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A transmission model of malaria with two delays is formulated. We calculate the basic reproduction number 𝑅
0
for the model. It

is shown that the basic reproduction number is a decreasing function of two time delays. The existence of the equilibria is studied.
Our results suggest that the model undergoes a backward bifurcation, which implies that bringing the basic reproduction number
below 1 is not enough to eradicate malaria.

1. Introduction

Malaria is a mosquito-borne disease which is due to the four
species of the genus Plasmodium, namely, Plasmodium
falciparum, Plasmodium vivax, Plasmodium malariae, and
Plasmodium ovale. These parasites are transmitted to the
human host through a bite by an infected female anopheles
mosquito.

Sporozoites are injected into a human host, which are
carried through the blood to the liver within 30 min [1].They
invade hepatocytes and undergo a process of asexual replica-
tion (exoerythrocytic schizogony) to give rise to 10–40 thou-
sandmerozoites per sporozoite. Up to this point, the infection
is nonpathogenic and clinically silent. After about 7–9 days,
the liver schizonts rupture to release the merozoites into the
blood and clinical symptoms, such as fever, pain, chills, and
sweats, may develop. Each merozoite invades an erythrocyte
and divides to form an erythrocytic schizont containing
about 16 daughter merozoites [2]. These merozoites either
reinfect fresh erythrocytes, giving rise to cyclical blood-stage
infection with a periodicity of 48–72 h, depending on the
Plasmodium species, or differentiate into sexual transmission
stages called gametocytes. When a second mosquito bites the
infected human, the gametocytes are ingested, giving rise to
extracellular gametes. In the mosquito midgut, the gametes
fuse to form a motile zygote (ookinete), which penetrates the
mid-gutwall and forms an oocyst, withinwhichmeiosis takes
place and haploid sporozoites develop. These sporozoites

migrate to the salivary glands. The incubation period within
the mosquito may last 8–22 days [3]. The variation in the
length of time is due to the environmental temperature. For
P. falciparum, the average time is 12 days [4, 5]. Malaria
can also be transmitted through blood transfusion, organ
transplantation and transplacental malaria (i.e., congenital
malaria) can also be significant in populations which are
partially immune to malaria.

The application of mathematics to study of infectious
disease appear to have been initiated by Berniulli, 1760. Pre-
sently, a lot of mathematical models have been proposed
to evaluate and compare control procedures and preventive
strategies, and to investigate the relative effects of various
sociological, biological, and environmental factors on the
spread of diseases ([6–14], etc.). These models have played a
very important role in the history and development of epi-
demiology.

The transmission process involves considerable time
delay both in human and inmosquitoes due to the incubation
periods of the several forms of the parasites [9]. Several works
have been done to consider the effect of delay. Taking account
of the incubation period in vector (mosquito), Takeuchi
et al. [10] considered a differential-delay model for vector-
borne diseases and get the global stability of the endemic
equilibrium under appropriate conditions. While Wei et al.
[15] proposed a similar model of vector-borne disease which
has direct mode of transmission in addition to the vector-
mediated transmission and proved that the introduction of
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a time delay in the host-to-vector transmission term can des-
tabilize the system and periodic solutions can arise through
Hopf bifurcation. In [9], Ruan et al. proposed a delayed Ross-
Macdonald model with delays both in human and in mos-
quitoes. The effect of time delays on the basic reproduction
number and the dynamics of the transmission was studied.

Both the models in [10, 15] adopted mass action formula-
tion, where the contact rate depends on the size of the total
host population while the model in [9] adopted standard
incidence formulation, where the contact rate is assumed to
be constant (see [16] for detailed derivation of these incidence
functions). The choice of one formulation over the other
really depends on the disease being modeled and, in some
cases, the need for mathematical (analytical) tractability [17].
A crucial question is which of the two incidence functions is
more suitable for modeling infectious disease in general, and
malaria in particular? As noted in [16], data ([4, 18]) strongly
suggests that standard incidence is better for modeling
human diseases than mass action incidence. Consequently,
standard incidence rate is adopted in this paper.

2. Derivation of the Model

In order to study the impact of incubation periods in both
human and mosquitoes on the basic reproduction number
and the transmission dynamics of malaria over long periods,
we propose a model based on SIRS in human population and
SI for the mosquito vector population. Since the mosquito
dynamics operates on a much faster time scale than the
human dynamics and the turnover of the mosquito popu-
lation is very high and the total size of vector population is
largely exceeding the human total size, the mosquito popula-
tion can be considered to be at a equilibrium with respect to
changes in the human population. Hence, the total number
of mosquito population is assumed to be constant.

We formulate an SIRS-SI model for the spread of malaria
in the human and mosquito population with the total popu-
lation size at time 𝑡 is given by 𝑁

ℎ
(𝑡) and𝑁V(𝑡), correspond-

ingly. For the human population, the three compartments
represent individuals who are susceptible, infectious, and
partially immune, with sizes at time 𝑡 denoted by 𝑆

ℎ
(𝑡), 𝐼
ℎ
(𝑡),

and 𝑅
ℎ
(𝑡), respectively. The incubation period in a human

has duration 𝜏
1
≥ 0. A susceptible individual infected by a

mosquito will not become infectious until 𝜏
1
time units later

and we assume that no one recovers during this incubation
period. At the infectious stage a host may die from the
disease, recover into the susceptible class, ormay recoverwith
acquired partial immunity. Infectious human hosts are those
with infectious gametocytes in the blood stream. Partially
immune hosts still have protective antibodies and other
immune effectors at low levels. Λ

ℎ
> 0 is the human input

(birth) rate. 𝜇
ℎ
> 0 and 𝛼

ℎ
≥ 0 are the natural and disease-

induced death rates, respectively. 𝛾
ℎ
> 0 is the rate at which

human hosts acquire immunity. 𝜃 ≥ 0 is the per capita rate
of recovery into the susceptible class from being infectious.
𝜌 ≥ 0 is the per capita rate of loss of immunity in human
hosts. 𝛽

ℎ
> 0 is the proportion of bites on man that produce

an infection. For the mosquito population, the two compart-
ments represent susceptible and infectious mosquitoes, with
sizes at time 𝑡 denoted by 𝑆V(𝑡) and 𝐼V(𝑡), respectively. The
vector component of the model does not include immune
class as mosquitoes never recover from infection that is, their
infective period ends with their death due to their relatively
short life cycle. Thus the immune class in the mosquito pop-
ulation is negligible and death occurs equally in all groups.
Ourmodel also excludes the immaturemosquitoes since they
do not participate in the infection cycle and are, thus, in the
waiting period, which limits the vector population growth.
We assume that the mosquito population is constant and
equal to 𝑁V, with birth and death rate constants equal to 𝜇V.
𝛽V is the probability that amosquito becomes infectiouswhen
it bites an infectious human. The biting rate 𝑏 of mosquitoes
is the average number of bites per mosquito per day. This
rate depends on a number of factors, in particular, climatic
ones, but for simplicity in this paper, we assume 𝑏 constant.
The incubation interval in the mosquito has duration 𝜏

2
≥ 0.

Considering the assumption made above, the interaction
between human hosts and the mosquito vector population
with standard incidence rate is described as shown below:

𝑑𝑆
ℎ

𝑑𝑡
= Λ
ℎ
−

𝑏𝛽
ℎ

𝑁
ℎ
(𝑡 − 𝜏
1
)
𝐼V (𝑡 − 𝜏

1
) 𝑆
ℎ
(𝑡 − 𝜏
1
) 𝑒
−𝜇ℎ𝜏1 − 𝜇

ℎ
𝑆
ℎ

+ 𝜃𝐼
ℎ
+ 𝜌𝑅
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
=

𝑏𝛽
ℎ

𝑁
ℎ
(𝑡 − 𝜏
1
)
𝐼V (𝑡 − 𝜏

1
) 𝑆
ℎ
(𝑡 − 𝜏
1
) 𝑒
−𝜇ℎ𝜏1

− (𝛾
ℎ
+ 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃) 𝐼
ℎ
,

𝑑𝑅
ℎ

𝑑𝑡
= 𝛾
ℎ
𝐼
ℎ
− 𝜇
ℎ
𝑅
ℎ
− 𝜌𝑅
ℎ
,

𝑑𝑆V

𝑑𝑡
= 𝜇V𝑆V + 𝜇V𝐼V

−
𝑏𝛽V

𝑁
ℎ
(𝑡 − 𝜏
2
)
𝐼
ℎ
(𝑡 − 𝜏
2
) 𝑆V (𝑡 − 𝜏

2
) 𝑒
−𝜇V𝜏2 − 𝜇V𝑆V,

𝑑𝐼V

𝑑𝑡
=

𝑏𝛽V

𝑁
ℎ
(𝑡 − 𝜏
2
)
𝐼
ℎ
(𝑡 − 𝜏
2
) 𝑆V (𝑡 − 𝜏

2
) 𝑒
−𝜇V𝜏2 − 𝜇V𝐼V,

𝑑𝑁
ℎ

𝑑𝑡
= Λ
ℎ
− 𝜇
ℎ
𝑁
ℎ
− 𝛼
ℎ
𝐼
ℎ
,

(1)

where 𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), and 𝑅

ℎ
(𝑡) denote the number of suscep-

tible, infective, and recovered in the human population, and
𝑆V(𝑡), 𝐼V(𝑡) denote the number of susceptible and infective in
themosquito vector population. In addition, 𝑆

ℎ
+𝐼
ℎ
+𝑅
ℎ
= 𝑁
ℎ

and 𝑆V + 𝐼V = 𝑁V.
System (1) satisfies the initial conditions: 𝑆

ℎ
(𝜃) = 𝑆

ℎ0
(𝜃),

𝐼
ℎ
(𝜃) = 𝐼

ℎ0
(𝜃), 𝑅

ℎ
(𝜃) = 𝑅

ℎ0
(𝜃), 𝑆V(𝜃) = 𝑆V0(𝜃), 𝐼V(𝜃) = 𝐼V0(𝜃),

𝜃 ∈ [−𝜏, 0], where 𝜏 = max{𝜏
1
, 𝜏
2
}. The nonnegative cone of

𝑅
6 space 𝑆

ℎ
𝐼
ℎ
𝑅
ℎ
𝑆V𝐼V𝑁ℎ is positively invariant for system (1)

since the vector field on the boundary does not point to the
exterior. What is more, since 𝑑𝑁

ℎ
/𝑑𝑡 < 0 for 𝑁

ℎ
> Λ
ℎ
/𝜇
ℎ
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and 𝑁V is constant, all trajectories in the first quadrant enter
or stay inside the region

𝑍
+
= {𝑆
ℎ
+ 𝐼
ℎ
+ 𝑅
ℎ
= 𝑁
ℎ
⩽

Λ
ℎ

𝜇
ℎ

, 𝑆V + 𝐼V = 𝑁V} . (2)

The continuity of the right-hand side of (1) implies that
unique solutions exist on a maximal interval. Since solutions
approach, enter or stay in 𝐷

+
, they are eventually bounded

and hence exist for 𝑡 > 0. Therefore, the initial value problem
for system (1) is mathematically well posed and biologically
reasonable since all variables remain nonnegative.

In order to reduce the number of parameters and simplify
system (1), we normalize the human and mosquito vector
population 𝑠

ℎ
= 𝑆
ℎ
/(Λ
ℎ
/𝜇
ℎ
), 𝑖
ℎ
= 𝐼
ℎ
/(Λ
ℎ
/𝜇
ℎ
), 𝑟
ℎ
= 𝑅
ℎ
/(Λ
ℎ
/

𝜇
ℎ
), 𝑛
ℎ

= 𝑁
ℎ
/(Λ
ℎ
/𝜇
ℎ
), 𝑠V = 𝑆V/𝑁V, 𝑖V = 𝐼V/𝑁V, and 𝑚 =

𝑁V/(Λ ℎ/𝜇ℎ).
Since 𝑟

ℎ
= 𝑛
ℎ
− 𝑠
ℎ
− 𝑖
ℎ
and 𝑠V = 1 − 𝑖V, the dynamics of

system (1) is qualitatively equivalent to the dynamics of
system given by

𝑑𝑠
ℎ

𝑑𝑡
= 𝜇
ℎ
−

𝑏𝛽
ℎ
𝑚

𝑛
ℎ
(𝑡 − 𝜏
1
)
𝑖V (𝑡 − 𝜏

1
) 𝑠
ℎ
(𝑡 − 𝜏
1
) 𝑒
−𝜇ℎ𝜏1

− 𝜇
ℎ
𝑠
ℎ
+ 𝜃𝑖
ℎ
+ 𝜌 (𝑛

ℎ
− 𝑠
ℎ
− 𝑖
ℎ
) ,

𝑑𝑖
ℎ

𝑑𝑡
=

𝑏𝛽
ℎ
𝑚

𝑛
ℎ
(𝑡 − 𝜏
1
)
𝑖V (𝑡 − 𝜏

1
) 𝑠
ℎ
(𝑡 − 𝜏
1
) 𝑒
−𝜇ℎ𝜏1

− (𝛾
ℎ
+ 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃) 𝑖
ℎ
,

𝑑𝑖V

𝑑𝑡
=

𝑏𝛽V

𝑛
ℎ
(𝑡 − 𝜏
2
)
𝑖
ℎ
(𝑡 − 𝜏
2
) (1 − 𝑖V (𝑡 − 𝜏

2
)) 𝑒
−𝜇V𝜏2 − 𝜇V𝑖V,

𝑑𝑛
ℎ

𝑑𝑡
= 𝜇
ℎ
− 𝜇
ℎ
𝑛
ℎ
− 𝛼
ℎ
𝑖
ℎ
,

(3)

and all trajectories in the nonnegative cone 𝑅4
+
enter or stay

inside the region 𝐷 = {0 ⩽ 𝑠
ℎ
, 0 ⩽ 𝑖

ℎ
, 𝑠
ℎ
+ 𝑖
ℎ
⩽ 𝑛
ℎ
⩽ 1, 0 ⩽

𝑖V ⩽ 1}.
Define the basic reproduction number by

𝑅
0
=

𝑚𝑏
2
𝛽
ℎ
𝛽V𝑒
−𝜇ℎ𝜏1𝑒
−𝜇V𝜏2

𝜇V (𝛾ℎ + 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃)

. (4)

It represents the expected number of secondary cases caused
by a single infected individual introduced into an otherwise
susceptible population of hosts and vectors. Take a primary
case of host with a natural death rate of 𝜇

ℎ
, the average time

spent in an infectious state is 1/(𝛾
ℎ
+ 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃). Since the

incubation period in mosquitoes has duration 𝜏
2
, during

which period some mosquitoes may die, the average number
of mosquito bites received from 𝑚 susceptible mosquitoes
each with a biting rate 𝑏 gives a total of 𝑏𝛽V𝑚𝑒

−𝜇V𝜏2/(𝛾
ℎ
+

𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃)mosquitoes successfully infected by the primary

human case. Each of thesemosquitoes survives for an average
time 1/𝜇V. Because of another incubation period 𝜏1 in human,
during which period some individuals may die, totally
𝑏𝛽
ℎ
𝑒
−𝜇ℎ𝜏1/𝜇V hosts will be infected by a single mosquito.

Therefore, the total number of secondary cases is thus
𝑚𝑏
2
𝛽
ℎ
𝛽V𝑒
−𝜇ℎ𝜏1𝑒
−𝜇V𝜏2/ 𝜇V(𝛾ℎ + 𝜇

ℎ
+ 𝛼
ℎ
+ 𝜃), which is the basic

reproduction number 𝑅
0
.

3. Existence of Equilibria

Equating the derivatives on the left-hand side to zero and
solving the resulting algebraic equations.The points of equili-
brium �̂�(�̂�

ℎ
, �̂�
ℎ
, �̂�V, �̂�ℎ) satisfy the following relations:

�̂�
ℎ
=

𝜇
ℎ
+ 𝜌 − 𝐻�̂�

ℎ

𝜇
ℎ
+ 𝜌

,

�̂�
ℎ
=

𝜇
ℎ
− 𝛼
ℎ
�̂�
ℎ

𝜇
ℎ

,

�̂�V =
𝑏𝛽V𝜇ℎ �̂�ℎ𝑒

−𝜇V𝜏2

(𝑏𝛽V𝜇ℎ𝑒
−𝜇V𝜏2 − 𝛼

ℎ
𝜇V) �̂�ℎ + 𝜇V𝜇ℎ

,

(5)

where𝐻 = 𝛾
ℎ
+𝜇
ℎ
+𝛼
ℎ
+𝜌+𝜌(𝛼

ℎ
/𝜇
ℎ
). Substituting (5) in the

corresponding second equilibrium equation of (3), we obtain
that the solutions are �̂�

ℎ
= 0, and the zero points of the

quadratic polynomial

𝑟 (𝑖
ℎ
) = 𝑎
1
𝑖
2

ℎ
+ 𝑎
2
𝑖
ℎ
+ 𝑎
3
, (6)

where

𝑎
1
= (𝑏𝛽V𝜇ℎ𝑒

−𝜇V𝜏2 − 𝛼
ℎ
𝜇V)

𝛼
ℎ

𝜇
ℎ

,

𝑎
2
= 2𝛼
ℎ
𝜇V − 𝑏𝛽V𝜇ℎ𝑒

−𝜇V𝜏2

−
𝑚𝑏
2
𝛽
ℎ
𝛽V𝜇ℎ𝐻

(𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃)

𝑒
−𝜇ℎ𝜏1𝑒
−𝜇V𝜏2 ,

𝑎
3
= 𝜇
ℎ
𝜇V (𝑅0 − 1) ,

𝑅
0
=

𝑚𝑏
2
𝛽
ℎ
𝛽V𝑒
−𝜇ℎ𝜏1𝑒
−𝜇V𝜏2

𝜇V (𝛾ℎ + 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃)

.

(7)

The solution �̂�
ℎ

= 0 gives the disease-free equilibrium
point 𝑃

0
(1, 0, 0, 1). We are looking for nontrivial equilibrium

solutions in the interior ofΩ. From (5), in order to keep �̂�
ℎ
and

�̂�
ℎ
positive, �̂�

ℎ
∈ (0, (𝜇

ℎ
+ 𝜌)/𝐻)must be satisfied. Evaluating

𝑟(𝑖
ℎ
) at the end points of the interval, we obtain

𝑟 (0) = 𝜇
ℎ
𝜇V (𝑅0 − 1) ,

𝑟 (
𝜇
ℎ
+ 𝜌

𝐻
) < 0.

(8)

When 𝑅
0

> 1, then 𝑟(0) > 0; therefore, there exists a
unique root in the interval (0, (𝜇

ℎ
+ 𝜌)/𝐻), which implies

the existence of a unique equilibrium point 𝑃∗(�̂�∗
ℎ
, �̂�
∗

ℎ
, �̂�
∗

V
, �̂�
∗

ℎ
),

where �̂�∗
ℎ
satisfies: if 𝑎

1
= 0,

�̂�
∗

ℎ
=

−𝑎
3

𝑎
2

. (9)
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If 𝑎
1

̸= 0,

�̂�
∗

ℎ
=

−𝑎
2
− √Δ

2𝑎
1

, (10)

where Δ = 𝑎
2

2
− 4𝑎
1
𝑎
3
.

When 𝑅
0
= 1, the roots of (6) are 0 and −𝑎

2
/𝑎
1
. It is easy

to see that there exists a unique root in the interval (0, (𝜇
ℎ
+

𝜌)/𝐻) if and only if 𝑎
2
> 0, which implies the existence of a

unique equilibrium point 𝑃∗.
When 𝑅

0
< 1, then 𝑟(0) < 0. The conditions to have

at least one root in the mentioned interval are 𝑎
1
< 0, 0 <

−𝑎
2
/2𝑎
1
< (𝜇
ℎ
+ 𝜌)/𝐻 and Δ = 𝑎

2

2
− 4𝑎
1
𝑎
3
⩾ 0. If Δ > 0,

there exist two roots in the interval mentioned above, which
implies the existence of two equilibria 𝑃

1
(�̂�
ℎ1
, �̂�
ℎ1
, �̂�V1, �̂�ℎ1) and

𝑃
2
(�̂�
ℎ2
, �̂�
ℎ2
, �̂�V2, �̂�ℎ2), where

�̂�
ℎ1

=
−𝑎
2
+ √Δ

2𝑎
1

,

�̂�
ℎ2

=
−𝑎
2
− √Δ

2𝑎
1

.

(11)

If Δ = 0, there is a unique root in the interval mentioned
above, which implies the existence of unique equilibrium.

Then, we can conclude the above results in the following
theorem.

Theorem 1. (1) The disease-free equilibrium 𝑃
0
(1, 0, 0, 1)

always exists.
(2) If 𝑅

0
> 1, there exists a unique positive equilibrium

𝑃
∗
(�̂�
∗

ℎ
, �̂�
∗

ℎ
, �̂�
∗

V
, �̂�
∗

ℎ
).

(3) If 𝑅
0
= 1, then there is a positive equilibrium 𝑃

∗
(�̂�
∗

ℎ
,

�̂�
∗

ℎ
, �̂�
∗

V
, �̂�
∗

ℎ
) when 𝑎

2
> 0; otherwise, there is no positive equi-

librium.
(4) If 𝑅

0
< 1, then (a) if 𝑎

1
⩾ 0, there is no positive equili-

brium; (b) if 𝑎
1
< 0, the system (3) has two positive equilibria

𝑃
1
(�̂�
ℎ1
, �̂�
ℎ1
, �̂�V1, �̂�ℎ1) and 𝑃

2
(�̂�
ℎ2
, �̂�
ℎ2
, �̂�V2, �̂�ℎ2) if and only if Δ > 0

and 0 < −𝑎
2
/2𝑎
1
< (𝜇
ℎ
+𝜌)/𝐻, and these two equilibria merge

with each other if and only if 0 < −𝑎
2
/2𝑎
1
< (𝜇
ℎ
+ 𝜌)/𝐻 and

Δ = 0; otherwise, there is no positive equilibrium.

4. Disease-Free Equilibrium

It is easy to see the disease-free equilibrium 𝑃
0
(1, 0, 0, 1)

always exists. In this section, we study the stability of the dis-
ease-free equilibrium 𝑃

0
.

Theorem 2. 𝑃
0
is locally stable if 𝑅

0
< 1. 𝑃

0
is a degenerate

equilibrium of codimension one and is stable except in one
direction if 𝑅

0
= 1. 𝑃

0
is unstable if 𝑅

0
> 1.

Proof. Linearizing the system (3) at 𝑃
0
.The eigenvalues of the

Jacobianmatrix 𝐽(𝑃
0
) are−𝜇

ℎ
−𝜌,−𝜇

ℎ
and the solutions of the

following transcendental equation:

(𝜆 + 𝜇V) (𝛾ℎ + 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃)

− 𝑚𝑏
2
𝛽
ℎ
𝛽V𝑒
−𝜇ℎ𝜏1−𝜇V𝜏2𝑒

−(𝜏1+𝜏2)𝜆 = 0.

(12)

Let

𝐹 (𝜆, 𝜏
1
, 𝜏
2
) = (𝜆 + 𝜇V) (𝛾ℎ + 𝜇

ℎ
+ 𝛼
ℎ
+ 𝜃)

− 𝑚𝑏
2
𝛽
ℎ
𝛽V𝑒
−𝜇ℎ𝜏1−𝜇V𝜏2𝑒

−(𝜏1+𝜏2)𝜆.

(13)

Clearly, 𝐹(𝜆, 𝜏
1
, 𝜏
2
) is an analytic function. 𝐹(0, 𝜏

1
, 𝜏
2
) =

𝜇V(𝛾ℎ+𝜇
ℎ
+𝛼
ℎ
+𝜃)(1−𝑅

0
), and 𝐹(𝜆, 0, 0) = (𝜆+𝜇V)(𝛾ℎ+𝜇

ℎ
+

𝛼
ℎ
+𝜃)−𝑚𝑏

2
𝛽
ℎ
𝛽V. In the following, we discuss the distribution

of the solutions of (12) in three cases.

(i) 𝑅
0
< 1, then 𝐹(0, 𝜏

1
, 𝜏
2
) > 0. Since 𝐹

𝜆
(𝜆, 𝜏
1
, 𝜏
2
) > 0

for 𝜆 ≥ 0, 𝜏
1
> 0 and 𝜏

2
> 0, (12) has no zero root and

positive real roots for all positive 𝜏
1
and 𝜏
2
. Now we

claim that (12) does not have any purely imaginary
roots. Suppose that (12) has a pair of purely imaginary
roots 𝜔𝑖, 𝜔 > 0 for some 𝜏

1
and 𝜏
2
. Then, by calcula-

tion, 𝜔must be a positive real root of

𝜔
4
+ [(𝛾
ℎ
+ 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃)
2
+ 𝜇
2

V
] 𝜔
2
+ (𝛾
ℎ
+ 𝜇
ℎ
+ 𝛼
ℎ
+ 𝜃)
2
𝜇
2

V

− (𝑚𝑏
2
𝛽
ℎ
𝛽V𝑒
−𝜇ℎ𝜏1−𝜇V𝜏2)

2

= 0.

(14)

However, it is easy to see that (14) does not have
nonnegative real roots when 𝑅

0
< 1. Hence, (12) does

not have any purely imaginary roots.
On the other hand, one can easily get that the roots
of 𝐹(𝜆, 0, 0) = 0 all have negative real parts when
𝑅
0
< 1. By the implicit function theorem and the con-

tinuity of 𝐹(𝜆, 𝜏
1
, 𝜏
2
), we know that all roots of (12)

have negative real parts for positive 𝜏
1
and 𝜏
2
, which

implies that 𝑃
0
is stable.

(ii) 𝑅
0
= 1, then 𝐹(0, 𝜏

1
, 𝜏
2
) = 0. Since 𝐹

𝜆
(𝜆, 𝜏
1
, 𝜏
2
) > 0

for 𝜆 ≥ 0, 𝜏
1
> 0 and 𝜏

2
> 0, (12) has a simple zero

root and no positive root for all positive 𝜏
1
and 𝜏

2
.

Using a similar argument as in (i), we can obtain that
except a zero root, all roots of (12) have negative real
parts for positive 𝜏

1
and 𝜏
2
. Thus, 𝑃

0
is a degenerate

equilibrium of codimension one and is stable except
in one direction.

(iii) 𝑅
0

> 1, then 𝐹(0, 𝜏
1
, 𝜏
2
) < 0. Since lim

𝜆→∞
𝐹(𝜆,

𝜏
1
, 𝜏
2
) = ∞ and 𝐹



𝜆
(𝜆, 𝜏
1
, 𝜏
2
) > 0 for 𝜆 ≥ 0, 𝜏

1
> 0

and 𝜏
2
> 0, (12) has a unique positive real root for all

positive 𝜏
1
and 𝜏
2
and 𝑃

0
is unstable.

Theorem 3. If 𝑅
0

≤ 1, the disease-free equilibrium 𝑃
0
is

globally asymptotically stable when 𝛼 = 0.

Proof. We denote by 𝑥
𝑡
the translation of the solution of the

system (3), that is, 𝑥
𝑡

= (𝑠
ℎ
(𝑡 + 𝜃), 𝑖

ℎ
(𝑡 + 𝜃), 𝑖V(𝑡 + 𝜃)),

𝑛
ℎ
(𝑡 + 𝜃) where 𝜃 ∈ [−𝜏, 0], 𝜏 = max{𝜏

1
, 𝜏
2
}. In order to prove
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the globally stability of 𝑃
0
, we define a Lyapunov function:

𝐿 (𝑥
𝑡
) = 𝑒
𝜇ℎ𝜏1 𝑖
ℎ
+
𝑚𝑏𝛽
ℎ

𝜇V

𝑒
𝜇V𝜏2 𝑖V (𝑡)

+ 𝑚𝑏𝛽
ℎ
∫

𝑡

𝑡−𝜏1

𝑖V (𝑡)
𝑠
ℎ
(𝑡)

𝑛
ℎ (𝑡)

𝑑𝑡

+
𝑚𝑏
2
𝛽
ℎ
𝛽V

𝜇V

∫

𝑡

𝑡−𝜏2

𝑖
ℎ
(𝑡)

1 − 𝑖V (𝑡)

𝑛
ℎ
(𝑡)

𝑑𝑡.

(15)

The derivative of 𝐿 along the solutions of (3) is given by

𝑑𝐿 (𝑥
𝑡
)

𝑑𝑡
= − (𝜇

ℎ
+ 𝛾
ℎ
+ 𝜃) 𝑒

𝜇ℎ𝜏1 𝑖
ℎ (𝑡) (1 − 𝑅

0
𝑒
−𝜇ℎ𝜏1

1 − 𝑖V (𝑡)

𝑛
ℎ
(𝑡)

)

− 𝑚𝑏𝛽
ℎ
𝑒
𝜇V𝜏2 𝑖V (𝑡) (1 −

𝑠
ℎ
(𝑡)

𝑛
ℎ (𝑡)

𝑒
−𝜇V𝜏2) .

(16)

Since lim
𝑡→∞

𝑛
ℎ

= 1 and 𝑅
0

≤ 1, we can easily get that
𝑑𝐹/𝑑𝑡 ≤ 0 and the set {𝑃

0
} is the largest invariant set within

the set where 𝑑𝐿(𝑥
𝑡
)/𝑑𝑡 = 0. By LaSalle-Lyapunov Theorem,

all trajectories approach 𝑃
0
as 𝑡 → ∞.

Usually, the disease can be controlled if the basic repro-
duction number is smaller than one. Nevertheless,Theorem 1
indicates the possibility of backward bifurcation (where the
locally asymptotically stable DFE coexists with endemic
equilibrium when 𝑅

0
< 1) when 𝑎

1
< 0 for the model (3) and

it becomes impossible to control the disease by just reduc-
ing the basic reproduction number below one. Therefore
a further threshold condition beyond the basic reproduction
is essential for the control of the spread of malaria.

To check for this, the discriminant Δ is set to zero and
solved for the critical value of 𝑅

0
, denoted by �̂�

0
, given by

�̂�
0
= 1 +

𝑎
2

2

4𝑎
1
𝜇
ℎ
𝜇V

. (17)

Thus, backward bifurcationwould occur for values of𝑅
0
such

that �̂�
0
< 𝑅
0
< 1. This is illustrated by simulating the model

with the following set of parameter values (it should be stated
that these parameters are chosen for illustrative purpose only,
and may not necessarily be realistic epidemiologically).

Let 𝜇
ℎ
= 1/22000, 𝜇V = 1/14, 𝛽

ℎ
= 0.3, 𝛽V = 0.95, 𝑚 =

0.5, 𝛼
ℎ
= 0.05, 𝛾

ℎ
= 0.26, 𝑏 = 0.5, 𝜌 = 0.01, 𝜃 = 0.08, 𝜏

1
= 15.

With this set of parameters, �̂�
0
= 0.093970 < 1. When 𝜏

2
=

10, 𝑅
0
= 0.62555 < 1, so that �̂�

0
< 𝑅
0
< 1. There are two

positive roots for (6), which are �̂�
ℎ1

= .3501527770𝑒 − 3 and
�̂�
ℎ2

= .8864197396𝑒 − 3.
Thus, the following result is established.

Lemma 4. The model (3) undergoes backward bifurcation
when 𝑎

1
< 0 and 0 < −𝑎

2
/2𝑎
1

< (𝜇
ℎ
+ 𝜌)/𝐻 holds and

�̂�
0
< 𝑅
0
< 1.

Epidemiologically, because of the existence of backward
bifurcation, whether malaria will prevail or not depends on

the initial states. 𝑅
0
< 1 is no longer sufficient for disease

elimination. In order to eradicate the disease, we have a sub-
threshold number �̂�

0
and it is now necessary to reduce 𝑅

0
to

a value less than �̂�
0
.

The existence of the subthreshold condition �̂�
0
also has

some implications. In some areas where malaria dies out
(𝑅
0
< �̂�
0
), it is possible for the disease to reestablish itself in

the population because of a small change in environmental
or control variables which increase the basic reproduction
number above. On the other hand, in some areas with
endemic malaria, it may be possible to eradicate the disease
with small increasing in control programs such that the basic
reproduction number less than �̂�

0
.

From the expression of 𝑅
0
, we can see that the basic

reproduction number is a decreasing function of both time
delays. The time delays have important effect on the basic
reproduction number. Especially, since global warming
decreases the duration of incubation period and 𝑅

0
increases

with the decreasing of 𝜏
1
or 𝜏
2
, global warming will affect the

transmission of malaria a lot.
From Theorem 3, if there is no disease-induced death,

backward bifurcation will not occur and there is a unique
endemic equilibrium when 𝑅

0
> 1. Therefore, the disease-

induced death is the cause of the backward bifurcation
phenomenon in the model (3).

5. Endemic Equilibria

Toobtain precise results, we first assume thatmalaria does not
produce significant mortality (𝛼 = 0). The assumption is not
justifiable in all regions where malaria is endemic but it is a
useful first approximation. In this part, we will determine the
stability of the unique endemic equilibria 𝑃∗ when 𝑅

0
> 1.

Linearizing the system (3) at 𝑃
∗. The eigenvalues of

the Jacobian matrix 𝐽(𝑃
∗
) are −𝜇

ℎ
and the solutions of the

following transcendental equation:

𝜆
3
+ 𝐴
1
𝜆
2
+ 𝐴
2
𝜆 + 𝐴

3
= 0, (18)

where

𝐴
1
= 2𝜇
ℎ
+ 𝛾
ℎ
+ 𝜌 + 𝜃 + 𝜇V

+ 𝑚𝑏𝛽
ℎ
�̂�V𝑒
−𝜇ℎ𝜏1𝑒
−𝜆𝜏1 + 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2𝑒
−𝜆𝜏2 ,

𝐴
2
= (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) + (𝜇

ℎ
+ 𝜌) 𝜇V

+ (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

+ (𝜇
ℎ
+ 𝜌 + 𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2𝑒
−𝜆𝜏2

− 𝜇V (𝛾ℎ + 𝜇
ℎ
+ 𝜃) 𝑒

−(𝜏1+𝜏2)𝜆

+ (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜌 + 𝜇V + 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2𝑒
−𝜆𝜏2)

× 𝑚𝑏𝛽
ℎ
�̂�V𝑒
−𝜇ℎ𝜏1𝑒
−𝜆𝜏1 ,
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𝐴
3
= (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

+ (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2𝑒
−𝜆𝜏2

− (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V𝑒

−(𝜏1+𝜏2)𝜆

+ (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜌)𝑚𝑏𝛽

ℎ
�̂�V𝑒
−𝜇ℎ𝜏1𝑒
−𝜆𝜏1

× (𝜇V + 𝑏𝛽V �̂�ℎ𝑒
−𝜇V𝜏2𝑒
−𝜆𝜏2) .

(19)

For any nonnegative 𝜏
1
and 𝜏

2
, we have the following pro-

position.

Proposition 5. For the endemic equilibrium 𝑃
∗
(�̂�
∗

ℎ
, �̂�
∗

ℎ
, �̂�
∗

V
, �̂�
∗

ℎ
)

of the system with characteristic equation (18), one always has
𝐴
1
> 0, 𝐴

2
> 0, 𝐴

3
> 0, 𝐴

1
𝐴
2
− 𝐴
3
> 0.

(20)

Proof. It is clear that𝐴
1
> 0, 𝐴

2
> 0 and𝐴

3
> 0. For𝐴

1
𝐴
2
−

𝐴
3
, we have

𝐴
1
𝐴
2
− 𝐴
3
= (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜌)

× { (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃)

+ (𝜇
ℎ
+ 𝜌) 𝜇V + (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

+ (𝜇
ℎ
+ 𝜌 + 𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2𝑒
−𝜆𝜏2

− 𝜇V (𝛾ℎ + 𝜇
ℎ
+ 𝜃) 𝑒

−(𝜏1+𝜏2)𝜆

+ (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜌 + 𝜇V)𝑚𝑏𝛽

ℎ
�̂�V𝑒
−𝜇ℎ𝜏1𝑒
−𝜆𝜏1}

+ (𝑚𝑏𝛽
ℎ
�̂�V𝑒
−𝜇ℎ𝜏1𝑒
−𝜆𝜏1 + 𝜇

ℎ
+ 𝜃)𝐴

2

+ (𝜇V + 𝑏𝛽V �̂�ℎ𝑒
−𝜇V𝜏2𝑒
−𝜆𝜏2)

× { (𝜇
ℎ
+ 𝜌) 𝜇V + (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

+ (𝜇
ℎ
+ 𝜌 + 𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2𝑒
−𝜆𝜏2

+ (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜌 + 𝜇V + 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2𝑒
−𝜆𝜏2)

× 𝑚𝑏𝛽
ℎ
�̂�V𝑒
−𝜇ℎ𝜏1𝑒
−𝜆𝜏1

−𝜇V (𝛾ℎ + 𝜇
ℎ
+ 𝜃) 𝑒

−(𝜏1+𝜏2)𝜆}

+ (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V𝑒

−(𝜏1+𝜏2)𝜆

> 0.

(21)

Case 1. When 𝜏
1
= 𝜏
2
= 0, as a result of Proposition 5 and

Hurwitz criterion, all roots of the characteristic equation (18)
have negative real parts and the endemic equilibrium 𝑃

∗ of
(3) is stable when 𝜏

1
= 𝜏
2
= 0.

Case 2. When 𝜏
1
> 0, 𝜏

2
= 0, the characteristic equation (18)

becomes

𝜆
3
+ 𝐴
11
𝜆
2
+ 𝐴
21
𝜆 + 𝐴

31
= 𝑒
−𝜆𝜏1 (𝑇

11
𝜆
2
+ 𝑇
21
𝜆 + 𝑇
31
) ,

(22)

where

𝐴
11

= 2𝜇
ℎ
+ 𝛾
ℎ
+ 𝜌 + 𝜃 + 𝜇V + 𝑏𝛽V �̂�ℎ,

𝐴
21

= (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) + (𝜇

ℎ
+ 𝜌) 𝜇V

+ (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V + (𝜇

ℎ
+ 𝜌 + 𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝑏𝛽V �̂�ℎ,

𝐴
31

= (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

+ (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝑏𝛽V �̂�ℎ,

𝑇
11

= −𝑚𝑏𝛽
ℎ
�̂�V𝑒
−𝜇ℎ𝜏1 ,

𝑇
21

= (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

− (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜌 + 𝜇V + 𝑏𝛽V �̂�ℎ)𝑚𝑏𝛽

ℎ
�̂�V𝑒
−𝜇ℎ𝜏1 ,

𝑇
31

= (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

− (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜌) (𝜇V + 𝑏𝛽V �̂�ℎ)𝑚𝑏𝛽

ℎ
�̂�V𝑒
−𝜇ℎ𝜏1 .

(23)

By the implicit function theorem and the continuity of the
left-hand side function of (18), all roots of (22) have negative
real parts for small 𝜏

1
. Notice that the condition 𝑅

0
> 1 is

equivalent to

𝜏
1
< 𝜏
∗

1
=

1

𝜇
ℎ

ln
𝑚𝑏
2
𝛽
ℎ
𝛽V

𝜇V (𝛾ℎ + 𝜇
ℎ
+ 𝜃)

. (24)

Furthermore, we claim that (22) does not have any nonneg-
ative real roots for any 𝜏

1
> 0. Rewrite (22) by moving the

positive terms from the right-hand side to the left-hand side.
The rewritten (22) takes the form

𝜆
3
+ 𝐴
11
𝜆
2
+ �̃�
21
𝜆 + �̃�

31
= 𝑒
−𝜆𝜏1 (𝑇

11
𝜆
2
+ �̃�
21
𝜆 + �̃�
31
) ,

(25)

where �̃�
21

= 𝐴
21
− (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜃)𝜇V𝑒

−𝜆𝜏1 , �̃�
31

= 𝐴
31
− (𝜇
ℎ
+ 𝜌)

(𝛾
ℎ
+𝜇
ℎ
+𝜃)𝜇V𝑒

−𝜆𝜏1 . It is easy to see �̃�
21

> 0 and �̃�
31

> 0 for all
𝜆 ≥ 0 and 𝜏

1
∈ (0, 𝜏

∗

1
). Consequently, the left-hand side in

(25) is positive for all 𝜆 ≥ 0while the right-hand side is nega-
tive for all 𝜆 ≥ 0 and the two cannot be equal for any 𝜆 ≥ 0.
Therefore, (22) does not have any nonnegative real roots for
any 𝜏
1
∈ (0, 𝜏

∗

1
). Now we want to show that all roots of (22)

have negative real parts for all 𝜏
1
∈ (0, 𝜏

∗

1
). To do so, we show

that (22) does not have any purely imaginary roots for all 𝜏
1
∈

(0, 𝜏
∗

1
).

We assume that 𝜆 = 𝑖𝜔 with 𝜔 > 0 being a root of (22).
Then 𝜔must satisfy the following system:

𝐴
21
𝜔 − 𝜔

3
= 𝑇
21
𝜔 cos (𝜔𝜏

1
) − (𝑇

31
− 𝑇
11
𝜔
2
) sin (𝜔𝜏

1
) ,

𝐴
31

− 𝐴
11
𝜔
2
= (𝑇
31

− 𝑇
11
𝜔
2
) cos (𝜔𝜏

1
) + 𝑇
21
𝜔 sin (𝜔𝜏

1
) .

(26)

Thus, 𝜔must be a positive root of

𝜔
6
+ 𝐵
1
𝜔
4
+ 𝐵
2
𝜔
2
+ 𝐵
3
= 0, (27)



Discrete Dynamics in Nature and Society 7

where

𝐵
1
= 𝐴
2

11
− 2𝐴
21

− 𝑇
2

11
,

𝐵
2
= 𝐴
21

− 2𝐴
11
𝐴
31

+ 2𝑇
11
𝑇
31

− 𝑇
2

21
,

𝐵
3
= 𝐴
2

31
− 𝑇
2

31
.

(28)

Let 𝑧 = 𝜔
2, then (27) becomes

𝑧
3
+ 𝐵
1
𝑧
2
+ 𝐵
2
𝑧 + 𝐵
3
= 0. (29)

Clearly, If 𝐵
1
≥ 0, 𝐵

2
≥ 0 and 𝐵

3
≥ 0, then (29) has no

positive real roots. Therefore, (22) does not have any purely
imaginary roots for all 𝜏

1
∈ (0, 𝜏

∗

1
) so that all roots of the

characteristic equation (22) have negative real parts and the
endemic equilibrium 𝑃

∗ of (3) is stable.

Case 3. When 𝜏
2
> 0, 𝜏

1
= 0, the characteristic equation (18)

becomes

𝜆
3
+ 𝐴
12
𝜆
2
+ 𝐴
22
𝜆 + 𝐴

32
= 𝑒
−𝜆𝜏2 (𝑇

12
𝜆
2
+ 𝑇
22
𝜆 + 𝑇
32
) ,

(30)

where

𝐴
12

= 2𝜇
ℎ
+ 𝛾
ℎ
+ 𝜌 + 𝜃 + 𝜇V + 𝑚𝑏𝛽

ℎ
�̂�V,

𝐴
22

= (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) + (𝜇

ℎ
+ 𝜌) 𝜇V

+ (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V + (𝜇

ℎ
+ 𝜌 + 𝛾

ℎ
+ 𝜇V)𝑚𝑏𝛽

ℎ
�̂�V,

𝐴
32

= (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V + 𝜇V (𝛾ℎ + 𝜇

ℎ
+ 𝜌)𝑚𝑏𝛽

ℎ
�̂�V,

𝑇
12

= −𝑏𝛽V �̂�ℎ𝑒
−𝜇V𝜏2 ,

𝑇
22

= (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

− (2𝜇
ℎ
+ 𝛾
ℎ
+ 𝜌 + 𝜃 + 𝑚𝑏𝛽

ℎ
�̂�V) 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2 ,

𝑇
32

= (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝜇V

− (𝛾
ℎ
+ 𝜇
ℎ
+ 𝜌)𝑚𝑏

2
𝛽
ℎ
𝛽V �̂�ℎ �̂�V𝑒

−𝜇V𝜏2

− (𝜇
ℎ
+ 𝜌) (𝛾

ℎ
+ 𝜇
ℎ
+ 𝜃) 𝑏𝛽V �̂�ℎ𝑒

−𝜇V𝜏2 .

(31)

The condition 𝑅
0
> 1 is equivalent to

𝜏
2
< 𝜏
∗

2
=

1

𝜇V

ln
𝑚𝑏
2
𝛽
ℎ
𝛽V

𝜇V (𝛾ℎ + 𝜇
ℎ
+ 𝜃)

. (32)

Using a similar argument as in Case 2, we know that all roots
of (30) have negative real parts for 𝜏

2
∈ (0, 𝜏

∗

2
) when 𝐶

1
≥

0, 𝐶
2
≥ 0, and 𝐶

3
≥ 0, where

𝐶
1
= 𝐴
2

12
− 2𝐴
22

− 𝑇
2

12
,

𝐶
2
= 𝐴
22

− 2𝐴
12
𝐴
32

+ 2𝑇
12
𝑇
32

− 𝑇
2

22
,

𝐶
3
= 𝐴
2

32
− 𝑇
2

32
.

(33)

Case 4. When 𝜏
2

> 0, 𝜏
1

> 0, the condition 𝑅
0

> 1 is
equivalent to

𝜏
2
< 𝜏
∗

2
(𝜏
1
) =

1

𝜇V

ln
𝑚𝑏
2
𝛽
ℎ
𝛽V𝑒
−𝜇ℎ𝜏1

𝜇V (𝛾ℎ + 𝜇
ℎ
+ 𝜃)

. (34)

From Cases 1, and 2 the roots of (18) only have negative real
parts for 𝜏

1
∈ [0, 𝜏

∗

1
) and 𝜏

2
= 0 under the condition of

𝐵
𝑖
≥ 0, 𝑖 = 1, 2, 3. By the implicit function theorem and

the continuity of the left-hand side function of (18), there is
a 𝜏
2
(𝜏
1
) satisfying 0 < 𝜏

2
(𝜏
1
) ≤ 𝜏
∗

2
(𝜏
1
), such that all roots of

(18) have negative real parts for 0 < 𝜏
2
< 𝜏
2
(𝜏
1
). We show

that 𝜏
2
(𝜏
1
) = 𝜏

∗

2
(𝜏
1
) when 𝐵

𝑖
≥ 0 and 𝐶

𝑖
≥ 0, 𝑖 = 1, 2, 3.

Suppose 𝜏
2
(𝜏
1
) < 𝜏

∗

2
(𝜏
1
) for 𝜏

1
∈ [0, 𝜏

∗

1
), then there must

be a �̃�
2
(𝜏
1
), 𝜏
2
(𝜏
1
) < �̃�

2
(𝜏
1
) < 𝜏

∗

2
(𝜏
1
), such that one root of

(18) has nonnegative real part for 𝜏
2

= �̃�
2
(𝜏
1
). As a result

of the continuity of 𝜏
2
in 𝜏
1
, we have �̃�

2
(0) < 𝜏

∗

2
(0) = 𝜏

∗

2
.

However, from the argument in Case 3, we know that all
the roots of (18) have negative real parts for 𝜏

1
= 0 and

𝜏
2
∈ (0, 𝜏

∗

2
). Contradict. Thus, 𝜏

2
(𝜏
1
) = 𝜏
∗

2
(𝜏
1
) which implies

that the endemic equilibrium 𝑃
∗ is stable when 𝜏

1
∈ [0, 𝜏

∗

1
),

𝜏
2
∈ [0, 𝜏

∗

2
(𝜏
1
)), 𝐵
𝑖
≥ 0, and 𝐶

𝑖
≥ 0, 𝑖 = 1, 2, 3. The above

analysis can be summarized into the following theorem.

Theorem 6. If 𝑅
0
> 1, 𝐵

𝑖
≥ 0 and 𝐶

𝑖
≥ 0, 𝑖 = 1, 2, 3, the

unique endemic equilibrium 𝑃
∗ of system (3) is stable.

6. Discussions

In this paper, in order to study the impact of the incubation
periods in human and mosquitoes, we formulate a model
with two delays for the transmission dynamics of malaria.

Existence of equilibria is obtained under different con-
ditions and their stabilities are analyzed too. We have also
identified the basic reproduction number 𝑅

0
, which gives

the expected number of new infections (in mosquitoes
or humans) from one infectious individual (human or
mosquito) over the duration of the infectious period, given
that all other members of the population are susceptible, in
terms of the model parameters. Especially, we have proved
mathematically backward bifurcation may occur for 𝑅

0
< 1

which implies that bringing the basic reproduction number
below 1 is not enough to eradicate malaria.

The parameters 𝜏
1
and 𝜏

2
are the incubation periods in

human and mosquitoes, which are temperature dependent.
With the increasing of temperature in a range, they become
shorter. Since the basic reproduction number is a monotone
decreasing function of both time delays, global warming will
then exacerbate the transmission of malaria.

The reason inducing backward bifurcation in [6] is
the mosquito biting rate. While, the reasons inducing the
backward bifurcation in our paper are the standard incidence
rate and the disease-induced death rate which is big enough.
By our results, the disease-free equilibrium is globally stable
when 𝑅

0
< 1 if the disease-induced death is omitted. How-

ever, the result about backward bifurcation in this paper has
important implications for malaria control, which implies
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that bringing the basic reproduction number below 1 is not
enough to eradicate malaria.

Malaria transmission can be affected by a lot of aspects. In
this paper, we are trying to model the impact of temperature
increasing on malaria transmission. In some extent, our
results can provide a theoretical principle for allocating and
using medical health resource reasonably, which can be
applied in the practice of malaria prevention and control.
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