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Let𝐺 = (𝑉, 𝐸) be a graph.The atom-bond connectivity (ABC) index is defined as the sum of weights ((𝑑
𝑢
+ 𝑑
𝑣
− 2)/𝑑

𝑢
𝑑
𝑣
)
1/2 over all

edges uv of G, where 𝑑
𝑢
denotes the degree of a vertex u of G. In this paper, we give the atom-bond connectivity index of the zigzag

chain polyomino graphs. Meanwhile, we obtain the sharp upper bound on the atom-bond connectivity index of catacondensed
polyomino graphs with h squares and determine the corresponding extremal graphs.

1. Introduction

One of the most active fields of research in contemporary
chemical graph theory is the study of topological indices
(graph topological invariants) that can be used for describing
and predicting physicochemical and pharmacological prop-
erties of organic compounds. In chemistry and for chemical
graphs, these invariant numbers are known as the topological
indices. There are many publications on the topological
indices, see [1–6].

Let 𝐺 = (𝑉, 𝐸) be a simple graph of order 𝑛. A few years
ago, Estrada et al. [7] introduced a further vertex-degree-
based graph invariant, known as the atom-bond connectivity
(ABC) index. It is defined as:

ABC (𝐺) = ∑

𝑢𝑣∈𝐸(𝐺)

√
𝑑
𝑢
+ 𝑑
𝑣
− 2

𝑑
𝑢
𝑑
𝑣

. (1)

TheABC index keeps the spirit of the Randić index, and it
provides a goodmodel for the stability of linear and branched
alkanes as well as the strain energy of cycloalkanes [7].
Recently, the study of the ABC index attracts some research
attention [6, 8–12].

Polyomino graphs [13], also called chessboards [14] or
square-cell configurations [15] have attracted some mathe-
maticians’ considerable attention because many interesting
combinatorial subjects are yielded from them such as domi-
nation problem andmodeling problems of surface chemistry.
A polyomino graph [16] is a connected geometric graph
obtained by arranging congruent regular squares of side
length 1 (called a cell) in a plane such that two squares are
either disjoint or have a common edge.The polyomino graph
has received considerable attentions.

Next, we introduce some graph definitions used in this
paper.

Definition 1 (see [4]). Let 𝐺 be a polyomino graph. If all
vertices of𝐺 lie on its perimeter, then𝐺 is said to be catacon-
densed polyomino graph or tree-like polyomino graph. (see
Figure 1).

Definition 2 (see [16]). Let𝐺 be a chain polyomino graphwith
ℎ squares. If the subgraph obtained from𝐺 by deleting all the
vertices of degree 2 and all the edges adjacent to the vertices is
a path, then𝐺 is said to be the zigzag chain polyomino graph,
denoted by 𝑍

ℎ
(see Figure 1).

In this paper, we give the ABC indices of the zigzag chain
polyomino graphs with ℎ squares and obtain the sharp upper
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bound on the ABC indices of catacondensed polyomino
graphs with ℎ squares and determine the corresponding
extremal graphs.

2. The ABC Indices of Catacondensed
Polyomino Graphs

Let
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𝑆 = 𝑆
1
⋃𝑆
2
.

(2)

We call √(𝑑
𝑢
+ 𝑑
𝑣
− 2)/𝑑

𝑢
𝑑
𝑣

the weight of the edge 𝑢𝑣,
denoted by𝑊

𝑢𝑣
.

Note that for any catacondensed polyomino graph 𝐻∗
with ℎ squares, it can be obtained by gluing a new square 𝑠 to
some catacondensed polyomino graph𝐻 with ℎ − 1 squares.
So, we have the following lemma.

1 2

ℎ − 1 ℎ

𝑍ℎ

· · ·
...

Figure 1: The zigzag chain polyomino graph 𝑍
ℎ
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Lemma 3. Let 𝐻∗ be a catacondensed polyomino graph with
ℎ squares which is obtained by gluing a new square 𝑠 to some
graph 𝐻, where 𝐻 is a catacondensed polyomino graph with
ℎ − 1 squares. One has

(i) If 2 ≤ ℎ ≤ 3, then ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆
1
,

(ii) if ℎ ≥ 4, then ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆
2
.
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Figure 6: A catacondensed polyomino graphwith ℎ (ℎ ≤ 3) squares.

Proof. Consider the following: (i) if 2 ≤ ℎ ≤ 3, by directly
calculating, we have ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆

1
,

(ii) now, let ℎ ≥ 4. Without the loss of generality, let
square 𝑠 be adjacent to the edge 𝐴𝐵 in 𝐻 (see Figure 2).
In the following, if the weights of some edges of 𝐻 have
been changed when 𝑠 is adjacent to the edge 𝐴𝐵 in 𝐻, then
we marked these edges with thick lines in 𝐻∗. Let 𝐷

𝑖
=

ABC(𝐻∗) − ABC(𝐻) (𝑖 = 1, 2, . . . , 35). Note that except the
edge 𝐴𝐵 of 𝑠, the summation of the weights of the remaining
three edges is always (3/2)√2 in 𝐻∗. There are exactly three
types of formations (see Figure 2).
Case 1. In Type I, 𝑑

𝐴
1

= 𝑑
𝐵
1

= 2 and 𝑑
𝐴
2

= 𝑑
𝐵
2

= 3 (see
Figure 3).

By the definition of ABC index, we have ABC(𝐻∗) −
ABC(𝐻) = (3/2)√2 + (𝑊

𝑢𝐴
2

− 𝑊
𝑢𝐴
1

) + (𝑊
𝐴
2
𝐵
2

− 𝑊
𝐴
1
𝐵
1

) +

(𝑊
𝑣𝐵
2

−𝑊
𝑣𝐵
1

) = 𝐷
𝑖
(𝑖 = 1, 2, 3).

If 𝑑
𝑢
= 3 and 𝑑

𝑣
= 3, then𝐷

1
= 2.

If 𝑑
𝑢
= 3 and 𝑑

𝑣
= 4 or 𝑑

𝑢
= 4 and 𝑑

𝑣
= 3, then

𝐷
2
= 4/3 + √15/6.

If 𝑑
𝑢
= 4 and 𝑑

𝑣
= 4, then𝐷

3
= 2/3 + √15/3.

Case 2. In Type II, 𝑑
𝐴
1

= 2, 𝑑
𝐵
1

= 3, 𝑑
𝐴
2

= 3, and 𝑑
𝐵
2

= 4.
(see Figure 4).

Let 𝑢 adjacent to 𝐴 and 𝑣, 𝑤 adjacent to 𝐵 (see Figure 4).
Then 𝑑

𝑢
∈ {2, 3, 4}, 𝑑

𝑣
∈ {3, 4}, and 𝑑

𝑤
∈ {2, 3, 4}. If 𝑑

𝑢
= 2,

𝑑
𝑣
= 3, and 𝑑

𝑤
= 2, which is in contradiction with ℎ ≥ 4; if

𝑑
𝑢
= 3 and 𝑑

𝑣
= 3, which is in contradiction with 𝑑

𝐵
1

= 3;
if 𝑑
𝑢
= 4 and 𝑑

𝑣
= 3, which is in contradiction with 𝑑

𝐴
1

= 2

(𝐴 ∈ 𝑉(𝐻)).
By the definition of ABC index, we have ABC(𝐻∗) −

ABC(𝐻) = (3/2)√2 + (𝑊
𝑢𝐴
2

− 𝑊
𝑢𝐴
1

) + (𝑊
𝐴
2
𝐵
2

− 𝑊
𝐴
1
𝐵
1

) +

(𝑊
𝑣𝐵
2

−𝑊
𝑣𝐵
1

) + (𝑊
𝑤𝐵
2

−𝑊
𝑤𝐵
1

) = 𝐷
𝑖
(𝑖 = 4, 5, . . . , 14).

If 𝑑
𝑢
= 2, 𝑑

𝑣
= 3, and 𝑑

𝑤
= 3, then 𝐷

4
= √2 +

√15/2 − 4/3.
If 𝑑
𝑢
= 2, 𝑑

𝑣
= 3, and 𝑑

𝑤
= 4, then𝐷

5
= √2+√6/4+

√15/6 − 2/3.
If 𝑑
𝑢
= 2, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 2, then𝐷

6
= √2 + √6/4.

If 𝑑
𝑢
= 2, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 3, then𝐷

7
= √2+√6/4+

√15/6 − 2/3.
If 𝑑
𝑢
= 2, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 4, then𝐷

8
= √2+√6/2−

√15/6.
If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 2, then 𝐷

9
= √2/2 +

√6/4 + 2/3.
If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 3, then 𝐷

10
= √2/2 +

√6/4 + √5/12.
If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 4, then 𝐷

11
= √2/2 +

√6/2 + 2/3 − √5/12.
If 𝑑
𝑢
= 4, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 2, then 𝐷

12
= √2/2 +

√6/4 + √5/12.
If 𝑑
𝑢
= 4, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 3, then 𝐷

13
= √2/2 +

√6/4 + 2√5/12 − 2/3.
If 𝑑
𝑢
= 4, 𝑑

𝑣
= 4, and 𝑑

𝑤
= 4, then 𝐷

14
= √2/2 +

√6/2.

Case 3. In Type III, 𝑑
𝐴
1

= 𝑑
𝐵
1

= 3 and 𝑑
𝐴
2

= 𝑑
𝐵
2

= 4 (see
Figure 5).

Let 𝑢,𝑥 adjacent to𝐴 and 𝑣,𝑤 adjacent to𝐵 (see Figure 5).
Then, 𝑑

𝑢
∈ {3, 4}, 𝑑

𝑣
∈ {3, 4}, 𝑑

𝑤
∈ {2, 3, 4}, and 𝑑

𝑥
∈

{2, 3, 4}. Since the case𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 𝑦
1
, and 𝑑

𝑤
= 𝑦
2

is the same as 𝑑
𝑢
= 4, 𝑑

𝑣
= 3, 𝑑

𝑥
= 𝑦
2
, and 𝑑

𝑤
= 𝑦
1
, where

𝑦
1
, 𝑦
2
∈ {2, 3, 4}. And note that if 𝑑

𝑢
= 𝑑
𝑣
= 3 or 𝑑

𝑢
= 𝑑
𝑣
= 4,

the vertices 𝑥 and 𝑤 are symmetric.
By the definition of 𝐴𝐵𝐶 index, we have ABC(𝐻∗) −

ABC(𝐻) = (3/2)√2 + (𝑊
𝑥𝐴
2

− 𝑊
𝑥𝐴
1

) + (𝑊
𝑢𝐴
2

− 𝑊
𝑢𝐴
1

) +

(𝑊
𝐴
2
𝐵
2

− 𝑊
𝐴
1
𝐵
1

) + (𝑊
𝑣𝐵
2

− 𝑊
𝑣𝐵
1

) + (𝑊
𝑤𝐵
2

− 𝑊
𝑤𝐵
1

) = 𝐷
𝑖

(𝑖 = 15, 16, . . . , 35).

If 𝑑
𝑢
= 𝑑
𝑣
= 3, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 3, then 𝐷

15
=

3√2/2 + √6/4 + √15/2 − 8/3.
If 𝑑
𝑢
= 𝑑
𝑣
= 3, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 4, then 𝐷

16
=

3√2/2 + √6/2 + √15/6 − 2.
If 𝑑
𝑢
= 𝑑
𝑣
= 3, 𝑑

𝑥
= 3, and𝑑

𝑤
= 3, then 𝐷

17
=

3√2/2 + √6/4 + 2√15/3 − 10/3.
If 𝑑
𝑢
= 𝑑
𝑣
= 3, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 4, then 𝐷

18
=

3√2/2 + √6/2 + √15/3 − 8/3.
If 𝑑
𝑢
= 𝑑
𝑣
= 3, 𝑑

𝑥
= 4, and𝑑

𝑤
= 4, then 𝐷

19
=

3√2/2 + 3√6/4 − 2.
If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 2, then 𝐷

20
=

3√2/2 + 3√6/4 − √15/3 − 2/3.
If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 3, then 𝐷

21
=

3√2/2 + 3√6/4 − √15/6 − 4/3.
If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 4, then 𝐷

22
=

3√2/2 + √6 − √15/2 − 2/3.
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If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 3, then 𝐷

23
=

3√2/2 + 3√6/4 − 2.

If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 3, and𝑑

𝑤
= 4, then 𝐷

24
=

3√2/2 + √6 − √15/3 − 4/3.

If 𝑑
𝑢
= 𝑑
𝑣
= 4, 𝑑

𝑥
= 4, and𝑑

𝑤
= 4, then 𝐷

25
=

3√2/2 + 5√6/4 − 2√15/3 − 2/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 2, then 𝐷

26
=

3√2/2 + √6/2 − 4/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 3, then 𝐷

27
=

3√2/2 + √6/2 + √15/6 − 2.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 4, then 𝐷

28
=

3√2/2 + 3√6/4 − √15/6 − 4/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 2, then 𝐷

29
=

3√2/2 + √6/2 + √15/6 − 2.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 3, then 𝐷

30
=

3√2/2 + √6/2 + √15/3 − 8/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 3, and 𝑑

𝑤
= 4, then 𝐷

31
=

3√2/2 + 3√6/4 − 2.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 4, and 𝑑

𝑤
= 2, then 𝐷

32
=

3√2/2 + 3√6/4 − √15/6 − 4/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 4, and 𝑑

𝑤
= 3, then 𝐷

33
=

3√2/2 + 3√6/4 − 2.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 4, 𝑑

𝑥
= 4, and 𝑑

𝑤
= 4, then 𝐷

34
=

3√2/2 + √6 − √15/3 − 4/3.

If 𝑑
𝑢
= 3, 𝑑

𝑣
= 3, 𝑑

𝑥
= 2, and 𝑑

𝑤
= 2, then 𝐷

35
=

3√2/2 + √6/4 + √15/3 − 2.

By directly calculating, we have 𝐷
5
= 𝐷
7
, 𝐷
10
= 𝐷
12
,

𝐷
16
= 𝐷
27
= 𝐷
29
, 𝐷
18
= 𝐷
30
, 𝐷
19
= 𝐷
23
= 𝐷
31
= 𝐷
33
,

𝐷
21
= 𝐷
28
= 𝐷
32
, 𝐷
24
= 𝐷
34
, and 𝐷

6
= max

1≤𝑖≤35
𝐷
𝑖
, 𝐷
14
=

min
1≤𝑖≤35

𝐷
𝑖
. So ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆

2
, where ℎ ≥ 4.

Therefore, ABC(𝐻∗) − ABC(𝐻) ∈ 𝑆.

By Lemma 3, we have the following theorem.

Theorem 4. Let 𝐺 be a catacondensed polyomino graph with
ℎ (ℎ ≥ 2) squares, then

ABC (𝐺) = 3√2 + 2
3
+ (√2 +

√15

3
−
2

3
) 𝑎
1

+ 2𝑎
2
+ (

4

3
+
√15

6
) 𝑎
3

+ (
2

3
+
√15

3
) 𝑎
4

+ (√2 +
√15

2
−
4

3
) 𝑎
5

+ (√2 +
√6

4
+
√15

6
−
2

3
) 𝑎
6

+ (√2 +
√6

4
) 𝑎
7

+ (√2 +
√6

2
−
√15

6
) 𝑎
8

+ (
√2

2
+
√6

4
+
2

3
) 𝑎
9

+ (
√2

2
+
√6

4
+
√15

6
) 𝑎
10

+ (
√2

2
+
√6

2
+
2

3
−
√15

6
) 𝑎
11

+ (
√2

2
+
√6

4
+
√15

3
−
2

3
) 𝑎
12

+ (
√2

2
+
√6

2
) 𝑎
13

+ (
3√2

2
+
√6

4
+
√15

2
−
8

3
) 𝑎
14

+ (
3√2

2
+
√6

2
+
√15

6
− 2) 𝑎

15

+ (
3√2

2
+
√6

4
+
2√15

3
−
10

3
) 𝑎
16

+ (
3√2

2
+
√6

2
+
√15

3
−
8

3
) 𝑎
17

+ (
3√2

2
+
3√6

4
− 2) 𝑎

18

+ (
3√2

2
+
3√6

4
−
√15

3
−
2

3
) 𝑎
19
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+ (
3√2

2
+
3√6

4
−
√15

6
−
4

3
) 𝑎
20

+ (
3√2

2
+ √6 −

√15

2
−
2

3
) 𝑎
21

+ (
3√2

2
+ √6 −

√15

3
−
4

3
) 𝑎
22

+ (
3√2

2
+
5√6

4
−
2√15

3
−
2

3
) 𝑎
23

+ (
3√2

2
+
√6

2
−
4

3
) 𝑎
24

+ (
3√2

2
+
√6

4
+
√15

3
− 2) 𝑎

25
,

(3)

where 𝑎
𝑖
is a nonnegative integer for 𝑖 = 1, 2, . . . , 25 and ℎ =

2 + ∑
25

𝑖=1
𝑎
𝑖
.

Proof. We prove Theorem 4 by the induction on ℎ. If ℎ = 2,
by directly calculating, we have ABC(𝐺) = 3√2 + 2/3, where
𝑎
𝑖
= 0 (𝑖 = 1, 2, . . . , 25). So, Theorem 4 holds for ℎ = 2.
Assume that Theorem 4 holds for all catacondensed

polyomino graphs with ℎ − 1 (ℎ − 1 ≥ 2) squares, that is,

ABC (𝐺) = 3√2 + 2
3
+ (√2 +

√15

3
−
2

3
) 𝑎
1

+ 2𝑎
2
+ (

4

3
+
√15

6
) 𝑎
3

+ (
2

3
+
√15

3
) 𝑎
4

+ (√2 +
√15

2
−
4

3
) 𝑎
5

+ (√2 +
√6

4
+
√15

6
−
2

3
) 𝑎
6

+ (√2 +
√6

4
) 𝑎
7

+ (√2 +
√6

2
−
√15

6
) 𝑎
8

+ (
√2

2
+
√6

4
+
2

3
) 𝑎
9

+ (
√2

2
+
√6

4
+
√15

6
) 𝑎
10

+ (
√2

2
+
√6

2
+
2

3
−
√15

6
) 𝑎
11

+ (
√2

2
+
√6

4
+
√15

3
−
2

3
) 𝑎
12

+ (
√2

2
+
√6

2
) 𝑎
13

+ (
3√2

2
+
√6

4
+
√15

2
−
8

3
) 𝑎
14

+ (
3√2

2
+
√6

2
+
√15

6
− 2) 𝑎

15

+ (
3√2

2
+
√6

4
+
2√15

3
−
10

3
) 𝑎
16

+ (
3√2

2
+
√6

2
+
√15

3
−
8

3
) 𝑎
17

+ (
3√2

2
+
3√6

4
− 2) 𝑎

18

+ (
3√2

2
+
3√6

4
−
√15

3
−
2

3
) 𝑎
19

+ (
3√2

2
+
3√6

4
−
√15

6
−
4

3
) 𝑎
20

+ (
3√2

2
+ √6 −

√15

2
−
2

3
) 𝑎
21

+ (
3√2

2
+ √6 −

√15

3
−
4

3
) 𝑎
22

+ (
3√2

2
+
5√6

4
−
2√15

3
−
2

3
) 𝑎
23

+ (
3√2

2
+
√6

2
−
4

3
) 𝑎
24

+ (
3√2

2
+
√6

4
+
√15

3
− 2) 𝑎

25
,

(4)

where 𝑎
𝑖
is a nonnegative integer for 𝑖 = 1, 2, . . . , 25 andℎ−1 =

2 + ∑
25

𝑖=1
𝑎
𝑖
.

We will prove thatTheorem 4 holds for ℎ in the following.
Let 𝐺∗ be a catacondensed polyomino graph with ℎ squares.
Without the loss of generality,𝐺∗ can be obtained from some
catacondensed polyomino graph 𝐺 with ℎ − 1 squares by
gluing a new square 𝑠 to 𝐺. By Lemma 3, we have ABC(𝐺∗) −
ABC(𝐺) ∈ 𝑆. It means that ABC(𝐺∗) = ABC(𝐺) + 𝑎, where
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𝑎 ∈ 𝑆. By the induction assumption and direct computation,
we have

ABC (𝐺∗) = 3√2 + 2
3
+ (√2 +

√15

3
−
2

3
) 𝑎
∗

1

+ 2𝑎
∗

2
+ (

4

3
+
√15

6
) 𝑎
∗

3

+ (
2

3
+
√15

3
) 𝑎
∗

4

+ (√2 +
√15

2
−
4

3
) 𝑎
∗

5

+ (√2 +
√6

4
+
√15

6
−
2

3
) 𝑎
∗

6

+ (√2 +
√6

4
) 𝑎
∗

7

+ (√2 +
√6

2
−
√15

6
) 𝑎
∗

8

+ (
√2

2
+
√6

4
+
2

3
) 𝑎
∗

9

+ (
√2

2
+
√6

4
+
√15

6
) 𝑎
∗

10

+ (
√2

2
+
√6

2
+
2

3
−
√15

6
) 𝑎
∗

11

+ (
√2

2
+
√6

4
+
√15

3
−
2

3
) 𝑎
∗

12

+ (
√2

2
+
√6

2
) 𝑎
∗

13

+ (
3√2

2
+
√6

4
+
√15

2
−
8

3
) 𝑎
∗

14

+ (
3√2

2
+
√6

2
+
√15

6
− 2) 𝑎

∗

15

+ (
3√2

2
+
√6

4
+
2√15

3
−
10

3
) 𝑎
∗

16

+ (
3√2

2
+
√6

2
+
√15

3
−
8

3
) 𝑎
∗

17

+ (
3√2

2
+
3√6

4
− 2) 𝑎

∗

18

+ (
3√2

2
+
3√6

4
−
√15

3
−
2

3
) 𝑎
∗

19

+ (
3√2

2
+
3√6

4
−
√15

6
−
4

3
) 𝑎
∗

20

+ (
3√2

2
+ √6 −

√15

2
−
2

3
) 𝑎
∗

21

+ (
3√2

2
+ √6 −

√15

3
−
4

3
) 𝑎
∗

22

+ (
3√2

2
+
5√6

4
−
2√15

3
−
2

3
) 𝑎
∗

23

+ (
3√2

2
+
√6

2
−
4

3
) 𝑎
∗

24

+ (
3√2

2
+
√6

4
+
√15

3
− 2) 𝑎

∗

25
.

(5)

There exists some 𝑙 ∈ {1, 2, . . . , 25} such that 𝑎∗
𝑙
= 𝑎
𝑙
+ 1

and 𝑎∗
𝑗
= 𝑎
𝑗
for 𝑗 ̸= 𝑙 (𝑗 ∈ {1, 2, . . . , 25}). Obviously, 𝑎∗

𝑖
is

a nonnegative integer for 𝑖 = 1, 2, . . . , 25 and 2 + ∑25
𝑖=1
𝑎
∗

𝑖
=

2 + 1 + ∑
25

𝑖=1
𝑎
𝑖
= ℎ.

Lemma 5. Let𝐻 be a catacondensed polyomino graph with ℎ
squares. If ℎ ≤ 3, there are exactly four nonisomorphism cata-
condensed polyomino graphs (see Figure 6), where ABC(𝐻

1
) =

2√2, ABC(𝐻
2
) = 3√2 + 2/3, ABC(𝐻

3
) = 3√2 + 8/3,

ABC(𝐻
4
) = 4√2 + √15/3.

Theorem 6. Let 𝑍
ℎ
be a zigzag chain polyomino graph with ℎ

squares, then

ABC (𝑍
ℎ
) =

{{{{

{{{{

{

2√2, ℎ = 1,

3√2 +
2

3
, ℎ = 2,

(ℎ + 1)√2 + (ℎ − 3) ⋅
√6

4
+
√15

3
, ℎ ≥ 3.

(6)

Proof. Obviously, 𝑍
ℎ
can be obtained by gluing a new square

𝑠
ℎ
to 𝑍
ℎ−1

. Let 𝑠
ℎ−1

be the square adjacent to 𝑠
ℎ
(see Figure 1).

We will proveTheorem 6 by the induction on ℎ.
If ℎ = 1, 2, 3, then Theorem 6 holds (by Lemma 5).

Assume that ABC(𝑍
ℎ−1
) = (ℎ−1+1)√2+(ℎ−1−3)⋅(√6/4)+

(√15/3) = ℎ√2 + (ℎ − 4) ⋅ (√6/4) + (√15/3) for ℎ − 1 ≥ 3. By
the induction assumption and the𝐷

6
in Lemma 3, we have

ABC (𝑍
ℎ
) = ABC (𝑍

ℎ−1
) + 𝐷
6

= ℎ√2 + (ℎ − 4) ⋅
√6

4
+
√15

3
+ (√2 +

√6

4
)

= (ℎ + 1)√2 + (ℎ − 3) ⋅
√6

4
+
√15

3
.

(7)

So, Theorem 6 holds.
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Note that 𝐷
6
= max

1≤𝑖≤35
𝐷
𝑖
for ℎ ≥ 4 and by Lemma 5,

we obtain the followingTheorem 7.

Theorem7. Let𝐺 be a catacondensed polyomino graph with ℎ
squares, then ABC(𝐺) ≤ (ℎ+1)√2+(ℎ−3)⋅(√6/4)+(√15/3),
with the equality if and only if 𝐺 ≅ 𝑍

ℎ
.
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