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It is well known that the complex step method is a tool that calculates derivatives by imposing a complex step in a strict sense. We
extended the method by employing the fractional calculus differential operator in this paper. The fractional calculus can be taken
in the sense of the Caputo operator, Riemann-Liouville operator, and so forth. Furthermore, we derived several approximations for
computing the fractional order derivatives. Stability of the generalized fractional complex step approximations is demonstrated for
an analytic test function.

1. Introduction

The concept of derivative is one of the most important con-
cepts in science and engineering. It can be described from
two equally valid points of view: the geometrical point of
view and the physical one. From the geometrical point of
view, the derivative can be seen as the tangent line to a func-
tion in a certain evaluation point. From the physical point of
view, the derivative can be seen as a measure of the rate of
change of the function in this point. Further method of com-
puting the derivative of a function comes from its expansion
in a Taylor series. Most naturally, derivatives of real functions
are evaluated using real numbers, but the less intuitive idea
of using an imaginary number in real functions differentia-
tion has been shown capable of overcoming the term cancel-
lation inherent to the ordinary FD method, as well as reduc-
ing the associated approximation error. The utilize of com-
plex variables in numerical differentiation was imposed by
Lyness andMoler [1], describing a method for calculating the
derivatives of any analytic function. Lai andCrassidis [2] used
the complex representation of the Taylor series to avoid using
the real part for computing the second derivative. Cerviño
and Bewley [3] extended the method with an application to
pseudospectral simulation codes. Kim et al. [4, 5] employed
the complex step perturbation in nonlinear robust perfor-
mance analysis. Recently, the complex set method has been
applied by many authors [6–10].

Fractional calculus (real and complex) is a rapidly grow-
ing subject of interest for physicists and mathematicians.The
reason for this is that problems may be discussed in a much
more stringent and elegant way than using traditional meth-
ods. Fractional differential equations have emerged as a new
branch of appliedmathematics which has been used formany
mathematical models in science and engineering. In fact,
fractional differential equations are considered as an alter-
native model to nonlinear differential equations. Varieties of
them play important roles and tools not only in mathematics
but also in physics, dynamical systems, control systems, and
engineering to create the mathematical modeling of many
physical phenomena. Furthermore, they are employed in
social science such as food supplement, climate, and econo-
mics. Several different derivatives were introduced: Riemann
Liouville, Hadamard, Grunwald Letnikov, Riesz, and Erdelyi-
Kober operators and Caputo [11–17]. It is well known that the
physical interpretation of the fractional derivative is an open
problem today.There is no formal interpretation of the phys-
ical meaning of the fractional derivative. Since the appear-
ance of the idea of differentiation and integration of arbitrary
order, there was not any acceptable geometric and physical
interpretation of these operations for more than 300 year.
Recently, the physical interpretation is an open problem. In
[18], it is shown that geometric interpretation of fractional
integration is “Shadows on the walls” and its Physical inter-
pretation is “Shadows of the past.”
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Figure 1: MSE of (7) at 𝑥 = 0.5, 𝑥 = 1, and 𝑥 = 1.5.

In this work, we extended the complex step method by
employing the fractional calculus differential operator. Fur-
thermore, we derived several approximations for computing
the fractional order derivatives. Stability of the generalized
fractional complex step approximations is demonstrated for
an analytic test function. Moreover, examples are illustrated.

2. Fractional Calculus

The concept of the fractional calculus (i.e., calculus of integ-
rals and derivatives of any arbitrary real or complex order)
was performed over 300 years ago. Abel in 1823 studied
the generalized tautochrone problem and for the first time
applied fractional calculus techniques in a physical problem.
Later Liouville considered fractional calculus to problems in
potential theory. Since that time, the fractional calculus has
haggard the attention of many researchers in all areas of sci-
ences.

This section concerns some basic preliminaries and nota-
tions regarding the fractional calculus.

Definition 1. The fractional (arbitrary) order integral of the
function 𝑓 of order 𝛼 > 0 is defined by

𝐼
𝛼

𝑎
𝑓 (𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)

𝑓 (𝜏) 𝑑𝜏. (1)

When 𝑎 = 0, we write 𝐼
𝛼

𝑎
𝑓(𝑡) = 𝑓(𝑡) ∗ 𝜙

𝛼
(𝑡), where (∗)

denoted the convolution product (see [12]), 𝜙
𝛼

(𝑡) = 𝑡
𝛼−1

/

(Γ(𝛼)), 𝑡 > 0 and 𝜙
𝛼

(𝑡) = 0, 𝑡 ≤ 0 and 𝜙
𝛼

→ 𝛿(𝑡) as 𝛼 → 0

where 𝛿(𝑡) is the delta function.

Definition 2. The fractional (arbitrary) order derivative of the
function 𝑓 of order 0 ≤ 𝛼 < 1 is defined by

𝐷
𝛼

𝑎
𝑓 (𝑡) =

𝑑

𝑑𝑡

∫

𝑡

𝑎

(𝑡 − 𝜏)
−𝛼

Γ (1 − 𝛼)

𝑓 (𝜏) 𝑑𝜏 =

𝑑

𝑑𝑡

𝐼
1−𝛼

𝑎
𝑓 (𝑡) . (2)
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Figure 2: MSE of (10) at 𝑥 = 0.5, 𝑥 = 1, and 𝑥 = 1.5.

Remark 3 (see [12]). Consider the function𝑓(𝑡) = 𝑡
𝜇, we have

𝐷
𝛼

𝑡
𝜇

=

Γ (𝜇 + 1)

Γ (𝜇 − 𝛼 + 1)

𝑡
𝜇−𝛼

, 𝜇 > −1; 0 < 𝛼 < 1,

𝐼
𝛼

𝑡
𝜇

=

Γ (𝜇 + 1)

Γ (𝜇 + 𝛼 + 1)

𝑡
𝜇+𝛼

, 𝜇 > −1; 𝛼 > 0.

(3)

The Leibniz rule is

𝐷
𝛼

𝑎
[𝑓 (𝑡) 𝑔 (𝑡)] =

∞

∑

𝑘=0

(

𝛼

𝑘
) 𝐷
𝛼−𝑘

𝑎
𝑓 (𝑡) 𝐷

𝑘

𝑎
𝑔 (𝑡)

=

∞

∑

𝑘=0

(

𝛼

𝑘
) 𝐷
𝛼−𝑘

𝑎
𝑔 (𝑡) 𝐷

𝑘

𝑎
𝑓 (𝑡) .

(4)

3. The Fractional Complex Step Method

The local fractional Taylor formula has been generalized by
many authors [19–22]. This expansion takes the following
formula:

𝑓 (𝑥 + Δ𝑥)

= 𝑓 (𝑥) + 𝐷
𝛼

𝑥
𝑓 (𝑥)

(Δ𝑥)
𝛼

Γ (𝛼 + 1)

+ 𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝑓 (𝑥)

(Δ𝑥)
2𝛼

Γ (2𝛼 + 1)

+ ⋅ ⋅ ⋅ + 𝐷
𝑛𝛼

𝑥
𝑓 (𝑥)

(Δ𝑥)
𝑛𝛼

Γ (𝑛𝛼 + 1)

,

(5)

where 𝐷
𝛼

𝑥
is the Riemann-Liouville differential operator and

𝐷
𝑛𝛼

𝑥
:= 𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
⋅ ⋅ ⋅ 𝐷
𝛼

𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛-times

.
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Table 1: Equation (7): 𝐷
1/5

𝑥
2

= 1.8 ∗ 𝑥 ∗ (Δ𝑥)
4/5.

Δ𝑥 Equation (7), 𝑥 = 0.5 MES (𝑥 = 0.5) Equation (7), 𝑥 = 1 MES (𝑥 = 1) Equation (7), 𝑥 = 1.5 MES (𝑥 = 1.5)
0.01 0.350714 0.123 1.021427 1.043313 2.282141 5.208166
0.04 0.289158 0.103306 0.898315 0.925142 2.097473 4.803779
0.07 0.24246 0.088466 0.80492 0.832727 1.957381 4.479632
0.1 0.201963 0.076547 0.723927 0.755563 1.83589 4.202347
0.13 0.165237 0.066698 0.650475 0.689074 1.725712 3.957494
0.16 0.131152 0.058449 0.582305 0.630741 1.623457 3.737181
0.19 0.099066 0.051501 0.518131 0.578987 1.527197 3.536488
0.22 0.068567 0.045651 0.457135 0.532735 1.435702 3.352082
0.25 0.039376 0.040751 0.398752 0.491209 1.348128 3.181567
0.28 0.011287 0.036689 0.342574 0.453824 1.263862 3.023145
0.31 −0.01585 0.033376 0.288295 0.420123 1.182442 2.87542
0.34 −0.04216 0.030743 0.235673 0.389741 1.103509 2.737279
0.37 −0.06774 0.028731 0.184518 0.36238 1.026777 2.607817
0.4 −0.09266 0.027292 0.134676 0.337791 0.952013 2.486282
0.43 −0.11699 0.026385 0.086016 0.315765 0.879024 2.372043
0.46 −0.14078 0.025975 0.038432 0.296122 0.807648 2.264558
0.49 −0.16408 0.026031 −0.00817 0.278707 0.737747 2.163365

Table 2: Equation (10): 𝐷
1/5

𝑥
2

= 1.8 ∗ 𝑢
4/5

∗ (𝑥 + 𝑢).

𝑢 Equation (10), 𝑥 = 0.5 MES (𝑥 = 0.5) Equation (10), 𝑥 = 1 MES (𝑥 = 1) Equation (10), 𝑥 = 1.5 MES (𝑥 = 1.5)
0.01 0.366941 0.134646 1.254334 1.573354 2.531727 6.409641
0.04 0.315986 0.117246 1.157454 1.339701 2.388923 6.058297
0.07 0.267756 0.102062 1.070525 1.146025 2.263294 5.746365
0.1 0.218832 0.088518 0.986191 0.972573 2.143551 5.458476
0.13 0.168299 0.07648 0.902346 0.814228 2.026393 5.188034
0.16 0.115772 0.065967 0.818023 0.669161 1.910274 4.931553
0.19 0.061054 0.057076 0.732688 0.536831 1.794321 4.686986
0.22 0.004039 0.049943 0.646011 0.41733 1.677983 4.453066
0.25 −0.05533 0.044734 0.557777 0.311115 1.560888 4.228989
0.28 −0.1171 0.041632 0.467836 0.218871 1.442772 4.014249
0.31 −0.18128 0.040835 0.376083 0.141438 1.323442 3.808545
0.34 −0.24787 0.042552 0.282439 0.079772 1.202752 3.611717
0.37 −0.31689 0.047003 0.186848 0.034912 1.080588 3.423713
0.4 −0.38833 0.054417 0.089267 0.007969 0.956862 3.244561
0.43 −0.46218 0.06503 −0.01034 0.000107 0.831502 3.07435
0.46 −0.53843 0.079085 −0.11199 0.012542 0.704452 2.913219
0.49 −0.61708 0.096832 −0.21571 0.04653 0.575665 2.761347

The fractional complex step method (FCSM) can be
expressed from the Taylor series expansion of 𝑓(𝑥 +

𝛼

√𝑖Δ𝑥),
𝛼 ∈ (0, 1) as follows:

𝑓 (𝑥 +
𝛼

√𝑖Δ𝑥) = 𝑓 (𝑥) + 𝐷
𝛼

𝑥
𝑓 (𝑥)

𝑖(Δ𝑥)
𝛼

Γ (𝛼 + 1)

+ 𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝑓 (𝑥)

𝑖
2

(Δ𝑥)
2𝛼

Γ (2𝛼 + 1)

+ ⋅ ⋅ ⋅ .

(6)

Taking the imaginary part on both sides and reordering
(6), we obtain the FCSM expression for the fractional deriva-
tive

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

Γ (𝛼 + 1)I [𝑓 (𝑥 +
𝛼

√𝑖Δ𝑥)]

(Δ𝑥)
𝛼

+ Θ (Δ𝑥
2𝛼

) ,

(7)
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Table 3: Equations (13) and (16): 𝐷
1/5

𝑥
2

= 1.8 ∗ 𝑢
4/5

∗ (𝑥 − 𝑢).

𝑢 Equation (13), 𝑥 = 0.5 MES (𝑥 = 0.5) Equation (13), 𝑥 = 1 MES (𝑥 = 1) Equation (13), 𝑥 = 1.5 MES (𝑥 = 1.5)
0.01 0.367845 0.13531 1.255238 1.575623 2.532631 6.414221
0.04 0.326951 0.121104 1.168419 1.470413 2.399888 6.086841
0.07 0.297781 0.110294 1.10055 1.384012 2.293319 5.810998
0.1 0.275888 0.101749 1.043247 1.310101 2.200607 5.568916
0.13 0.259795 0.094898 0.993841 1.245625 2.117888 5.352223
0.16 0.248731 0.089392 0.950982 1.188748 2.043233 5.155986
0.19 0.242213 0.085003 0.913846 1.138229 1.97548 4.97692
0.22 0.239904 0.081572 0.881876 1.093164 1.913848 4.812656
0.25 0.241555 0.078992 0.854666 1.052863 1.857777 4.661398
0.28 0.246972 0.077192 0.831908 1.016783 1.806844 4.521727
0.31 0.255997 0.076132 0.813356 0.984489 1.760716 4.39249
0.34 0.2685 0.075796 0.798813 0.955624 1.719126 4.272732
0.37 0.284372 0.076186 0.788113 0.929893 1.681853 4.161647
0.4 0.303519 0.077324 0.781114 0.907053 1.648709 4.058547
0.43 0.325858 0.079248 0.777697 0.886904 1.619537 3.962837
0.46 0.351315 0.082009 0.777757 0.869279 1.594199 3.874002
0.49 0.379827 0.085671 0.781201 0.854044 1.572574 3.791589

Table 4: Equation (14): 𝐷
1/5

𝑥
2

= 3.6 ∗ 𝑢
4/5

∗ (𝑥 − 𝑢).

𝑢 Equation (14), 𝑥 = 0.5 MES (𝑥 = 0.5) Equation (14), 𝑥 = 1 MES (𝑥 = 1) Equation (14), 𝑥 = 1.5 MES (𝑥 = 1.5)
0.01 0.34569 0.119502 1.210476 1.465253 2.465262 6.077519
0.04 0.263902 0.094573 1.036839 1.270144 2.199776 5.458266
0.07 0.205562 0.077134 0.9011 1.117423 1.986638 4.954421
0.1 0.161775 0.064393 0.786495 0.992711 1.801214 4.526908
0.13 0.129589 0.054873 0.687683 0.88875 1.635776 4.15668
0.16 0.107462 0.047652 0.601964 0.801019 1.486467 3.832163
0.19 0.094425 0.042119 0.527692 0.726367 1.350959 3.545439
0.22 0.089808 0.037862 0.463752 0.662455 1.227695 3.290663
0.25 0.093111 0.034618 0.409332 0.607465 1.115554 3.063307
0.28 0.103944 0.032237 0.363816 0.559955 1.013687 2.859733
0.31 0.121993 0.030659 0.326713 0.518754 0.921432 2.676942
0.34 0.147 0.029905 0.297627 0.482906 0.838253 2.512419
0.37 0.178745 0.030062 0.276225 0.451629 0.763706 2.364022
0.4 0.217038 0.03128 0.262228 0.424281 0.697419 2.229905
0.43 0.261715 0.033761 0.255395 0.400344 0.639075 2.108473
0.46 0.312631 0.037759 0.255514 0.379403 0.588398 1.998331
0.49 0.369655 0.043576 0.262401 0.361136 0.545147 1.898264

where Θ(Δ𝑥
2𝛼

) is the error. In the same way, we can consider
the second fractional derivative 𝐷

2𝛼 using the real term of (6)
as follows:

𝐷
2𝛼

𝑥
𝑓 (𝑥) = −

Γ (2𝛼 + 1)R [𝑓 (𝑥 +
𝛼

√𝑖Δ𝑥) − 𝑓 (𝑥)]

(Δ𝑥)
2𝛼

+ Θ (Δ𝑥
2𝛼

) .

(8)

When 𝛼 → 1, (7) and (8) reduce to the results obtained
by Squire and Trapp [23].

As a generalization of the above approximate method, we
let 𝑓(𝑥 + 𝑢 +

𝛼

√𝑖V), the corresponding fractional Taylor series
expansion, become

𝑓 (𝑥 + 𝑢 +
𝛼

√𝑖V) = 𝑓 (𝑥) + 𝐷
𝛼

𝑥
𝑓 (𝑥)

(𝑢 +
𝛼

√𝑖V)

𝛼

Γ (𝛼 + 1)

+ 𝐷
𝛼

𝑥
𝐷
𝛼

𝑥
𝑓 (𝑥)

(𝑢 +
𝛼

√𝑖V)

2𝛼

Γ (2𝛼 + 1)

+ ⋅ ⋅ ⋅ ,

(9)

where 𝑢 and V are real numbers related to the real and
imaginary differential steps. It is clear that when 𝑢 = 0, (9)
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Table 5: Equation (15): 𝐷
1/5

𝑥
2

= 3.6 ∗ 𝑢
4/5

∗ (𝑥 + 𝑢).

𝑢 Equation (15), 𝑥 = 0.5 MES (𝑥 = 0.5) Equation (15), 𝑥 = 1 MES (𝑥 = 1) Equation (15), 𝑥 = 1.5 MES (𝑥 = 1.5)
0.01 0.343882 0.118255 1.208668 1.460878 2.463454 6.068605
0.04 0.241972 0.088403 1.014909 1.245459 2.177846 5.405808
0.07 0.145513 0.065993 0.841051 1.066095 1.926588 4.84112
0.1 0.047663 0.050063 0.672382 0.912595 1.687102 4.342418
0.13 −0.0534 0.040621 0.504691 0.781019 1.452785 3.896051
0.16 −0.15846 0.038035 0.336046 0.66967 1.220548 3.494999
0.19 −0.26789 0.042854 0.165375 0.57791 0.988642 3.135344
0.22 −0.38192 0.05573 −0.00798 0.505679 0.755965 2.814861
0.25 −0.50067 0.07739 −0.18445 0.453273 0.521775 2.532349
0.28 −0.6242 0.108613 −0.36433 0.421219 0.285544 2.287267
0.31 −0.75255 0.150225 −0.54783 0.41021 0.046885 2.079534
0.34 −0.88575 0.203085 −0.73512 0.42106 −0.1945 1.909392
0.37 −1.02378 0.268089 −0.9263 0.454674 −0.43882 1.777328
0.4 −1.16666 0.34616 −1.12147 0.512032 −0.68628 1.684017
0.43 −1.31436 0.438252 −1.32068 0.594175 −0.937 1.63028
0.46 −1.46686 0.545342 −1.52398 0.702196 −1.1911 1.617057
0.49 −1.62416 0.668434 −1.73142 0.837232 −1.44867 1.645386

Table 6: Equations (17)–(20): 𝐷
1/5

𝑥
2

= 1.8 ∗ 𝑢
4/5

∗ 𝑥.

𝑢 Equations (17)–(20), 𝑥 = 0.5 MES (𝑥 = 0.5) Equations (17)–(20), 𝑥 = 1 MES (𝑥 = 1) Equations (17)–(20), 𝑥 = 1.5 MES (𝑥 = 1.5)
0.01 0.367393 0.134978 1.254786 1.574488 2.532179 6.411931
0.04 0.321468 0.11916 1.162937 1.463455 2.394405 6.072554
0.07 0.282769 0.106093 1.085538 1.368434 2.278307 5.778596
0.1 0.24736 0.094866 1.014719 1.283739 2.172079 5.513429
0.13 0.214047 0.085056 0.948094 1.206768 2.07214 5.269496
0.16 0.182251 0.076416 0.884502 1.136031 1.976754 5.042506
0.19 0.151633 0.068784 0.823267 1.070565 1.8849 4.829698
0.22 0.121972 0.062046 0.763943 1.009695 1.795915 4.629149
0.25 0.093111 0.056115 0.706221 0.952923 1.709332 4.439446
0.28 0.064936 0.050925 0.649872 0.899864 1.624808 4.259501
0.31 0.03736 0.046423 0.59472 0.850212 1.542079 4.088456
0.34 0.010313 0.042563 0.540626 0.803718 1.460939 3.925614
0.37 −0.01626 0.039309 0.48748 0.760173 1.38122 3.770395
0.4 −0.0424 0.03663 0.43519 0.719403 1.302786 3.622313
0.43 −0.06816 0.034498 0.38368 0.681257 1.22552 3.480952
0.46 −0.09356 0.032888 0.332884 0.645604 1.149325 3.345952
0.49 −0.11863 0.031782 0.282746 0.61233 1.074119 3.216998

reduses to (7). The first approximation that can be found by
using (9) is

𝐷
𝛼

𝑥
𝑓 (𝑥) =

Γ (𝛼 + 1)I [𝑓 (𝑥 + 𝑢 +
𝛼

√𝑖V)]

V𝛼
+ Θ (𝑢

𝛼

, V) ,
(10)

𝐷
2𝛼

𝑥
𝑓 (𝑥) =

Γ (2𝛼 + 1)I [𝑓 (𝑥 + 𝑢 +
𝛼

√𝑖V)]

V2𝛼
+ Θ (𝑢

2𝛼

, V) .

(11)

When 𝛼 → 1, (10) reduces to the results obtained by Abreu
et al. [10]. Moreover, we have the following approximate frac-
tional derivatives, which can be considered as applications of
the work in [10]:

𝐷
𝛼

𝑥
𝑓 (𝑥)

= −

Γ (𝛼 + 1)I [𝑓 (𝑥 + 𝑢 −
𝛼

√𝑖V)]

V𝛼
+ Θ (𝑢

𝛼

, V) ,

(12)
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𝐷
𝛼

𝑥
𝑓 (𝑥)

=

Γ (𝛼 + 1)I [𝑓 (𝑥 − (𝑢 +
𝛼

√𝑖V))]

(−1)
𝛼V𝛼

+ Θ ((−1)
2𝛼

𝑢
𝛼

, V) ,

(13)

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

Γ (𝛼 + 1)I [𝑓 (𝑥 − (𝑢 −
𝛼

√𝑖V))]

(−1)
𝛼+1V𝛼

+ Θ ((−1)
2𝛼+1

𝑢
𝛼

, V) ,

(14)

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

Γ (𝛼 + 1)I [𝑓 (𝑥 + 𝑢 +
𝛼

√𝑖V) − 𝑓 (𝑥 + 𝑢 −
𝛼

√𝑖V)]

V𝛼

+ Θ (𝑢
𝛼

, V) ,

(15)

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

Γ (𝛼 + 1)I [𝑓 (𝑥 − (𝑢 +
𝛼

√𝑖V)) − 𝑓 (𝑥 − (𝑢 −
𝛼

√𝑖V))]

2(−1)
𝛼V𝛼

+ Θ ((−1)
2𝛼

𝑢
𝛼

, V) ,

(16)

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

Γ (𝛼 + 1)I [(−1)
𝛼

𝑓 (𝑥 + 𝑢 +
𝛼

√𝑖V)+𝑓 (𝑥 − (𝑢 +
𝛼

√𝑖V))]

2(−1)
𝛼V𝛼

+ Θ (((−1)
2𝛼

+ 1) 𝑢
𝛼

, V) ,

(17)

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

Γ (𝛼 + 1)I [(−1)
𝛼

𝑓 (𝑥 + 𝑢 +
𝛼

√𝑖V)−𝑓 (𝑥 − (𝑢 −
𝛼

√𝑖V))]

2(−1)
𝛼V𝛼

+ Θ (((−1)
2𝛼

+ 1) 𝑢
𝛼

, V) ,

(18)

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

Γ (𝛼 + 1)I [𝑓 (𝑥 − (𝑢 +
𝛼

√𝑖V))−(−1)
𝛼

𝑓 (𝑥 + 𝑢 −
𝛼

√𝑖V)]

2(−1)
𝛼V𝛼

+ Θ (((−1)
2𝛼

+ 1) 𝑢
𝛼

, V) ,

(19)

𝐷
𝛼

𝑥
𝑓 (𝑥)

= −

Γ (𝛼 + 1)I [𝑓 (𝑥 − (𝑢 −
𝛼

√𝑖V))+(−1)
𝛼

𝑓 (𝑥 + 𝑢 −
𝛼

√𝑖V)]

2(−1)
𝛼V𝛼

+ Θ (((−1)
2𝛼

+ 1) 𝑢
𝛼

, V) .

(20)
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Figure 3: MSE of (13) at 𝑥 = 0.5, 𝑥 = 1, and 𝑥 = 1.5.
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Figure 4: MSE of (14) at 𝑥 = 0.5, 𝑥 = 1, and 𝑥 = 1.5.

4. Numerical Tests

In this section, we illustrate examples to examine our abstract
results. We compute the fractional derivative of the function
𝑓(𝑥) = 𝑥

2 for 𝛼 = 1/5, by applying (7) and (10)–(20). More-
over, the mean square error (MSE) is determined for 𝑥 = 0.5,
𝑥 = 1, and 𝑥 = 1.5.

5. Discussion

Numerical approximations for the fractional derivative, of
order 1/5, based on the imaginary part of the function𝑓(𝑥) =

𝑥
2 are computed and compared with the exact value. Table 1
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Figure 5: MSE of (15) at 𝑥 = 0.5, 𝑥 = 1, and 𝑥 = 1.5.
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Figure 6: MSE of (17) at 𝑥 = 0.5, 𝑥 = 1, and 𝑥 = 1.5.

shows the approximate method of the fractional derivative
𝐷
1/5

𝑥
2 using (7).Themean square error is determined for the

cases 𝑥 = 0.5, 1, and 1.5, where the exact values are 0.39, 1.3,
and 2.6, respectively, for 𝐷

1/5

𝑥
2. Figure 1 shows the decreas-

ing of this error with respect to Δ(𝑥). Tables 2, 3, 4, 5, and
6 indicate the fractional derivative 𝐷

1/5

𝑥
2, using (10)–(20),

where 𝑢 = V. In addition, Figures 2, 3, 4, 5, and 6 view the
decreasing of MSE with respect to 𝑢 ∈ (0, 0.5) for (10), (13),
and (17)–(20), while 𝑢 ∈ (0, 0.3) for (15). Note that (17)–(20)
are equivalence. The results are computed with the help of
MATLAB 2010 [24].

6. Conclusion

Weextended the complex stepmethod by employing the frac-
tional calculus differential operator (the fractional complex
step).The approximation is provided for 𝛼 ∈ (0, 1), and in the
same manner, we can consider the approximation for all 𝛼 ∈

(𝑛 − 1, 𝑛). This derivative concept imposes improving many
different approximations for the fractional derivatives of any
complex valued analytic function utilizing its real and imag-
inary parts. We provided different approximations for the
operator𝐷

𝛼.Moreover,𝐷
2𝛼 is approximated in (8).Thiswork

can be applied in physics and computer sciences such as
image processing and signal processing.
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