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Road transportation is a major fuel consumer and greenhouse gas emitter. Recently, the intelligent transportation systems (ITSs)
technologies, which can improve traffic flow and safety, have been developed to reduce the fuel consumption and vehicle emissions.
Emission and fuel consumption estimation models play a key role in the evaluation of ITS technologies. Based on the influence
analysis of driving parameters on vehicle emissions, this paper establishes a set ofmesoscopic vehicle emission and fuel consumption
models using the real-world vehicle operation and emission data. The results demonstrate that these models are more appropriate
to evaluate the environmental effectiveness of ITS strategies with enough estimation accuracy.

1. Introduction

Transportation sector has been facing an increasing environ-
mental pressure due to the rapid motorization in China over
the recent years. Low-carbon transportation solutions such as
substitution of fossil oil by alternative fuels, enhancing vehicle
technology, and developing public transport systems have
been applied widely. An alternative and promising solution
is the implementation of ITS that can smooth the traffic flow
and reduce congestion. In addition to the common effects,
increasing attention has been paid to the indirect effect of
ITS technologies on reducing the fuel consumption and CO

2

emissions. Many researches have demonstrated the environ-
mental improvement of ITS technologies [1, 2] especially
in car navigation systems including Ecodriving [3, 4] and
Ecorouting [5, 6]. Therefore, it is of significance to establish
emission estimation models to evaluate the environmental
effectiveness of ITS strategies with enough estimation accu-
racy.

Vehicle emission estimation models play a critical role
for regional planning and development of emission con-
trol strategies [7]. Three general approaches are usually

considered in modeling vehicle emissions and fuel consump-
tion [8]. Macroscopic models use average aggregate network
parameters to estimate emission inventories for large regional
areas according to the relationships between speed, flow, and
density of a stream. Examples of macroscopic models appli-
cable to vehicles include the U.S. federal’s MOBILE6 [9] and
California’s EMFAC [10]. But these models are not well suited
for evaluating traffic operational improvements that can be
achieved through the ITS strategies [7]. Microscopic mod-
els such as VT-Micro model [11] and CMEM [12] model
estimate instantaneous vehicle emission rates using either
vehicle engine or vehicle speed/acceleration data. However,
it is difficult to obtain substantial amounts of microscopic
parameters for evaluating the environmental effectiveness of
ITS strategies. Most existing road surveillance systems such
as loop, remote traffic microwave sensor (RTMS), and float-
ing car data (FCD) system, can readily acquire average link
travel speed or point speed data. Given that macroscopic
models ignore the transient variation of vehicle emissions
associatedwith different traffic conditions, whilemicroscopic
emission estimation tools need numerous input data, it is
more appropriate to utilize link-based mesoscopic emission
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models for evaluating the environmental impacts of local ITS
strategies.

There are many new approaches including MOVES to
estimating the emissions with an attempt to replace existing
emissionmodels such asMOBILE [13]. MOVES incorporates
the concept of vehicle specific power (VSP) and characterizes
vehicle activities according to VSP and speed. VSP is defined
as the instantaneous power per unit mass of the vehicle,
and many studies have found methods based on VSP more
accurate to estimate vehicle fuel consumption and emissions.
The VSP-based methods were further developed and better
accepted by other researchers in the area of emission and
fuel consumption modeling [14] after its first application
[15]. The ability of VSP-based emission models to reflect
the transient emission rates under different operating modes
as well as the better estimation of vehicle emissions than
speed-based emission models makes it widely utilized. In
order to evaluate the effects of traffic management on fuel
efficiency, Song et al. [16] developed a practical model that
aggregated the normalized fuel rate under different VSP
bins. Wang and colleagues [17] established a model based on
VSP and speed, which provided insight that how different
levels of cruise speed and acceleration affect vehicle fuel
consumption. Furthermore, the accuracy was improved with
prediction errors within 20% for trip emissions and link-
speed-based emission factors through follow-up studies [18].
Scora et al. [19] combined real-time traffic data along with
the comprehensive modal emission models (CMEM and
EPA’s MOVES) to estimate the environmental measures in
real time. The estimation methodology provided far more
dynamic and accurate environmental information compared
to static emission models.

In order to improve both the applicability and accuracy
of the evaluation effect, link-based emission and fuel con-
sumption models are necessary along with consideration of
transient vehicle behavior in these models. Also, mesoscopic
driving parameters collected by probe vehicle systems are
well applied in some ITS strategies such as advanced traffic
monitoring and management systems [20] and navigation
systems [5, 6, 21]. Many existing studies have focused on
vehicle emission estimation and fuel consumption models,
some of which have been applied for evaluation of envi-
ronmental effects [8]. However, the existing evaluation is
generally realized through direct application of regulation
and test procedures for fuel economy of automobiles, and
the indicator is fuel consumed per unit distance such as per
100 km other than realistic operational modes.The input data
of these models are generally average speed of a whole trip or
a period time such as one hour, and the time ranges are too
wide to take full advantage of the probe vehicle technology
or other traffic information systems. Therefore, the primary
objective of this paper is to develop practical emission and
fuel consumption estimation models for evaluation of the
environmental effectiveness of ITS strategies for improving
regional traffic flow.

In Section 1 of the paper, background information on
emissions and fuel consumption modeling for evaluating
environmental effectiveness of ITS strategies is provided,
along with a review of exiting studies on emission and

fuel consumption models. Section 2 outlines the overall
methodology of the research, and the results of emissions
and fuel consumption models are illustrated. These models
for evaluating environmental effectiveness of ITS strategies
(i.e., ecological route navigation) are applied in Section 3.
Conclusions and future work are then provided in Section 4.

2. Model Estimation

Light-duty vehicles and heavy-duty vehicles account formost
of the vehicle fleet in the city. ITS strategies are more widely
applied in these types of vehicles. Therefore, based on the
emission data collected by Portable Emission Measurement
System (PEMS), mesoscopic models for light-duty gasoline
vehicles and heavy-duty diesel vehicles are established in this
paper. In order to evaluate the environmental effectiveness of
ITS strategies that can smooth the regional traffic flow, the
established vehicle emission and fuel consumption models
utilize average link speed as explanatory variables. Also, the
VSP distribution for each travel speed level is considered as
a bridge between the instantaneous driving parameters such
as vehicle speed, acceleration and average link speed, which
guarantees the estimation accuracy and applicability of the
models. The methodology of estimation models is listed in
the following sections.

2.1. Source of Data. We use the data collected by vehicle
with PEMS in Beijing urban areas in this study. The vehicles
were operated on regular routes in the urban area under
different driving conditions (i.e., different road grades and
different traffic status). The driving conditions are different
with speed from 0 to 100 km/h associated with acceleration
ranging from−5m/s2 to 5m/s2, while the correspondingVSP
calculated using second-by-second data is between −30 kw/t
and 25 kw/t.

2.2. Model Methodology. VSP integrates the vehicle speed,
vehicle acceleration, road grade, aerodynamic drag, and
tire rolling resistance, and it is generally defined as the
instantaneous power per unit mass of the vehicle [22]. In this
paper, simplified formulas are used to calculate the values of
VSP for different types of vehicles. The following simplified
function [15] in (1) is used for the VSP calculations of light-
duty gasoline vehicles while heavy-duty diesel vehicle’s VSP
can be calculated using (2) according to the existing research
results [23]:

VSP = 𝑣 × (1.1 × 𝑎 + 0.132) + 0.000302 × 𝑣3, (1)

VSP = 𝑣 × (𝑎 + 0.09199) + 0.000169 × 𝑣3, (2)

where 𝑣 and 𝑎 are the vehicle speed and acceleration in m/s
and m/s2, respectively.

For the characteristics of vehicle emission change greatly
under different travel conditions, VSP is separated as a bin
with an equal interval of 1 kw/t, as described in

∀ : VSP ∈ [𝑛, 𝑛 + 1) , VSP bin = 𝑛, 𝑛 is integer. (3)
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Each VSP bin is associated with average emission rates for
different types of emissions, respectively. The second-by-
second data collected by PEMS is divided into traveling
fragment by different time interval and the optimal time
granularity is discussed in the following section. Each frag-
ment is characterized with its average speed that is as the
basis of division of fragments. After the interval division
of average speed, the VSP-Bin distribution attribute of each
average speed range is calculated. The average emission rate
under each average speed range is estimated as

ER
𝑖
= ∑

𝑗

𝐸𝑅

𝑗
×

𝑡

𝑖,𝑗

𝑇

𝑖

, (4)

where 𝐸𝑅
𝑖
is the average emission rate under average speed

range 𝑖, g/s; 𝑗 is the index of VSP bin; 𝐸𝑅
𝑗
is the emission rate

for VSP bin 𝑗, g/s; 𝑡
𝑖,𝑗
is the time spent in VSP bin 𝑗 on speed

range 𝑖, s; and 𝑇
𝑖
is the total travel time under speed range 𝑖,

s.
The instantaneous fuel consumption is calculated from

emissions of CO
2
, HC, and CO using carbon balancemethod

listed in national standards of China [24]. Vehicle fuel con-
sumption rates for gasoline vehicles and diesel vehicles can
be estimated using (5) and (6), respectively, as follows:

𝐹𝑅

𝑆
= 1.154 × (𝐸𝑅HC ×

12

13

+ 𝐸𝑅CO ×
12

28
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12

44

) ,

(5)

𝐹𝑅

𝐶
= 1.155 × (𝐸𝑅HC ×
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13

+ 𝐸𝑅CO ×
12

28

+ 𝐸𝑅CO
2

×

12

44

) ,

(6)

where𝐹𝑅
𝑆
and𝐹𝑅

𝐶
are the fuel consumption rates of gasoline

vehicles and diesel vehicles, respectively, g/s; 𝐸𝑅HC, 𝐸𝑅CO,
and 𝐸𝑅CO

2

are the HC, CO, and CO
2
emission rates, respec-

tively, g/s.
Then the emission/fuel consumption factor under each

average speed range is estimated as:

𝑉
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(7)

where 𝑇
𝑘
is the vehicle trip time spent in the travel fragment

𝑘 of average speed range 𝑖, s;𝐷
𝑘
is the vehicle trip distance in

travel fragment 𝑘 of average speed range 𝑖, km;𝑉
𝑙
is the vehicle

travel speed for average speed range 𝑖, km/h; 𝐸𝑅
𝑖
(𝐹𝑅

𝑖
) is the

emission (fuel consumption) rate for average speed range 𝑖,
g/s; and 𝐸𝐹

𝑙
(𝐹𝐹

𝑙
) is the emission (fuel consumption) factor

for 𝑉
𝑙
.

Based on the previous research [25] and the relationship
of emission (fuel consumption) factors versus average speed,
(8) is used as the fitted formula between vehicle emission (fuel
consumption) factor s and average speed:

𝐸𝐹 (𝐹𝐹) =

𝑎

𝑣

+ 𝑏 + 𝑐𝑣 + 𝑑𝑣

2
, (8)

where 𝐸𝐹(𝐹𝐹) is the emission (fuel consumption) factor,
g/km; 𝑣 is average speed, km/h; 𝑎, 𝑏, 𝑐, and 𝑑 are coefficients.

2.3. Estimation Results. Figure 1 shows the similar character-
istic of various vehicle emission and fuel consumption rates
for light-duty and heavy-duty as VSP changes and a VSP of
0 kW/t is the inflection point.When the VSP value is positive,
emission and fuel consumption rates indicate a rapid increase
with the increase of VSP. Emission and fuel consumption
rates tend to be very low and almost invariable for negative
VSP.

The emission and fuel consumption rates of two types of
vehicles are illustrated in Figure 2. As illustrated in Figure 2,
the emission and fuel consumption rates typically increase
with the increment of average speed. It should be noted
that there is an apparent increase for emission and fuel
consumption rates during the lower average speed range,
while the rates rise relatively slowly when the speed increase
to a specific value.

The emission and fuel consumption models have been
established based on the proposed approach. As the trav-
eling fragment by different time interval has effects on
the model precision and estimation errors. It is valuable
to explore the least estimation error and discuss the opti-
mal time granularity. Successive 600-secong-long measure-
ment trips for different time granularities were used for
validation. The errors between the modeled and mea-
sured trip emissions and fuel consumption are shown in
Table 1.

Table 1 illustrated that the modeled and measured emis-
sion and fuel consumption rates for light-duty vehicle under
different time granularities are in good agreement, and all
the differences between them are within 10%. Moreover, the
time granularity has a less significant effect on the estimation
errors. The optimal time granularity can be regarded as 60
second.

The vehicle emission and fuel consumption factor curves
and estimation models for both vehicle types are shown
in Figure 3 and Table 2 when the time granularity is 60
second.

Figure 3 illustrates that the changing tendencies for all
vehicle emission curves are consistent with the exiting
research results [11, 26, 27]: vehicle emission factors decrease
as speed increases to a specified value, and then start to
increase.Noteworthy is the fact that the values of the emission
and fuel consumption factors drop dramatically at a lower
average speed. For example, for light-duty vehicle, the value
of CO

2
emission per kilometer declines greatly with the

increase of speed, once the speed reaches to about 65 km/h,
the value of CO

2
emission per kilometer will increase slowly.

The optimal average speed is approximately 65 km/h with the
minimum CO

2
emission rate of 210 g/km.

3. Application

Many ITS strategies have indirect influence on reducing
emissions and fuel consumption through standardizing driv-
ing behavior, smoothing road traffic flow, and improving
commuting efficiency. For example, the technology of traffic
control in merging areas can provide a proper merging speed
and opportunity for vehicles, which leads to improvement of
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Table 1: Comparison of emission and fuel consumption rates from modeled and measured values.

Error (%) for different time granularities
40 s 60 s 80 s 100 s 120 s 300 s

HC 1.99 1.27 2.93 3.42 3.39 3.93
NO
𝑥

3.88 0.70 1.79 9.11 6.18 9.97
CO 4.21 3.22 2.72 3.56 5.28 6.27
CO2 1.33 2.05 2.71 3.04 4.35 5.21
Fuel 1.43 2.08 2.71 3.06 4.37 6.25

Table 2: Vehicle emission and fuel consumption factor models.

Vehicle type Estimation models

Light duty vehicles

𝐸𝐹HC = 1.08 × 10
1
× 𝑉

−1
− 7.11 × 10

−3
+ 3.76 × 10

−4
× 𝑉 + 3.63 × 10

−5
× 𝑉

2
, 𝑅

2
= 0.91

𝐸𝐹NO𝑥 = 2.00 × 𝑉
−1
− 4.49 × 10

−2
− 3.36 × 10

−4
× 𝑉 + 3.49 × 10

−5
× 𝑉

2
, 𝑅

2
= 0.87

𝐸𝐹CO = 8.08 × 10
1
× 𝑉

−1
+ 1.16 + 5.03 × 10

−3
× 𝑉 + 5.35 × 10

−4
× 𝑉

2
, 𝑅

2
= 0.94

𝐸𝐹CO2
= 4.78 × 10

3
× 𝑉

−1
+ 1.11 × 10

2
− 1.24 × 𝑉 + 2.37 × 10

−2
× 𝑉

2
, 𝑅

2
= 0.95

𝐹𝐹 = 1.56 × 10

2
× 𝑉

−1
+ 3.54 − 3.88 × 10

−2
× 𝑉 + 7.76 × 10

−4
× 𝑉

2
, 𝑅

2
= 0.95

Heavy duty vehicles

𝐸𝐹HC = 1.55 × 10
1
× 𝑉

−1
+ 3.92 × 10

−1
− 7.20 × 10

−3
× 𝑉 + 5.31 × 10

−5
× 𝑉

2
, 𝑅

2
= 0.98

𝐸𝐹NO𝑥 = 8.91 × 10
1
× 𝑉

−1
+ 9.35 − 1.36 × 10

−1
× 𝑉 + 8.91 × 10

−4
× 𝑉

2
, 𝑅

2
= 0.98

𝐸𝐹CO = 4.14 × 10
1
× 𝑉

−1
+ 1.99 − 1.10 × 10

−2
× 𝑉 + 2.99 × 10

−5
× 𝑉

2
, 𝑅

2
= 0.99

𝐸𝐹CO2
= 3.67 × 10

3
× 𝑉

−1
+ 5.34 × 10

2
− 7.90 × 𝑉 + 5.43 × 10

−2
× 𝑉

2
, 𝑅

2
= 0.99

𝐹𝐹 = 1.19 × 10

2
× 𝑉

−1
+ 1.69 × 10

1
− 2.50 × 10

−1
× 𝑉 + 1.72 × 10

−3
× 𝑉

2
, 𝑅

2
= 0.99

Note: EF is the emission factor, g/km; FF is the fuel consumption factor, g/km; 𝑉 is average speed, km/h.

travel speed for upstream traffic flow. The proposed vehicle
emission and fuel consumption factor models are described
as functions of average link speed that can be collected by
most existing road traffic information systems such as loop-
coil detectors. Further, the effectiveness of emission and fuel
consumption reduction utilizing the technology of traffic
control can be evaluated through these emission and fuel
consumptionmodels.Moreover, themodels developed in this
study are incorporated into an ecological route navigation
system to further demonstrate their applicability to ITS
strategies.

The studying area is located in central area of Beijing.
Based on the route planning algorithm, the ecological route
navigation system consists of a dynamic traffic information
database, emissions/fuel estimation models and user inter-
faces, which can provide vehicle the least emissions or fuel.
The dynamic traffic information database is collected from
a probe vehicle system, which provides travel time for each
link every five intervals. It means only average travel speed of
each link can be obtained and used for the ecological route
navigation.

Figure 4 illustrates the route navigation results of the
ecological route compared with the time priority route for
the specified OD pair. It is obvious that ecological route is
different from the time priority route. Based on the proposed
emissions and fuel consumption models, the comparison
results between the two routes are summarized in Table 3.
Values in the table are normalized to the time priority route’s

results. The fuel consumption of the ecological route is about
13.5% lower than that of the time priority route, although the
travel time of the ecological route is just about 1.2% longer.
Noteworthy is the fact that the value of the fuel consumption
reduction is extremely similar in the appearance to the CO

2

reduction. This result verifies that estimation models can
be utilized to calculate the emissions and fuel consumption
during the whole trip and evaluate the environmental effect
on emissions and fuel consumption reduction.

4. Conclusions

The paper presents a methodology for establishing meso-
scopic emission and fuel consumption models for assessing
the environmental impacts of ITS strategies. The proposed
models are developed through considering the influence of
the vehicle’s operating mode on vehicle emissions, which
not only guarantees the accuracy of emissions and fuel
consumption models, but also makes it possible to estimate
the emission and fuel consumption based on most current
traffic information systems. With more and more PEMS data
for specific vehicles are obtained in the future, the models for
other types of vehicles can be estimated and the emissions
inventory is expected to be accomplished. Furthermore, it
is verified that these models are well applied to evaluate the
effect of ITS technologies on reducing vehicle emissions and
fuel consumption.
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Table 3: Results of evaluation of ecological route strategy.

Ecological route Time-priority route % Differences
Travel distance (km) 13.3 16.2 −17.9%
Travel time (min) 17.6 17.4 1.2%
CO2 emission (kg) 3.2 3.6 −13.5%
Fuel consumption (kg) 1.0 1.2 −13.5%
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Figure 1: Emission and fuel consumption rates under different VSP-bins (Light- and heavy-duty vehicle).
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Figure 2: Emission and fuel consumption prediction values under different average speed-bins (light- and heavy-duty vehicle).
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Figure 3: Vehicle emission and fuel consumption curves (light- and heavy-duty vehicle).



8 Discrete Dynamics in Nature and Society

Ecological route
Time priority route

Origin

Destination

Figure 4: Time priority route and ecological route.

Acknowledgment

This work is supported by National 973 Program of China
(no. 2012CB725403).

References

[1] eCoMove Consortium, ECoMove—Description of Work, eCo-
Move Consortium, Brussels, Belgium, 2010.

[2] J. D. Vreeswijk, M. K. M. Mahmod, and B. van Arem,
“Energy efficient traffic management and control—the eCo-
Move approach and expected benefits,” in Proceedings of the
13th International IEEE Conference on Intelligent Transportation
Systems (ITSC ’10), pp. 955–961, Madeira, Portugal, September
2010.

[3] M. van der Voort,Design and evaluation of a new fuel-efficiency
support tool [Ph.D. thesis], University of Twente, 2001.

[4] E. Ericsson, H. Larsson, and K. Brundell-Freij, “Optimizing
route choice for lowest fuel consumption—potential effects of
a new driver support tool,” Transportation Research C, vol. 14,
no. 6, pp. 369–383, 2006.

[5] M. Barth, K. Boriboonsomsin, and A. Vu, “Environmentally-
Friendly navigation,” in Proceedings of the 10th International
IEEE Conference on Intelligent Transportation Systems (ITSC
’07), pp. 684–689, Seattle, Wash, USA, October 2007.

[6] K. Boriboonsomsin and M. Barth, “ECO-routing navigation
system based on multi-source historical and real-time traffic
information,” in Proceedings of the IEEE Workshop on Emerge-
ment Cooperative Technologies in Intelligent Transportation Sys-
tems (ICTSC ’10), 2010.

[7] M. Barth, C. Malcolm, T. Younglove, and N. Hill, “Recent
validation efforts for a comprehensive modal emissions model,”
Transportation Research Record, no. 1750, pp. 13–23, 2001.

[8] H. Dia, S. Panwai, N. Boongrapue, T. Ton, and N. Smith, “Com-
parative evaluation of power-based environmental emissions
models,” in Proceedings of the IEEE Intelligent Transportation
Systems Conference (ITSC ’06), pp. 1251–1256, Toronto, Canada,
September 2006.

[9] U.S. Environmental Protection Agency, “User’s guide to
MOBILE6. 1 and MOBILE6. 2: mobile source emission factor
model,” Report No. EPA420-R-03-010, U.S. Environmental
Protection Agency, Ann Arbor, Mich, USA, 2003.

[10] California Air Resources Board, EMFAC, 2007 Version 2.30
User’s Guide: Calculating Emission Inventories for Vehicles in
California, California Air Resources Board, Sacramento, Calif,
USA, 2007.

[11] K. Ahn, A. A. Trani, H. Rakha, andM. van Aerde, “Microscopic
fuel consumption and emission models,” in Proceedings of the
78th Annual Meeting of the Transportation Research Board,
Washington, DC, USA, 1999.

[12] M. Barth, F. An, T. Younglove et al., Comprehensive Modal
Emission Model (CMEM), Version 2.0 User’s Guide, 2000.

[13] J. Koupal, H. Michaels, M. Cumberworth, C. Bailey, and D.
Brzezinski, “EPA’s plan for MOVES: a comprehensive mobile
source emissions model,” USEPA Documentation, 2002.

[14] E. K. Nam and R. Giannelli, “Fuel consumption modeling of
conventional and advanced technology vehicles in the physical
emission rate estimator (PERE),” Draft Report No. EPA420-
P-05-001, U.S. Environmental Protection Agency, Washington,
DC, USA, 2005.
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