ ≤ 𝑢

𝑛
≤ ⋅ ⋅ ⋅ ≤ V

𝑛
≤ ⋅ ⋅ ⋅ ≤ V

1
≤ V
0
. (10)

Because 𝐺 is 𝑢
0
quasi-upper and 𝑤

0
< 𝑢
0
, we have

𝑤
1
(𝑡) = 𝐴 (𝑤

0
(𝑡) , 𝑤

0
(𝑡))

= ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑤
0
(𝑠) , 𝑤

0
(𝑠)) 𝑑𝑠 < 𝑢

0
.

(26)

So for any natural number 𝑛, by induction, we know that
𝑤
𝑛
(𝑡) = 𝐴(𝑤

𝑛−1
(𝑡), 𝑤
𝑛−1

(𝑡)) < 𝑢
0
.

It is easy to see by induction that

𝑢
𝑘
≥ 𝛼
𝑘
𝑤
𝑘
, V

𝑘
≤ 𝛽
𝑘
𝑤
𝑘
, (11)

𝑎
0
≤ 𝑎
1
≤ ⋅ ⋅ ⋅ ≤ 𝑎

𝑘
≤ ⋅ ⋅ ⋅ ≤ 𝑏

𝑘
≤ ⋅ ⋅ ⋅ ≤ 𝑏

1
≤ 𝑏
0
, (12)

where 𝛼
𝑘
= 𝜙(𝛼

𝑘−1
, 𝛽
𝑘−1

), 𝛽
𝑘
= 𝜑(𝛽

𝑘−1
, 𝛼
𝑘−1

), 𝑘 = 1, 2, . . ..
In fact, by the assumptions (𝐻

1
) and (𝐻

3
) and the above

discussion, as 𝑛 = 0, we have

𝑢
1
= 𝐴 (𝑢

0
, V
0
) = ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑢
0
(𝑠) , V
0
(𝑠)) 𝑑𝑠

≥ ∫
𝐼

𝐺 (𝑡, 𝑠, 𝛼
0
𝑤
0
, 𝛽
0
𝑤
0
) 𝑑𝑠

≥ 𝜙 (𝛼
0
, 𝛽
0
) ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑤
0
(𝑠) , 𝑤

0
(𝑠)) 𝑑𝑠 = 𝛼

1
𝑤
1
,

(27)

V
1
= 𝐴 (V

0
, 𝑢
0
) = ∫
𝐼

𝐺 (𝑡, 𝑠, V
0
(𝑠) , 𝑢
0
(𝑠)) 𝑑𝑠

≤ ∫
𝐼

𝐺 (𝑡, 𝑠, 𝛽
0
𝑤
0
, 𝛼
0
𝑤
0
) 𝑑𝑠

≤ 𝜑 (𝛽
0
, 𝛼
0
) ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑤
0
(𝑠) , 𝑤

0
(𝑠)) 𝑑𝑠 = 𝛽

1
𝑤
1
.

(28)

By the above two inequalities and assumption (𝐻
3
), we have

𝑎
0
≤ 𝛼
1
= 𝜙 (𝛼

0
, 𝛽
0
) ≤ 𝜑 (𝛽

0
, 𝛼
0
) = 𝛽
1
≤ 𝑏
0
. (29)

Suppose that for 𝑘 − 1 we have 𝑢
𝑘−1

≥ 𝛼
𝑘−1

𝑤
𝑘−1

, V
𝑘−1

≤
𝛽
𝑘−1

𝑤
𝑘−1

, and 𝛼
𝑘−2

≤ 𝛼
𝑘−1

≤ 𝛽
𝑘−1

≤ 𝛽
𝑘−2

. Then, for 𝑘 + 1,
by the assumption (𝐻

3
), we have

𝑢
𝑘
= 𝐴 (𝑢

𝑘−1
, V
𝑘−1

) = ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑢
𝑘−1

(𝑠) , V
𝑘−1

(𝑠)) 𝑑𝑠

≥ ∫
𝐼

𝐺 (𝑡, 𝑠, 𝛼
𝑘−1

𝑤
𝑘−1

, 𝛽
𝑘−1

𝑤
𝑘−1

) 𝑑𝑠

≥ 𝜙 (𝛼
𝑘−1

, 𝛽
𝑘−1

) ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑤
𝑘−1 (𝑠) , 𝑤𝑘−1 (𝑠)) 𝑑𝑠 = 𝛼

𝑘
𝑤
𝑘
,

V
𝑘
= 𝐴 (V

𝑘−1
, 𝑢
𝑘−1

) = ∫
𝐼

𝐺 (𝑡, 𝑠, V
𝑘−1

(𝑠) , 𝑢
𝑘−1

(𝑠)) 𝑑𝑠

≤ ∫
𝐼

𝐺 (𝑡, 𝑠, 𝛽
𝑘−1

𝑤
𝑘−1

, 𝛼
𝑘−1

𝑤
𝑘−1

) 𝑑𝑠

≤ 𝜑 (𝛽
𝑘−1

, 𝛼
𝑘−1

) ∫
𝐼

𝐺 (𝑡, 𝑠, 𝑤
𝑘−1 (𝑠) , 𝑤𝑘−1 (𝑠)) 𝑑𝑠 = 𝛽

𝑘
𝑤
𝑘
.

(30)

By the above two inequalities and assumption (𝐻
3
), we have

𝛼
𝑘−1

= 𝜙 (𝛼
𝑘−2

, 𝛽
𝑘−2

) ≤ 𝜙 (𝛼
𝑘−1

, 𝛽
𝑘−1

) = 𝛼
𝑘
≤ 𝛽
𝑘

= 𝜑 (𝛽
𝑘−1

, 𝛼
𝑘−1

) ≤ 𝜑 (𝛽
𝑘−2

, 𝛼
𝑘−2

) = 𝛽
𝑘−1

.
(31)

Then, it is easy to show by induction that inequalities (11)

and (12) hold.
The following proof is similar to that of Theorem 4. This

completes the proof of Theorem 5.

By a similar argument to that ofTheorem 5, we obtain the
following results.

Theorem 6. Let 𝑃 be a normal cone of 𝐸, and let 𝑢
0
, V
0
∈ 𝑃
𝐼

be coupled lower and upper quasi-solutions of (1). Assume that
condition (𝐻

1
), (𝐻
2
), and (𝐻

3
) hold.

(𝐻
4
) 𝐺 is V

0
quasi-lower, and there exists 𝑤

0
∈ 𝑃
𝐼
such that

𝑢
0
< V
0
< 𝑤
0
, and there exist 𝛼

0
= sup{𝛼 > 0 : 𝑢

0
≥

𝛼𝑤
0
}, 𝛽
0
= inf{𝛽 > 0 : V

0
≤ 𝛽𝑤
0
}.

Then, (1) has a unique solution 𝑥∗(𝑡) ∈ 𝐷 = [𝑢
0
, V
0
], and for

any initial 𝑥
0
, 𝑦
0
∈ [𝑢
0
, V
0
], one has

𝑥
𝑛 (𝑡) → 𝑥

∗
(𝑡) , 𝑦

𝑛 (𝑡) → 𝑥
∗
(𝑡),

uniformly on 𝑡 ∈ 𝐼 as 𝑛 → ∞,
(32)

where {𝑥
𝑛
(𝑡)}, {𝑦

𝑛
(𝑡)} are defined as

𝑥
𝑛
(𝑡) = ∫

𝐼

𝐺 (𝑡, 𝑠, 𝑥
𝑛−1

(𝑠) , 𝑦
𝑛−1

(𝑠)) 𝑑𝑠,

𝑦
𝑛 (𝑡) = ∫

𝐼

𝐺 (𝑡, 𝑠, 𝑦
𝑛−1 (𝑠) , 𝑥𝑛−1 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼.

(33)
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4. Applications

Consider the following two-point BVP in the Banach space:

−𝑢


= 𝑓 (𝑡, 𝑢) , 𝑡 ∈ 𝐽 = [0, 1] ,

𝑢 (0) = 𝑢 (1) = 0,
(34)

where 𝑓 ∈ 𝐶[𝐽 × 𝑃, 𝑃], 𝑃 is a cone in a real Banach space
𝐸. Suppose that there exists a mapping 𝑔 ∈ 𝐶[𝐽 × 𝑃 × 𝑃, 𝑃]
such that𝑓(𝑡, 𝑥) = 𝑔(𝑡, 𝑥, 𝑥), and that 𝑔 satisfies the following
conditions:

(𝐶
1
) 𝑔 is uniformly continuous on 𝐽 × 𝑃 × 𝑃, and 𝐺 is 𝜙
convex and −𝜑 concave quasi operator,

(𝐶
2
) 𝑔(𝑡, 𝑥, 𝑦) is nondecreasing in 𝑥 ∈ 𝑃 for fixed (𝑡, 𝑦) ∈
𝐽×𝑃, and𝑔(𝑡, 𝑥, 𝑦) is nonincreasing in𝑦 ∈ 𝑃, for fixed
(𝑡, 𝑥) ∈ 𝐽 × 𝑃,

(𝐶
3
) there exist the bounded nonnegative Lebesgue inte-
grable functions 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), and 𝑑(𝑡) satisfying
∫
𝐽
𝑎(𝑠)𝑑𝑠 < 8, ∫

𝐽
𝑐(𝑠)𝑑𝑠 < 8 such that

𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) ≤ 𝑔 (𝑡, 𝑥, 𝑦) ≤ 𝑐 (𝑡) 𝑥 + 𝑑 (𝑡) , 𝑡 ∈ 𝐽, 𝑥, 𝑦 ∈ 𝑃.
(35)

It is well known that 𝑢 ∈ 𝐶2[𝐽, 𝑃] is a solution of BVP(34)
in 𝐶2[𝐽, 𝑃] if and only if 𝑢 ∈ 𝐶[𝐽, 𝑃] is a solution of the
following integral equation:

𝑢 (𝑡) = ∫
𝐽

ℎ (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽, (36)

where

ℎ (𝑡, 𝑠) = {
𝑡 (1 − 𝑠) , 𝑡 ≤ 𝑠,

𝑠 (1 − 𝑡) , 𝑡 > 𝑠.
(37)

Lemma 7. If assumption (𝐶
3
) holds, then there exists 𝑢

0
, V
0
∈

𝐶[𝐽, 𝑃] such that

𝑢
0
(𝑡) ≤ ∫

𝐽

ℎ (𝑡, 𝑠) 𝑔 (𝑠, 𝑢
0
(𝑠) , V
0
(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽,

V
0
(𝑡) ≥ ∫

𝐽

ℎ (𝑡, 𝑠) 𝑔 (𝑠, V
0
(𝑠) , 𝑢
0
(𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽.

(38)

Proof. In fact, let

𝐿
1
𝑢 (𝑡) = ∫

𝐽

ℎ (𝑡, 𝑠) 𝑎 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑥
0
(𝑡) = ∫

𝐽

ℎ (𝑡, 𝑠) 𝑏 (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽,

𝐿
2
V (𝑡) = ∫

𝐽

ℎ (𝑡, 𝑠) 𝑐 (𝑠) V (𝑠) 𝑑𝑠,

𝑦
0 (𝑡) = ∫

𝐽

ℎ (𝑡, 𝑠) 𝑑 (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽.

(39)

Obviously, by assumption (𝐶
3
), we can get that ‖ 𝐿

1
‖≤

max
𝑡∈𝐼

(𝑡(1 − 𝑡)/2) ∫
𝐽
𝑎(𝑠)𝑑𝑠 = (1/8) ∫

𝐽
𝑎(𝑠)𝑑𝑠 < 1, then the

equation (𝐼 − 𝐿
1
)𝑢 = 𝑥

0
has a unique solution

𝑢
0 (𝑡) = (𝐼 − 𝐿

1
)
−1

𝑥
0
=
∞

∑
𝑛=0

𝐿
𝑛

1
𝑥
0
∈ 𝑃
𝐼
. (40)

Similarly, the equation (𝐼 − 𝐿
2
)V = 𝑦

0
has a unique

solution

V
0 (𝑡) = (𝐼 − 𝐿

2
)
−1

𝑦
0
=
∞

∑
𝑛=0

𝐿
𝑛

2
𝑦
0
∈ 𝑃
𝐼
. (41)

Thus, by assumption (𝐶
3
), for any 𝑡 ∈ 𝐽, we have

∫
𝐽

ℎ (𝑡, 𝑠) 𝑔 (𝑠, 𝑢
0
(𝑠) , V
0
(𝑠)) 𝑑𝑠

≥ ∫
𝐽

ℎ (𝑡, 𝑠) (𝑎 (𝑠) 𝑥 + 𝑏 (𝑠)) 𝑑𝑠

= 𝐿
1
𝑢
0
(𝑡) + 𝑥

0
(𝑡) = 𝑢

0
(𝑡) ,

∫
𝐽

ℎ (𝑡, 𝑠) 𝑔 (𝑠, V
0
(s) , 𝑢
0
(𝑠)) 𝑑𝑠

≤ ∫
𝐽

ℎ (𝑡, 𝑠) (𝑐 (𝑠) V
0
(𝑠) + 𝑏 (𝑠)) 𝑑𝑠

= 𝐿
2
V
0
(𝑡) + 𝑦

0
(𝑡) = V

0
(𝑡) ,

(42)

that is, (38) holds.

Theorem 8. Let 𝑃 be a normal cone of 𝐸. Assume that (𝐶
1
)

and (𝐶
3
) hold,

(𝐶
4
) there exists𝑤

0
∈ 𝑃
𝐼
and 𝑢
0
, V
0
in (38) of Lemma 7 such

that 𝑢
0
< 𝑤
0
< V
0
, and also there exists 𝛼

0
, 𝛽
0
∈ (0,∞)

such that 𝑢
0
≥ 𝛼
0
𝑤
0
, 𝛽
0
𝑤
0
≥ V
0
,

(𝐶
5
) 𝜙(𝛼, 𝛽), 𝜑(𝛼, 𝛽) are all increasing in 𝛼, decreasing in
𝛽 and 𝜙(𝛼

0
, 𝛽
0
) ≥ 𝛼

0
, 𝜑(𝛽
0
, 𝛼
0
) ≤ 𝛽

0
, for 𝛼, 𝛽 ∈

[𝛼
0
, 𝛽
0
], 𝛼 < 𝛽,

𝜑 (𝛽, 𝛼) − 𝜙 (𝛼, 𝛽) ≤ 𝑙 (𝛽 − 𝛼) , 0 < 𝑙 < 1. (43)

Then, (34) has a unique solution 𝑥∗(𝑡) ∈ 𝐷 = [𝑢
0
, V
0
], and for

any initial 𝑥
0
, 𝑦
0
∈ [𝑢
0
, V
0
], one has

𝑥
𝑛 (𝑡) → 𝑥

∗
(𝑡) , 𝑦

𝑛 (𝑡) → 𝑥
∗
(𝑡) ,

uniformly on 𝑡 ∈ 𝐼 as 𝑛 → ∞,
(44)

where {𝑥
𝑛
(𝑡)}, {𝑦

𝑛
(𝑡)} are defined as

𝑥
𝑛
(𝑡) = ∫

𝐽

ℎ (𝑡, 𝑠) 𝑔 (𝑠, 𝑥
𝑛−1

(𝑠) , 𝑦
𝑛−1

(𝑠)) 𝑑𝑠,

𝑦
𝑛 (𝑡) = ∫

𝐽

ℎ (𝑡, 𝑠) 𝑔 (𝑠, 𝑦
𝑛−1 (𝑠) , 𝑥𝑛−1 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽.

(45)
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Proof. It is easy to see by conditions (𝐶
1
) and (𝐶

2
) that

𝐺(𝑡, 𝑠, 𝑥, 𝑦) = ℎ(𝑡, 𝑠)𝑔(𝑠, 𝑥, 𝑦) satisfy the conditions (𝐻
1
) and

(𝐻
2
) ofTheorem 4. By (𝐶

3
) and (38), we have 𝑢

0
, V
0
∈ 𝐶[𝐼, 𝑃]

as coupled lower and upper quasi-solutions of (34).
Thus, the assumption (𝐻

1
)–(𝐻
4
) ofTheorem 4 is satisfied

from the assumption (𝐶
1
)–(𝐶
5
)ofTheorem 8.The conclusion

of Theorem 8 follows fromTheorem 4.

Example 9. In fact, we can construct the function 𝑓(𝑡, 𝑥) in
Theorem 8.

Let

𝑓 (𝑡, 𝑥) = 𝑔 (𝑡, 𝑥, 𝑦) = 𝑥 +
1

𝑦
, 𝑡 ∈ [0, 1] ,

𝜙 (𝛼, 𝛽) = sin𝛼 +
1

2𝛽
,

𝛼 ∈ [0,
𝜋

2
] ,

𝜑 (𝛼, 𝛽) = 3𝛼 − 5𝛽,

(46)

then
𝐺 (𝑡, 𝑠, 𝛼𝑥, 𝛽𝑦) = ℎ (𝑡, 𝑠) 𝑔 (𝑠, 𝛼𝑥, 𝛽𝑦)

= ℎ (𝑡, 𝑠) (𝛼𝑥 +
1

𝛽𝑦
)

≥ ℎ (𝑡, 𝑠) (sin𝛼 +
1

2𝛽
)(𝑥 +

1

𝑦
)

= 𝜙 (𝛼, 𝛽)𝐺 (𝑡, 𝑠, 𝑥, 𝑦) ,

(47)

𝐺 (𝑡, 𝑠, 𝛼𝑥, 𝛽𝑦) = ℎ (𝑡, 𝑠) 𝑔 (𝑠, 𝛼𝑥, 𝛽𝑦)

= ℎ (𝑡, 𝑠) (𝛼𝑥 +
1

𝛽𝑦
)

≤ ℎ (𝑡, 𝑠) (3𝛼 − 5𝛽) (𝑥 +
1

𝑦
)

= 𝜑 (𝛼, 𝛽)𝐺 (𝑡, 𝑠, 𝑥, 𝑦) .

(48)

Thus, 𝐺 is 𝜙 convex and −𝜑 concave quasi operator and thus
satisfies (𝐶

1
).

It is easy to check that 𝑔(𝑡, 𝑥, 𝑦) is nondecreasing in 𝑥 for
fixed (𝑡, 𝑦) and is nonincreasing in 𝑦 for fixed (𝑡, 𝑥) and thus
satisfies (𝐶

2
).

There exist 𝑎(𝑡) = 𝑡/2, 𝑏(𝑡) = 𝑡/100, 𝑐(𝑡) = 2𝑡, and
𝑑(𝑡) = 1000𝑡 satisfying

∫
1

0

𝑎 (𝑠) 𝑑𝑠 =
1

2
∫
1

0

𝑡 𝑑𝑡 =
1

4
< 8,

∫
1

0

𝑐 (𝑠) 𝑑𝑠 = 2∫
1

0

𝑠 𝑑𝑠 = 1 < 8,

(49)

such that
𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) ≤ 𝑔 (𝑡, 𝑥, 𝑦) ≤ 𝑐 (𝑡) 𝑥 + 𝑑 (𝑡) . (50)

Thus, (𝐶
3
) holds.

There exist

𝑢
0
= ∫
1

0

ℎ (𝑡, 𝑠) [𝑢0 (𝑠) +
1

V
0
(𝑠)

] 𝑑𝑠,

V
0
= 2𝑢
0
= ∫
1

0

ℎ (𝑡, 𝑠) [V
0
(𝑠) +

1

𝑢
0 (𝑠)

] 𝑑𝑠.

(51)

Choose 𝑤
0
= (3/2)𝑢

0
such that 𝑢

0
< 𝑤
0
< V
0
, and also there

exist 𝛼
0
= 2/3, 𝛽

0
= 4/3 such that

𝑢
0
= 𝛼
0

3

2
𝑢
0
= 𝛼
0
𝑤
0
, 𝛽

0

3

2
𝑢
0
= 2𝑢
0
= V
0
. (52)

Thus, (𝐶
4
) is satisfied.

𝜙(𝛼, 𝛽), 𝜑(𝛼, 𝛽) are all increasing in 𝛼 and nondecreasing
in 𝛽,

𝜙(
2

3
,
4

3
) = sin 2

3
+

1

2 × (4/3)
≥

2

3
= 𝛼
0
,

𝜑 (
4

3
,
2

3
) = 3 ×

4

3
− 5 ×

2

3
=

2

3
≤

4

3
= 𝛽
0
,

(53)

and for 𝛼, 𝛽 ∈ [2/3, 4/3], 𝛼 < 𝛽, we have

𝜑 (𝛽, 𝛼) − 𝜙 (𝛼, 𝛽) = 3𝛽 − 5𝛼 − sin𝛼 −
1

2𝛽
≤

99

100
(𝛽 − 𝛼) .

(54)

Thus, (𝐶
5
) also holds.
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