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The multistep differential transform method is first employed to solve a time-fractional enzyme kinetics. This enzyme-substrate
reaction is formed by a system of nonlinear ordinary differential equations of fractional order. The fractional derivatives are
described in the Caputo sense. A comparative study between the new algorithm and the classical Runge-Kutta method is presented
in the case of integer-order derivatives. The results demonstrate reliability and efficiency of the algorithm developed.

1. Introduction

Mathematical modeling of complex processes is a major
challenge for contemporary scientists. In contrast to simple
classical systems, where the theory of integer-order differ-
ential equations is sufficient to describe their dynamics,
complex systems are characterized by the variability of
structures in them, multiscale behavior, and nonlinearity
in the mathematical description of the mutual relation-
ship between parameters [1]. Fractional derivatives provide
an excellent instrument for the description of dynamical
behavior of various complex materials and systems. There
are two important benefits: (1) we have more degrees of
freedom in the model considered and (2) a “memory” is
enclosed in the model. Therefore, the number of scientific
and engineering problems involving fractional derivatives
is already very large and still growing and perhaps the
fractional calculus (i.e., derivatives and integrals of any real or
complex order) will be the calculus of the twenty-first century
[1].

Recent investigations have shown thatmany complex bio-
logical systems can be represented more accurately through
fractional derivative formulation.Magin [2] was the first who
used fractional derivatives and fractional integrals in order
to model stress-strain relationship in biomaterials. Craiem et
al. [3] applied fractional calculus to model arterial viscoelas-
ticity. Abdullah [4] used fractional differential equations to

model the Michaelis-Menten reaction in a 2d region con-
taining obstacles. He investigated the phenomenon of sub-
diffusion, which occurs when there is molecular crowding,
by proposing a continuous spatial model involving fractional
differential equations. The Michaelis-Menten mechanism is
the simplest chemical network which models the formation
of a product through an enzymatic catalysis of a substrate. In
particular, an enzyme reacts with the substrate and reversibly
forms an intermediate complex, which then decays into the
product and original enzyme. This enzyme reaction model is
given by (for more details on the enzyme dynamics, see [5–9]
and the references therein)

𝐸 + 𝑆
𝑘
1

←→
𝑘
−1

𝐸𝑆
𝑘
2

→ 𝐸 + 𝑃, (1)

where 𝐸 is the enzyme, 𝑆 the substrate, 𝐸𝑆 the enzyme-
substrate intermediate complex, and 𝑃 the product. The
parameters 𝑘1, 𝑘−1, and 𝑘2 are positive rate constants and
denote the rates of reaction of these three processes. Note that
substrate binding is reversible but product release is not. The
concentration of the reactants in (1) is denoted by lower case
letters:

𝑠 = [𝑆] , 𝑒 = [𝐸] , 𝑐 = [𝑆𝐸] , 𝑝 = [𝑃] . (2)

Applying the law of mass action, which states that reaction
rates are proportional to the concentrations of the reactants,
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the time evolution of scheme (1) can be determined from
the solution of the system of coupled nonlinear ordinary
differential equations (ODEs) [6, 7]:

𝑑𝑠

𝑑𝑡
= −𝑘1𝑒𝑠 + 𝑘−1𝑐,

𝑑𝑒

𝑑𝑡
= −𝑘1𝑒𝑠 + (𝑘−1 + 𝑘2) 𝑐,

𝑑𝑐

𝑑𝑡
= 𝑘1𝑒𝑠 − (𝑘−1 + 𝑘2) 𝑐,

𝑑𝑝

𝑑𝑡
= 𝑘2𝑐,

(3)

subject to the initial conditions

𝑠 (0) = 𝑠0, 𝑒 (0) = 𝑒0, 𝑐 (0) = 0, 𝑝 (0) = 0.

(4)

Systems (3) can be reduced to only two equations for 𝑠 and 𝑐,
namely [6],

𝑑𝑠

𝑑𝑡
= −𝑘1𝑒0𝑠 + (𝑘1𝑠 + 𝑘−1) 𝑐,

𝑑𝑐

𝑑𝑡
= 𝑘1𝑒0𝑠 − (𝑘1𝑠 + 𝑘−1 + 𝑘2) 𝑐,

(5)

subject to the initial conditions 𝑠(0) = 𝑠0 and 𝑐(0) = 0. By
introducing the following parameters:

𝜏 =
𝑘1𝑒0𝑡

𝜀
, 𝑢 (𝜏) =

𝑠 (𝑡)

𝑠0
, 𝑣 (𝜏) =

𝑐 (𝑡)

𝑐0
,

𝑤 (𝜏)=
𝑝 (𝑡)

𝑒0
, 𝜆=

𝑘2

𝑘1𝑠0
, 𝑘3=

𝑘−1 + 𝑘2

𝑘1𝑠0
, 𝜀=

𝑒0

𝑠0
.

(6)

Then, (5) and the initial conditions (4) can be represented
in dimensionless form as follows:

𝑑𝑢

𝑑𝑡
= −𝜀𝑢 + 𝜀 (𝑢 + 𝑘3 − 𝜆) 𝑣,

𝑑𝑣

𝑑𝑡
= 𝑢 − (𝑢 + 𝑘3) 𝑣,

𝑑𝑤

𝑑𝑡
= 𝜆𝑣,

𝑢 (0) = 1, 𝑣 (0) = 0, 𝑤 (0) = 0,

(7)

where 𝜀, 𝑘, and 𝜆 are dimensionless parameters.
Now, we introduce fractional order into enzyme reaction

model. The new system is described by the following set of
fractional differential equations:

𝐷
𝛼
1𝑢 = −𝜀𝑢 + 𝜀 (𝑢 + 𝑘3 − 𝜆) 𝑣, (8)

𝐷
𝛼
2𝑣 = 𝑢 − (𝑢 + 𝑘3) 𝑣, (9)

𝐷
𝛼
3𝑤 = 𝜆𝑣, (10)

𝑢 (0) = 1, 𝑣 (0) = 0, 𝑤 (0) = 0, (11)

where the fractional derivatives 𝐷𝛼1𝑢, 𝐷𝛼2𝑣, and 𝐷𝛼3𝑤 are
considered in the Caputo sense, and 0 < 𝛼𝑖 ≤ 1, 𝑖 =
1, 2, 3, are parameters describing the order of the fractional
time-derivatives in the Caputo sense. The general response
expression contains parameters describing the order of the
fractional derivatives that can be varied to obtain various
responses. Obviously, the classical integer-order enzyme
reaction model can be viewed as a special case from the
fractional-order enzyme reaction model by setting 𝛼1 = 𝛼2 =
𝛼3 = 1. In other words, the ultimate behavior of the fractional
system responsemust converge to the response of the integer-
order version of the equation [10].

Ourmotivation for this work is to obtain the approximate
solution of the time-fractional enzyme kinetics (8)–(10) using
the multistep generalized differential transform method
(MSGDTM).Thismethod is only a simplemodification of the
generalized differential transform method (GDTM) [11–14],
in which it is treated as an algorithm in a sequence of small
intervals (i.e., time step) for finding accurate approximate
solutions to the corresponding systems. The approximate
solutions obtained by using GDTM are valid only for a short
time, while the ones obtained by using the MSGDTM [15, 16]
are more valid and accurate during a long time and are in
good agreement with the RK4-5 numerical solution when the
order of the derivative 𝛼𝑖 = 1, 𝑖 = 1, 2, 3.

This paper is organized as follows. In Section 2, we present
some necessary definitions and notations related to fractional
calculus and differential transform method. In Section 3, the
proposed method is described. In Section 4, the method is
applied to the problems (8)–(10), and numerical simulations
are presented graphically. Finally, the conclusions are given in
Section 5.

2. Preliminaries

In this section, we give some basic definitions and properties
of the fractional calculus theory and differential transform
method which are used further in this paper [1, 10, 17–25].

2.1. Fractional Calculus

Definition 1. A function𝑓(𝑥) (𝑥 > 0) is said to be in the space
𝐶𝛼 (𝛼 ∈ 𝑅) if it can be written as 𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥) for some
𝑝 > 𝛼, where 𝑓1(𝑥) is continuous in [0,∞), and it is said to
be in the space 𝐶𝑚

𝛼
if 𝑓(𝑚) ∈ 𝐶𝛼,𝑚 ∈ N.

Definition 2. The Riemann-Liouville integral operator of
order 𝛼 > 0 with 𝑎 ≥ 0 is defined as

(𝐽
𝛼

𝑎
𝑓) (𝑥) =

1

Γ (𝛼)
∫
𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1
𝑓 (𝑡) 𝑑𝑡, 𝑥 > 𝑎,

(𝐽
0

𝑎
𝑓) (𝑥) = 𝑓 (𝑥) .

(12)
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Properties of the operator can be found in [1, 10]. We only
need here the following: for 𝑓 ∈ 𝐶𝛼, 𝛼, 𝛽 > 0, 𝑎 ≥ 0, 𝑐 ∈ 𝑅
and 𝛾 > −1, we have

(𝐽
𝛼

𝑎
𝐽
𝛽

𝑎
𝑓) (𝑥) = (𝐽

𝛽

𝑎
𝐽
𝛼

𝑎
𝑓) (𝑥) = (𝐽

𝛼+𝛽

𝑎
𝑓) (𝑥) ,

𝐽
𝛼

𝑎
𝑥
𝛾
=
𝑥𝛾+𝛼

Γ (𝛼)
𝐵(𝑥−𝑎)/𝑥 (𝛼, 𝛾 + 1) ,

(13)

where 𝐵𝜏(𝛼, 𝛾 + 1) is the incomplete beta function which is
defined as

𝐵𝜏 (𝛼, 𝛾 + 1) = ∫
𝜏

0

𝑡
𝛼−1
(1 − 𝑡)

𝛾
𝑑𝑡,

𝐽
𝛼

𝑎
𝑒
𝑐𝑥
= 𝑒
𝑎𝑐
(𝑥 − 𝑎)

𝛼

∞

∑
𝑘=0

[𝑐 (𝑥 − 𝑎)]
𝑘

Γ (𝛼 + 𝑘 + 1)
.

(14)

The Riemann-Liouville derivative has certain disadvantages
when trying to model real-world phenomena with fractional
differential equations.Therefore, wewill introduce amodified
fractional differential operator𝐷𝛼

𝑎
proposed by Caputo in his

work on the theory of viscoelasticity.

Definition 3. The Caputo fractional derivative of 𝑓(𝑥) of
order 𝛼 > 0 with 𝑎 ≥ 0 is defined as

(𝐷
𝛼

𝑎
𝑓) (𝑥) = (𝐽

𝑚−𝛼

𝑎
𝑓
(𝑚)
) (𝑥) =

1

Γ (𝑚 − 𝛼)
∫
𝑥

𝑎

𝑓(𝑚) (𝑡)

(𝑥 − 𝑡)
𝛼+1−𝑚

𝑑𝑡,

(15)

for𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N, 𝑥 ≥ 𝑎, 𝑓(𝑥) ∈ 𝐶𝑚
−1
.

The Caputo fractional derivative was investigated by
many authors; for𝑚− 1 < 𝛼 ≤ 𝑚, 𝑓(𝑥) ∈ 𝐶𝑚

𝛼
and 𝛼 ≥ −1, we

have

(𝐽
𝛼

𝑎
𝐷
𝛼

𝑎
𝑓) (𝑥) = 𝐽

𝑚
𝐷
𝑚
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑
𝑘=0

𝑓
(𝑘)
(𝑎)
(𝑥 − 𝑎)

𝑘

𝑘!
.

(16)

For mathematical properties of fractional derivatives and
integrals, one can consult the mentioned references.

2.2. The Definitions and Operations of Differential Transform.
Thedifferential transform technique is one of the seminumer-
ical analytical methods for ordinary and partial differential
equations that uses the form of polynomials as approxima-
tions of the exact solutions that are sufficiently differentiable.
The basic definition and the fundamental theorems of the
differential transform method (DTM) and its applicability
for various kinds of differential equations are given in [21–
23]. For convenience of the reader, we present a review of
the DTM. The differential transform of the 𝑘th derivative of
function 𝑓(𝑡) is defined as follows:

𝐹 (𝑘) =
1

𝑘!
[
𝑑𝑘𝑓(𝑡)

𝑑𝑡𝑘
]
𝑡=𝑡
0

, (17)

where 𝑓(𝑡) is the original function and 𝐹(𝑘) is the trans-
formed function. The differential inverse transform of 𝐹(𝑘)
is defined as:

𝑓 (𝑡) =

∞

∑
𝑘=0

𝐹 (𝑘) (𝑡 − 𝑡0)
𝑘
. (18)

From (17) and (18), we get

𝑓 (𝑧) =

∞

∑
𝑘=0

(𝑧 − 𝑧0)
𝑘

𝑘!

𝑑𝑘𝑓(𝑧)

𝑑𝑧𝑘

𝑧=𝑧
0

, (19)

which implies that the concept of differential transform
is derived from Taylor series expansion, but the method
does not evaluate the derivatives symbolically. However,
relative derivatives are calculated by an iterative way which
is described by the transformed equations of the original
function. For implementation purposes, the function 𝑓(𝑡) is
expressed by a finite series, and (18) can be written as

𝑓 (𝑡) ≈

𝑁

∑
𝑘=0

𝐹 (𝑘) (𝑡 − 𝑡0)
𝑘
. (20)

Here, 𝑁 is decided by the convergence of natural frequency.
The fundamental operations performed by differential trans-
form can readily be obtained and are listed in Table 1. The
main steps of the DTM, as a tool for solving different classes
of nonlinear problems, are the following. First, we apply
the differential transform (17) to the given problem (integral
equation, ordinary differential equation, or partial differential
equations), and then the result is a recurrence relation.
Second, solving this relation and using the differential inverse
transform (18), we can obtain the solution of the problem.

3. Solving the Systems (8)–(10) Using the
Multistep Generalized Differential
Transform Method (MSGDTM)

It has been shown that the approximated solutions obtained
using DTM are not valid for large 𝑡 for some systems [11–
14]. Therefore, we use the multistep generalized differential
transform method (MSGDTM) to solve the system of equa-
tions (8)–(10). The method is only a simple modification of
the generalized differential transform method, in which it
is treated as an algorithm in a sequence of small intervals
(i.e., time step) for finding accurate approximate solutions
to the corresponding systems [15, 16]. This MSGDTM offers
accurate solutions over a longer time frame (more stable)
compared to the standard GDTM.
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Table 1: Operations of differential transformation.

Original function Transformed function
𝑓(𝑡) = 𝑢(𝑡) ± 𝑣(𝑡) 𝐹(𝑘) = 𝑈(𝑘) ± 𝑉(𝑘)

𝑓(𝑡) = 𝛼𝑢(𝑡) 𝐹(𝑘) = 𝛼𝑈(𝑘)

𝑓(𝑡) = 𝑢(𝑡) 𝑣(𝑡) 𝐹(𝑘) =

𝑘

∑
𝑙=0

𝑈(𝑙) 𝑉(𝑘 − 𝑙)

𝑓(𝑡) =
𝑑𝑢(𝑡)

𝑑𝑡
𝐹(𝑘) = (𝑘 + 1)𝑈(𝑘 + 1)

𝑓(𝑡) =
𝑑𝑚𝑢(𝑡)

𝑑𝑡𝑚
𝐹(𝑘) = (𝑘 + 1) (𝑘 + 2) ⋅ ⋅ ⋅ (𝑘 + 𝑚)𝑈(𝑘 + 𝑚)

𝑓(𝑡) = ∫
𝑡

𝑡0

𝑢(𝑡) 𝑑𝑡 𝐹(𝑘) =
𝑈(𝑘 − 1)

𝑘
, 𝑘 ≥ 1

𝑓(𝑡) = 𝑡
𝑚 𝐹(𝑘) = 𝛿(𝑘 − 𝑚) =

{{

{{

{

1, 𝑘 = 𝑚

0, 𝑘 ̸=𝑚

𝑓(𝑡) = exp(𝜆𝑡) 𝐹(𝑘) =
𝜆𝑘

𝑘!

𝑓(𝑡) = sin(𝜔𝑡 + 𝛼) 𝐹(𝑘) =
𝜔
𝑘

𝑘!
sin(𝜋𝑘

2
+ 𝛼)

𝑓(𝑡) = cos(𝜔𝑡 + 𝛼) 𝐹(𝑘) =
𝜔
𝑘

𝑘!
cos(𝜋𝑘

2
+ 𝛼)

ℎ(𝑡) =
𝑓(𝑡)

𝑔(𝑡)
𝐻(𝑘) =

1

𝐺(0)
[𝐹(𝑘) −

𝑘−1

∑
𝑚=0

𝐻(𝑚)𝐺(𝑘 − 𝑚)]

𝑓(𝑡) = [𝑔(𝑡)]
𝑏

𝐹(𝑘) =

{{{

{{{

{

𝐺(0) , 𝑘 = 0
𝑘

∑
𝑚=1

(𝑏 + 1)𝑚 − 𝑘

𝑘𝐺(0)
𝐺(𝑚) 𝐹(𝑘 − 𝑚) , 𝑘 ≥ 1

Taking the differential transform of (8)–(10) with respect
to time 𝑡 gives

𝑈 (𝑘 + 1)

=
Γ (𝛼𝑘 + 1)

Γ (𝛼 (𝑘 + 1) + 1)

× [−𝜀𝑈 (𝑘) + 𝜀(

𝑘

∑
𝑙=0

𝑈 (𝑙) 𝑉 (𝑘 − 𝑙) + (𝑘3 − 𝜆)𝑉 (𝑘))] ,

𝑉 (𝑘 + 1)

=
Γ (𝛼𝑘 + 1)

Γ (𝛼 (𝑘 + 1) + 1)

× [𝑈 (𝑘) −

𝑘

∑
𝑙=0

𝑈 (𝑙) 𝑉 (𝑘 − 𝑙) − 𝑘3𝑉 (𝑘)] ,

𝑊 (𝑘 + 1) =
Γ (𝛼 𝑘 + 1)

Γ (𝛼 (𝑘 + 1) + 1)
𝜆𝑉 (𝑘) ,

(21)

where 𝑈(𝑘), 𝑉(𝑘), and𝑊(𝑘) are the differential transforma-
tion forms of 𝑢(𝑡), 𝑣(𝑡), and𝑤(𝑡), respectively.The differential
transform forms of the initial conditions are given by 𝑈(0) =
1, 𝑉(0) = 0, and𝑊(0) = 0. In view of the differential inverse

transform, the differential transform series solution for the
systems (8)–(10) can be obtained as

𝑢 (𝑡) =

𝑁

∑
𝑛=0

𝑈 (𝑛) 𝑡
𝛼𝑛
,

𝑣 (𝑡) =

𝑁

∑
𝑛=0

𝑉 (𝑛) 𝑡
𝛼𝑛
,

𝑤 (𝑡) =

𝑁

∑
𝑛=0

𝑊(𝑛) 𝑡
𝛼𝑛
.

(22)

Now, according to the multistep generalized differential
transformmethod, the series solution for the systems (8)–(10)
is suggested by

𝑢 (𝑡) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝐾

∑
𝑛=0

𝑈1 (𝑛) 𝑡
𝛼𝑛
, 𝑡 ∈ [0, 𝑡1] ,

𝐾

∑
𝑛=0

𝑈2 (𝑛) (𝑡 − 𝑡1)
𝛼𝑛
, 𝑡 ∈ [𝑡1, 𝑡2] ,

...
𝐾

∑
𝑛=0

𝑈𝑀 (𝑛) (𝑡 − 𝑡𝑀−1)
𝛼𝑛
, 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀] ,
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𝑣 (𝑡) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝐾

∑
𝑛=0

𝑉1 (𝑛) 𝑡
𝛼𝑛
, 𝑡 ∈ [0, 𝑡1] ,

𝐾

∑
𝑛=0

𝑉2 (𝑛) (𝑡 − 𝑡1)
𝛼𝑛
, 𝑡 ∈ [𝑡1, 𝑡2] ,

...
𝐾

∑
𝑛=0

𝑉𝑀 (𝑛) (𝑡 − 𝑡𝑀−1)
𝛼𝑛
, 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀] ,

𝑤 (𝑡) =

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝐾

∑
𝑛=0

𝑊1 (𝑛) 𝑡
𝛼𝑛
, 𝑡 ∈ [0, 𝑡1] ,

𝐾

∑
𝑛=0

𝑊2 (𝑛) (𝑡 − 𝑡1)
𝛼𝑛
, 𝑡 ∈ [𝑡1, 𝑡2] ,

...
𝐾

∑
𝑛=0

𝑊𝑀 (𝑛) (𝑡 − 𝑡𝑀−1)
𝛼𝑛
, 𝑡 ∈ [𝑡𝑀−1, 𝑡𝑀] ,

(23)

where 𝑈𝑖(𝑛), 𝑉𝑖(𝑛), and 𝑊𝑖(𝑛) for 𝑖 = 1, 2, . . . ,𝑀 satisfy the
following recurrence relations:

𝑈𝑖 (𝑘 + 1)

=
Γ (𝛼𝑘 + 1)

Γ (𝛼 (𝑘 + 1) + 1)

× [−𝜀𝑈𝑖 (𝑘) + 𝜀(

𝑘

∑
𝑙=0

𝑈𝑖 (𝑙) 𝑉𝑖 (𝑘 − 𝑙) + (𝑘3 − 𝜆)𝑉𝑖 (𝑘))] ,

𝑉𝑖 (𝑘 + 1)

=
Γ (𝛼𝑘 + 1)

Γ (𝛼 (𝑘 + 1) + 1)

× [𝑈𝑖 (𝑘) −

𝑘

∑
𝑙=0

𝑈𝑖 (𝑙) 𝑉𝑖 (𝑘 − 𝑙) − 𝑘3𝑉𝑖 (𝑘)] ,

𝑊𝑖 (𝑘 + 1) =
Γ (𝛼 𝑘 + 1)

Γ (𝛼 (𝑘 + 1) + 1)
𝜆𝑉𝑖 (𝑘) ,

(24)

such that 𝑈𝑖(0) = 𝑈𝑖−1(0), 𝑉𝑖(0) = 𝑉𝑖−1(0), and 𝑊𝑖(0) =
𝑊𝑖−1(0). Finally, if we start with 𝑈0(0) = 1, 𝑉0(0) = 0, and
𝑊0(0) = 0, using the recurrence relation given in (24), then
we can obtain the multistep solution given in (23).

This multistage MSGDTM offers accurate solutions over
a longer time frame (more stable) compared to the standard
GDTM [11–14]. This distinctive strategy grants the iterative
algorithm a time-marching schemewhich significantly drives
forward the convergence of the solutions precisely with great
rapidity. The value of 𝑡 increases according to the designated
time-step size in each iteration computation. Each amplified
time step will produce a new approximation value for the
desired iteration step, and the process is continued until
the targeted time frame is achieved. Errors are therefore
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Figure 1: Profile of the normalized concentrations of the substrate
𝑢, enzyme-substrate complex 𝑣, and product 𝑤 for 𝑘 = 1, 𝜆 = 0.5,
𝜀 = 0.6, and 𝛼1 = 𝛼2 = 𝛼3 = 1. MSDTM solution (solid line); Runge-
Kutta method solution (dotted line).

minimized and depend on the time step Δ𝑡, but the main
disadvantage lies in having longer computational time. Gen-
erally, the convergence is achieved more quickly as the
iteration steps increase.

4. Numerical Results

In this work, we carefully propose the MSGDTM, a reliable
modification of the GDTM, that improves the convergence
of the series solution. The method provides immediate
and visible symbolic terms of analytic solutions, as well as
numerical approximate solutions to both linear andnonlinear
differential equations. To demonstrate the effectiveness of the
proposed algorithm as an approximate tool for solving the
nonlinear system of fractional differential equations (8)–(10)
for larger 𝑡, we apply the proposed algorithm on the interval
[0, 10]. We divide this interval to subintervals with time step
Δ𝑡 = 0.1 or𝑀 = 100 and the tem-number of GDTM series
solutions is fixed, 𝐾 = 10. All the results are calculated by
using the computer algebra package Mathematica.

Figures 1 and 2 show the approximate solutions obtained
using the MSGDTM and the fourth-order Runge-Kutta
method of concentrations of substrate 𝑢, enzyme-substrate
complex 𝑣, and product𝑤 for various values of dimensionless
reaction parameters 𝑘3, 𝜆, and 𝜀 when 𝛼1 = 𝛼2 = 𝛼3 = 1. It
can be seen that the results from the MSGDTM match the
results of the Runge-Kutta method very well, which implies
that theMSGDTMcan predict the behavior of these variables
accurately for the region under consideration. Therefore, the
proposed method is a very efficient and accurate method
that can be used to provide analytical solutions for nonlinear
systems of differential equations.

Next, we consider how the concentrations of substrate 𝑢,
enzyme-substrate complex 𝑣, and product𝑤dependupon the
magnitude of the order of fractional derivatives. We fix the
dimensionless reaction parameters 𝑘3, 𝜆, and 𝜀 and perform
the numerical simulation for different values of 𝛼1,𝛼2, and𝛼3.
Simulation results are presented in Figures 3, 4, 5, and 6, and
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Figure 2: Profile of the normalized concentrations of the substrate
𝑢, enzyme-substrate complex 𝑣, and product 𝑤 for 𝑘3 = 2, 𝜆 = 1.0,
𝜀 = 0.5, and 𝛼1 = 𝛼2 = 𝛼3 = 1. MSDTM solution (solid line); Runge-
Kutta method solution (dotted line).
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Figure 3: Profile of the normalized concentrations of the substrate
𝑢, enzyme-substrate complex 𝑣, and product 𝑤 for 𝑘3 = 1, 𝜆 = 0.5,
and 𝜀 = 0.6, 𝛼

1
= 0.98, 𝛼

2
= 0.98, and 𝛼

3
= 0.98 (solid line); 𝛼

1
=

𝛼2 = 𝛼3 = 1 (dotted line).
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Figure 4: Profile of the normalized concentrations of the substrate
𝑢, enzyme-substrate complex 𝑣, and product 𝑤 for 𝑘3 = 1, 𝜆 = 0.5,
and 𝜀 = 0.6, 𝛼1 = 1.0, 𝛼2 = 0.95, and 𝛼3 = 0.95 (solid line); 𝛼1 =
𝛼2 = 𝛼3 = 1 (dotted line).
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Figure 5: Profile of the normalized concentrations of the substrate
𝑢, enzyme-substrate complex 𝑣, and product 𝑤 for 𝑘3 = 1, 𝜆 = 0.5,
and 𝜀 = 0.6, 𝛼1 = 0.95, 𝛼2 = 1.0, and 𝛼3 = 0.9 (solid line); 𝛼1 = 𝛼2 =
𝛼3 = 1 (dotted line).
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Figure 6: Profile of the normalized concentrations of the substrate
𝑢, enzyme-substrate complex 𝑣, and product 𝑤 for 𝑘3 = 1, 𝜆 = 0.5,
and 𝜀 = 0.6, 𝛼1 = 0.9, 𝛼2 = 0.85, and 𝛼3 = 0.95 (solid line); 𝛼1 =
𝛼2 = 𝛼3 = 1 (dotted line).

it is clear that the concentrations of the substrate 𝑢, enzyme-
substrate complex 𝑣, and product 𝑤 continuously depend
on the fractional derivatives. For example, the concentration
of substrate 𝑢 decreases gradually from its initial value of
the concentration (𝑢(0) = 1) and converges to zero when
𝛼1 = 𝛼2 = 𝛼3 = 1 and decreases slowly to zero when
𝛼1 = 0.9, 𝛼2 = 0.85, and 𝛼3 = 0.95. However, the
product 𝑤 increases rapidly for the integer-order derivatives
and increases slowly in the case of fractional-order derivatives
as shown in Figures 3–6. The key finding of these graphs is
that the generalized enzyme kinetics model with fractional
derivatives has more degrees of freedom and therefore can be
varied to obtain various responses of the concentrations of
substrate 𝑢, enzyme-substrate complex 𝑣, and product 𝑤.

5. Conclusions

In this paper, the application of MSGDTM was extended to
obtain explicit and numerical solutions of a time-fractional
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enzyme kinetics. The MSGDTM was clearly a very efficient
and powerful technique in finding the solutions of the
proposed equations. The obtained results demonstrate the
reliability of the algorithm and its wider applicability to
fractional nonlinear evolution equations.
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