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This paper is devoted to investigating sliding mode control (SMC) for Markovian switching singular systems with time-varying
delays and nonlinear perturbations. The sliding mode controller is designed to guarantee that the nonlinear singular system is
stochastically admissible and its trajectory can reach the sliding surface in finite time. By using Lyapunov functional method,
some criteria on stochastically admissible are established in the form of linear matrix inequalities (LMIs). A numerical example is
presented to illustrate the effectiveness and efficiency of the obtained results.

1. Introduction

The sliding mode control (SMC) theory has made rapid
progress since it was proposed by Utkin [1]. As an effective
robust control strategy, SMC has been successfully applied
to a wide variety of practical engineering systems such as
robot manipulators, aircrafts, underwater vehicles, space-
crafts, flexible space structures, electrical motors, power
systems, and automotive engines [2]. The SMC system has
various attractive features such as fast response, good tran-
sient performance, and insensitiveness to the uncertainties
on the sliding surface [2]. These advantages provide more
freedom in designing the controllers for the system models
which can be easily modified by introducing virtual distur-
bances to satisfy some requirements. The SMC strategy has
been successfully applied to many kinds of systems, such as
uncertain time-delay systems and Markovian jump system
[3–14].

Singular systems, also referred to as descriptor systems,
generalized state-space systems, differential-algebraic sys-
tems, or semistate systems, are more appropriate to describe
the behavior of some practical systems, such as economic
systems, power systems, and circuits systems, because singu-
lar systems mix up dynamic equations and static equations.
Basic control theory for singular systems has been widely

studied, such as stability and stabilization [14–18],𝐻
∞
control

problem [19–22], and optimal control [23] and filtering
problem [24–26]. Xu et al. have designed an integral sliding
mode controller for singular stochastic hybrid systems [27].
They put up with new sufficient conditions in terms of strict
LMIs, which guarantees stochastic stability of the sliding
mode dynamics.

In practice, many physical systems may happen to have
abrupt variations in their structure, due to random failures or
repair of components, sudden environmental disturbances,
changing subsystem interconnections, and abrupt variations
in the operating points of a nonlinear plant. Therefore,
Markovian jump systems have received increasing atten-
tion, see [28–33] and the references therein. Wu et al.
[28] have probed sliding mode control with bounded 𝐻

2

gain performance of Markovian jump singular time-delay
systems. Kao et al. [29] have investigated delay-dependent
robust exponential stability of Markovian jumping reaction-
diffusion Cohen-Grossberg neural networks with mixed
delays. Zhang and Boukas have discussed mode-dependent
𝐻
∞
filtering for discrete-timeMarkovian jump linear systems

with partly unknown transition probability. To the authors’
best knowledge, slidingmode control for a class ofMarkovian
switching singular systems with time-varying delays and
nonlinear perturbations has not been properly investigated.
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Especially few consider exponential stabilization for this kind
of nonlinear singular systems by sliding mode control.

Motivated by the above discussion, we consider exponen-
tial stabilization for Markovian switching nonlinear singular
systems via sliding mode control. First, we develop two
lemmas. Based on these lemmas, delay-dependent sufficient
condition on exponential stabilization for singular time-
varying delay systems is given in terms of nonstrict LMIs.
Some specified matrices are introduced and the non-strict
LMIs are translated into strict LMIs which are easy to
check by MATLAB LMI toolbox. Second, a sliding surface
is derived using an equivalent control approach. A sliding
mode controller is developed to drive the systems to the
sliding surface in finite time and maintain a sliding motion
thereafter. Finally, a numerical example is provided to show
the effectiveness of the proposed result.

Notations. (Ξ,F, {F
𝑡
}
𝑡≥0
,P) is a complete probability space

with a filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions. 𝐿𝑃F0
is the family of all F

0
-measurable 𝐶([−𝜏, 0]; 𝑅

𝑛

) valued
random variables 𝜉 = 𝜉(𝜃) : −𝜏 ≤ 𝜃 ≤ 0 such
that sup

−𝜏≤𝜃≤0
E‖𝜉(𝜃)‖2

2
< ∞, where E{⋅} stands for the

mathematical expectation operator with respect to the given
probability measure P. 𝑅𝑛 and 𝑅

𝑛×𝑚 denote, respectively,
the 𝑛-dimensional Euclidean space and the set of 𝑛 × 𝑚 real
matrices. The superscript 𝑇 denotes the transpose, and the
notation 𝑋,𝑌 (resp., 𝑋 > 𝑌) where 𝑋 and 𝑌 are symmetric
matrices means that 𝑋 − 𝑌 is positive semi-definite (resp.,
positive definite). 𝐿2 stands for the space of square integral
vector functions. ‖ ⋅ ‖ will refer to the Euclidean vector norm,
and ∗ represents the symmetric form of matrix.

2. System Description and Definitions

Consider the following singular system with time-varying
delays, nonlinear perturbations, and Markovian switching:

𝐸 (𝑟 (𝑡)) �̇� (𝑡) = 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐴
𝑑
(𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐵 (𝑟 (𝑡)) 𝑢 (𝑡) + 𝑓 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector; 𝑢(𝑡) ∈ 𝑅

𝑚 is the control
input; 𝑓(𝑥(𝑡), 𝑡, 𝑟(𝑡)) ∈ 𝑅

𝑛 represents the system nonlin-
earity and any model uncertainties in the systems including
external disturbances with Markovian switching; 𝜙(𝑡) ∈

𝐿
𝑃

F0
([−𝜏, 0]; 𝑅

𝑛

) is a compatible vector valued continuous
function. 𝐴(𝑟(𝑡)), 𝐴

𝑑
(𝑟(𝑡)), and 𝐵(𝑟(𝑡)) are real constant

matrices with appropriate dimensions. The matrix 𝐸(𝑟(𝑡)) ∈
𝑅
𝑛×𝑛may be singular, andwe assume that 0 < rank(𝐸(𝑟(𝑡))) =

𝑟 ≤ 𝑛. 𝜏(𝑡) denotes the time-varying delay and satisfies

0 ≤ 𝜏 (𝑡) ≤ 𝜏, ̇𝜏 (𝑡) ≤ 𝑑 < 1. (2)

Let {𝑟(𝑡), 𝑡 ≥ 0} be a continuous-time discrete-state
Markovian process with right continuous trajectories taking

value in a finite set S = {1, 2, . . . , 𝑁} with transition
probability matrix∏ = (𝑟

𝑖𝑗
), (𝑖, 𝑗 ∈ S),

𝑃 {𝑟 (𝑡 + Δ) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝑟
𝑖𝑗
× Δ + 𝑜 (Δ) , 𝑖 ̸= 𝑗

1 + 𝑟
𝑖𝑖
× Δ + 𝑜 (Δ) , 𝑖 = 𝑗,

(3)

whereΔ > 0 and lim
Δ→0

(𝑜(Δ))/Δ = 0, 𝑟
𝑖𝑗
> 0 is the transition

rate from 𝑖 to 𝑗 if 𝑖 ̸= 𝑗 and 𝑟
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑖 ̸= 𝑗
𝑟
𝑖𝑗
.

The nominal Markovian jump singular and time-delay
system of system (1) are as follows:

𝐸 (𝑟 (𝑡)) �̇� (𝑡) = 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) , (4)

𝐸 (𝑟 (𝑡)) �̇� (𝑡) = 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐴
𝑑
(𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡)) . (5)

The initial Markovian jump singular system in (1) is
assumed to be

𝑥 (0, 𝛾
0
) = 𝜙 (0) . (6)

Recall that theMarkovian process {𝑟(𝑡), 𝑡 ≥ 0} takes value
in a finite set S = {1, 2, . . . , 𝑁}. For simplicity, we write
𝑟(𝑡) = 𝑖 ∈ S, 𝐸(𝑖) = 𝐸

𝑖
, 𝐴(𝑖) = 𝐴

𝑖
, 𝐴
𝑑
(𝑖) = 𝐴

𝑑𝑖
𝐵(𝑟(𝑡)) = 𝐵

𝑖
,

𝑓(𝑥(𝑡), 𝑡, 𝑟(𝑡)) = 𝑓
𝑖
(𝑥(𝑡), 𝑡).

Definition 1. (i)The system (4) is said to be regular if det(𝑠𝐸
𝑖
−

𝐴
𝑖
) ̸= 0 for every 𝑖 ∈ S.
(ii) The system (4) is said to impulse free if deg(det(𝑠𝐸

𝑖
−

𝐴
𝑖
)) = rank(𝐸

𝑖
) for every 𝑖 ∈ S.

Definition 2. For a given scalar 𝜏 > 0, the Markovian jump
singular delay system (5) is said to be regular and impulse free
for any time delay 𝜏(𝑡) satisfying 0 ≤ 𝜏(𝑡) ≤ 𝜏, if the system
(4) and the system 𝐸(𝑟(𝑡))�̇�(𝑡) = (𝐴(𝑟(𝑡))+𝐴

𝑑
(𝑟(𝑡)))𝑋(𝑡) are

all regular and impulse free.
The system (5) is said to be stochastically stable if for any

𝑥
0
∈ 𝑅
𝑛 and 𝑟

0
∈ S there exists a scalar �̃�(𝑥

0
, 𝑟
0
) > 0

such that lim
𝑡→∞

E(∫
𝑡

0

𝑥
𝑇

(𝑠, 𝑥
0
, 𝑟
0
)𝑥(𝑠, 𝑥

0
, 𝑟
0
)𝑑𝑠 | 𝑥

0
, 𝑟
0
) ≤

�̃�(𝑥
0
, 𝑟
0
), where𝑥(𝑠, 𝑥

0
, 𝑟
0
)denotes the solution of system (5)

at time 𝑡 under the initial condition 𝑥
0
and 𝑟
0
.

The system (5) is said to be stochastically admissible if it
is regular, impulse free, and stochastically stable.

We will assume the followings to be valid.

Assumption 1. 𝐵(𝑟(𝑡)) is full-rank:rank (𝐵(𝑟(𝑡))) = 𝑚.

Assumption 2. The perturbation term 𝑓(𝑥(𝑡), 𝑡, 𝑟(𝑡)) is Lip-
shitz, continuous and satisfies the following matching condi-
tions:

𝑓 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) = 𝐵 (𝑟 (𝑡)) 𝑓 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡)) , (7)

with 𝑓(𝑥(𝑡), 𝑡, 𝑟(𝑡)) ∈ 𝑅𝑚 bounded by

𝑓 (𝑥 (𝑡) , 𝑡, 𝑟 (𝑡))


≤ 𝜖
𝑖
‖𝑥 (𝑡)‖ , (8)

where 𝜖 > 0 is a constant.
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Lemma 3 will support the non-strict LMI to be translated
into strict LMI.

Lemma 3 (see [34]). Let 𝑋 ∈ 𝑅
𝑛×𝑛 be symmetric such that

𝐸
𝑇

𝐿
𝑋𝐸
𝐿
> 0 and 𝑇 ∈ 𝑅

(𝑛−𝑟)×(𝑛−𝑟) nonsingular. Then, 𝑋𝐸 +

𝑀
𝑇

𝑇𝑆
𝑇 is nonsingular and its inverse is expressed as

(𝑋𝐸 +𝑀
𝑇

𝑇𝑆
𝑇

)
−1

= X𝐸
𝑇

+ 𝑆T𝑀, (9)

whereX is symmetric and T is a singular matrix with

𝐸
𝑇

𝑅
X𝐸
𝑅
= (𝐸
𝑇

𝐿
𝑋𝐸
𝐿
)
−1

, T = (𝑆
𝑇

𝑆)
−1

𝑇
−1

(𝑀𝑀
𝑇

)
−1

,

(10)

where𝑀 and 𝑆 are any matrices with full row rank and satisfy
𝑀𝐸 = 0 and 𝐸𝑆 = 0, respectively; 𝐸 is decomposed as 𝐸 =

𝐸
𝐿
𝐸
𝑇

𝑅
with 𝐸

𝐿
∈ 𝑅
𝑛×𝑟 and 𝐸

𝑅
∈ 𝑅
𝑛×𝑟 are of full column rank.

Lemma 4 (see [35]). There exists symmetric matrix X such
that

[
𝑃
1
+ 𝑋 𝑄

1

𝑄
𝑇

1
𝑅
1

] < 0, [
𝑃
2
− 𝑋 𝑄

2

𝑄
𝑇

2
𝑅
2

] < 0 (11)

if and only if

[

[

𝑃
1
+ 𝑃
2
𝑄
1
𝑄
2

∗ 𝑅
1

0

∗ ∗ 𝑅
2

]

]

< 0. (12)

Lemma 5. Let 𝑄 = 𝑄
𝑇, 𝑆, 𝑅 = 𝑅

𝑇 be matrices of appropriate
dimensions, then 𝑅 < 0, 𝑄 − 𝑆𝑅

−1

𝑆
𝑇

< 0 is equivalent to

[
𝑄 𝑆

𝑆
𝑇

𝑅
] < 0. (13)

Lemma 6. Let 𝑋 ∈ 𝑅
𝑛, 𝑌 ∈ 𝑅

𝑛, and 𝑄 > 0. Then we have
𝑋
𝑇

𝑌 + 𝑌
𝑇

𝑋 ≤ 𝑌
𝑇

𝑄𝑌 + 𝑋
𝑇

𝑄
−1

𝑋.

We give the following result for the stochastic admissibil-
ity of the system (4) without proof, and readers are referred
to [36] for detailed proof.

Lemma7. TheMarkovian jump singular system (4) is stochas-
tically admissible if and only if there exists matrices 𝑃

𝑖
, 𝑖 =

1, 2, . . . , 𝑁 such that

𝐸
𝑇

𝑖
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑖
≥ 0

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑖
𝑃
𝑗
+ 𝑃
𝑇

𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
< 0.

(14)

Lemma 8. For a prescribed scalars 𝜏 > 0, 𝑑, and any time
delay 𝜏(𝑡) satisfying 0 ≤ 𝜏(𝑡) ≤ 𝜏, theMarkovian jump singular
time-delay system (5) is stochastically admissible, if there exist
symmetric positive-definite matrices 𝑄, 𝑅 and nonsingular
matrix 𝑃

𝑖
for every 𝑖 = 1, 2, . . . , 𝑁, such that

𝐸
𝑇

𝑖
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑖
≥ 0, (15)

Φi =
[
[

[

Φ
11
i 𝑃

𝑇

𝑖
𝐴
𝑑𝑖

0

∗ − (1 − 𝑑)𝑄 0

∗ ∗ −
1

𝜏
𝑅

]
]

]

< 0, (16)

where

Φ
11
i = 𝑃

𝑇

𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑄 + 𝜏𝑅 +

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑃
𝑗
. (17)

Proof. First to prove the system 𝐸(𝑟(𝑡))�̇�(𝑡) = [𝐴(𝑟(𝑡)) +

𝐴
𝑑
(𝑟(𝑡)]𝑥(𝑡) is regular and impulse free.
From (16), it is easy to knowΦ11i < 0 and

[
Φ

11
i 𝑃

𝑇

𝑖
𝐴
𝑑𝑖

∗ − (1 − 𝑑)𝑄
] < 0. (18)

By pre- and postmultiplying (18) by [𝐼, 𝐼] and [𝐼, 𝐼]𝑇, we get

𝑃
𝑇

𝑖
(𝐴
𝑖
+ 𝐴
𝑑𝑖
) + (𝐴

𝑖
+ 𝐴
𝑑𝑖
)
𝑇

𝑃
𝑖
+ 𝑑𝑄 + 𝜏𝑅 +

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑃
𝑗
< 0,

(19)

where 𝑄 and 𝑅 are symmetric positive-definite matrices, we
have

𝑃
𝑇

𝑖
(𝐴
𝑖
+ 𝐴
𝑑𝑖
) + (𝐴

𝑖
+ 𝐴
𝑑𝑖
)
𝑇

𝑃
𝑖
+

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑃
𝑗
< 0, (20)

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑖
𝑃
𝑗
+ 𝑃
𝑇

𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
< 0. (21)

Based on Lemma 7, (15) and (20) show that the system
𝐸(𝑟(𝑡))�̇�(𝑡) = [𝐴(𝑟(𝑡)) + 𝐴

𝑑
(𝑟(𝑡))]𝑥(𝑡) is regular and impulse

free, and (15) and (21) ensure that the system 𝐸(𝑟(𝑡))�̇�(𝑡) =

𝐴(𝑟(𝑡))𝑥(𝑡) is regular and impulse free. Hence, according to
Definition 2, the system (5) is regular and impulse free for any
delay 𝜏(𝑡) satisfying 0 ≤ 𝜏(𝑡) ≤ 𝜏.

Second, to prove the system (5) is stochastically stable.
Take a functional candidate for the system as follows:

𝑉 (𝑥 (𝑡) , 𝑟 (𝑡)) = 𝑋
𝑇

(𝑡) 𝐸
𝑇

(𝑟 (𝑡)) 𝑃 (𝑟 (𝑡))𝑋 (𝑡)

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑋
𝑇

(𝑠) 𝑄𝑋 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑋
𝑇

(𝑠) 𝑅𝑋 (𝑠) 𝑑𝑠 𝑑𝜃.

(22)

Then, letL be theweak infinitesimal generator of the random
process 𝑥(𝑡), 𝑟(𝑡), and for each 𝑖 ∈ S, we have

L𝑉 (𝑥 (𝑡) , 𝑟 (𝑡) = 𝑖)

= lim
Δ→0

1

Δ
{E [𝑉 (𝑥 (𝑡 + Δ) , 𝑟 (𝑡 + Δ)) | 𝑥 (𝑡) ,

𝑟 (𝑡) = 𝑖] − 𝑉 (𝑥 (𝑡) , 𝑟 (𝑡) = 𝑖)}
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≤ 2𝑥
𝑇

(𝑡) 𝑃
𝑇

𝑖
𝐸
𝑖
�̇� (𝑡) + 𝑥

𝑇

(𝑡)(

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑃
𝑗
)𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝜏 (𝑥
𝑇

(𝑡) 𝑅𝑥 (𝑡)) − ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

≤ 2𝑥
𝑇

(𝑡) 𝑃
𝑇

𝑖
𝐴
𝑖
𝑥 (𝑡)

+2𝑥
𝑇

(𝑡) 𝑃
𝑇

𝑖
𝐴
𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑥
𝑇

(𝑡)(

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑃
𝑗
)𝑥 (𝑡) + 𝑥

𝑇

(𝑡) 𝑄𝑥 (𝑡)

− (1 − 𝑑) 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝜏𝑥
𝑇

(𝑡) 𝑅𝑥 (𝑡) − [∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠]

×
𝑅

𝜏
[∫

𝑡

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠]

= 𝜉 (𝑡)Φ
𝑖
𝜉
𝑇

(𝑡) ,

(23)

where 𝜉(𝑡) = [𝑥𝑇(𝑡), 𝑥𝑇(𝑡 − 𝜏(𝑡)), ∫𝑡
𝑡−𝜏

𝑥
𝑇

(𝑠)𝑑𝑠].
With (16), it is easy to know that there exists a scalar𝜇 > 0,

such that

L𝑉 (𝑥 (𝑡) , 𝑟 (𝑡) = 𝑖) ≤ −𝜇𝑥
𝑇

(𝑡) 𝑥 (𝑡) . (24)

By Dynkin’s formula, we get

E {𝑉 ((𝑥 (𝑡) , 𝑟 (𝑡)) 𝑥 (0) , 𝑟 (0)) − 𝑉 (𝑥 (0) , 𝑟 (0))}

= E{∫

𝑡

0

𝐿𝑉 (𝑥 (𝑠) , 𝑟 (𝑠)) 𝑑𝑠 | 𝑥 (0) , 𝑟 (0)}

≤ −𝜇E{∫

𝑡

0

𝑥
𝑇

(𝑠) 𝑥 (𝑠) 𝑑𝑠 | 𝑥 (0) , 𝑟 (0)} ,

(25)

and this means

E(∫

𝑡

0

𝑥
𝑇

(𝑠) 𝑥 (𝑠) 𝑑𝑠 | 𝑥 (0) , 𝑟 (0)) ≤
1

𝜇
𝑉 (𝑥 (0) , 𝑟 (0)) .

(26)

Therefore by Definition 2, the Markovian jump singular sys-
tem (5) is stochastically stable. This completes the proof.

3. Sliding Motion Stability Analysis

3.1. Sliding Surface Design. SMC design involves two basic
steps: sliding surface design and controller design. For every

𝑖 ∈ S, integral sliding surface with delay and Markovian
switching is considered as follows:

𝑆 (𝑡) = 𝐺
𝑖
𝐸
𝑖
𝑥 (𝑡) − ∫

𝑡

0

𝐺
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) 𝑥 (𝜃) 𝑑𝜃

− ∫

𝑡

0

𝐺
𝑖
𝐴
𝑑𝑖
𝑥 (𝜃 − 𝜏 (𝜃)) 𝑑𝜃,

(27)

where𝐾
𝑖
∈ R𝑚×𝑛 is real matrix to be designed and 𝐺

𝑖
∈ R𝑚×𝑛

is designed to satisfy that 𝐺
𝑖
𝐵
𝑖
is nonsingular. According to

SMC theory, when the system trajectories reach onto the
sliding surface, it follows that 𝑆(𝑡) = 0 and ̇𝑆(𝑡) = 0.

Therefore, by ̇𝑆(𝑡) = 0, we get the equivalent control as

𝑢eqi (𝑡) = 𝐾𝑖𝑥 (𝑡) − 𝑓 (𝑥 (𝑡) , 𝑡, 𝑖) . (28)

Substituting 𝑢eq(r(𝑡) = 𝐾(𝑟(𝑡))𝑥(𝑡) − 𝑓(𝑥(𝑡), 𝑡, 𝑟(𝑡)) into (1),
we obtain the following sliding mode dynamics:

𝐸 (𝑟 (𝑡)) �̇� (𝑡) = [𝐴 (𝑟 (𝑡)) + 𝐵 (𝑟 (𝑡)) 𝐾 (𝑟 (𝑡))] 𝑥 (𝑡)

+ 𝐴
𝑑
(𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏 (𝑡)) .

(29)

3.2. Sliding Mode Dynamics Analysis. In this section, we
pay attention to establishing 𝐿𝑀𝐼𝑠 conditions to check
the stochastical admissibility of the system (29). Based on
Lemmas 4, it is easy to get the sufficient condition provided
in the following theorem.

Theorem 9. Given scalars 𝜏 and 𝑑, for any delays 𝜏(𝑡)

satisfying (2), the system (29) is stochastically admissible if
there exist nonsingular matrices 𝑃

𝑖
and symmetric positive-

definite matrix 𝑄 and 𝑅 such that

𝐸
𝑇

𝑖
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑖
≥ 0, (30)

[
[

[

Φ
11

𝑖
𝑃
𝑇

𝑖
𝐴
𝑑𝑖

0

∗ − (1 − 𝑑)𝑄 0

∗ ∗ −
1

𝜏
𝑅

]
]

]

< 0, (31)

where

Φ
11

𝑖
= 𝑃
𝑇

𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) + (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑖
)
𝑇

𝑃
𝑖

+ 𝑄 + 𝜏𝑅 +

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑃
𝑗
.

(32)

Remark 10. Note that the conditions in Theorem 9 are not
strict 𝐿𝑀𝐼 conditions due to matrix equality constraint of
(30). According to Lemma 3 and Theorem 9, the strict 𝐿𝑀𝐼

conditions are given as follows.

Theorem 11. Given scalars 𝜏 and 𝑑, for any delays 𝜏(𝑡)

satisfying (2), the system (29) is stochastically admissible if
there exist symmetric positive-definite matrices X, 𝑄, 𝑌

𝑖
, 𝐻,

𝑅, and symmetric matrix T ∈ R(𝑛−𝑟)×(𝑛−𝑟), matrix L
𝑖
∈ 𝑅
𝑚×𝑛,
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and any matrices with full row rank 𝑀
𝑖
, 𝑆
𝑖
satisfying 𝑀

𝑖
𝐸
𝑖
=

0, 𝐸
𝑖
𝑆
𝑖
= 0, respectively, such that

[

[

Γ
11

𝑖
𝐴
𝑑𝑖

𝑁
1

∗ − (1 − 𝑑)𝑄 0

∗ ∗ 𝑁
2

]

]

< 0, (33)

[
[

[

𝑄 + 𝜏𝑅 − 𝐻 0 𝑁
3

∗ −
1

𝜏
𝑅 0

∗ ∗ 𝑁
4

]
]

]

< 0, (34)

[
[
[

[

−𝑌
𝑖

0 𝐸
𝑖
X +𝑀

𝑇

𝑖
T𝑆𝑇
𝑖

0

∗ −𝐻 0 𝐻

∗ ∗ −𝐼 0

∗ ∗ ∗ −𝐼

]
]
]

]

< 0, (35)

where

Γ
11

𝑖
= 𝐴
𝑖
(X𝐸
𝑇

𝑖
+ 𝑆
𝑖
T𝑀
𝑖
) + (X𝐸

𝑇

𝑖
+ 𝑆
𝑖
T𝑀
𝑖
)
𝑇

𝐴
𝑇

𝑖
+ 𝐵
𝑖
L
𝑖
𝐸
𝑇

𝑖

+ (𝐵
𝑖
L
𝑖
𝐸
𝑇

𝑖
)
𝑇

+ 𝑟
𝑖𝑖
(X𝐸
𝑇

𝑖
+ 𝑆
𝑖
T𝑀
𝑖
)
𝑇

𝐸
𝑇

𝑖
+ 𝑌
𝑖
,

𝑁
1
= [𝐵
𝑖
L
𝑖
,𝑀
𝑇

𝑖
T𝑆
𝑇

𝑖
] , 𝑁

2
= diag [−X, −X] ,

𝑁
3
= [𝐸
1𝑅
, . . . , 𝐸

𝑖−1,𝑅
, 𝐸
𝑖+1,𝑅

, . . . , 𝐸
𝑛𝑅
] ,

𝑁
4
= diag [− 1

𝑟
𝑖1

𝐸
𝑇

1𝑅
X𝐸
1𝑅
, . . . , −

1

𝑟
𝑖,𝑖−1

𝐸
𝑇

𝑖−1,𝑅
X𝐸
𝑖−1,𝑅

,

−
1

𝑟
𝑖,𝑖+1

𝐸
𝑇

𝑖+1𝑅
X𝐸
𝑖+1𝑅

, . . . , −
1

𝑟
𝑖𝑛

𝐸
𝑇

𝑛𝑅
X𝐸
𝑛𝑅
] ,

L
𝑖
= 𝐾
𝑖
X.

(36)

Proof. Let 𝑃
𝑖
≜ 𝑋𝐸
𝑖
+𝑀
𝑇

𝑖
𝑇𝑆
𝑇

𝑖
in Theorem 9. We can get

[
[
[

[

Φ
11

𝑖
(𝑋𝐸
𝑖
+𝑀
𝑇

𝑖
𝑇𝑆
𝑇

𝑖
)
𝑇

𝐴
𝑑𝑖

0

∗ − (1 − 𝑑)𝑄 0

∗ ∗ −
1

𝜏
𝑅

]
]
]

]

< 0, (37)

where

Φ
11

𝑖
= (𝑋𝐸

𝑖
+𝑀
𝑇

𝑖
𝑇𝑆
𝑇

𝑖
)
𝑇

(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
)

+ (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
)
𝑇

(𝑋𝐸
𝑖
+𝑀
𝑇

𝑖
𝑇𝑆
𝑇

𝑖
)

+ 𝑄 + 𝜏𝑅 +

𝑁

∑

𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑋𝐸
𝑗
.

(38)

Using Lemma 3, we get

(𝑋𝐸
𝑖
+𝑀
𝑇

𝑖
𝑇𝑆
𝑇

𝑖
)
−1

= X𝐸
𝑇

𝑖
+ 𝑆
𝑖
T𝑀
𝑖
≜ 𝐿
𝑖
. (39)

By pre- and postmultiplying (37) by diag[𝐿𝑇
𝑖
, 𝐼, 𝐼] and

diag[𝐿
𝑖
, 𝐼, 𝐼], we get

[
[

[

Ψ
11

𝑖
𝐴
𝑑𝑖

0

∗ − (1 − 𝑑)𝑄 0

∗ ∗ −
1

𝜏
𝑅

]
]

]

< 0, (40)

where Ψ11
𝑖

= (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
)𝐿
𝑖
+ 𝐿
𝑇

𝑖
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
)
𝑇

+ 𝐿
𝑇

𝑖
𝑄𝐿
𝑖
+

𝜏𝐿
𝑇

𝑖
𝑅𝐿
𝑖
+ ∑
𝑁

𝑗=1
𝑟
𝑖𝑗
𝐿
𝑇

𝑖
𝐸
𝑇

𝑗
𝑋𝐸
𝑗.

In light of Lemma 4, there exists symmetric matrix 𝑌
𝑖

such that

[
(𝐴
𝑖
+𝐵
𝑖
𝐾
𝑖
) 𝐿
𝑖
+ 𝐿
𝑇

𝑖
(𝐴
𝑖
+𝐵
𝑖
𝐾
𝑖
)
𝑇

+ 𝑟
𝑖𝑖
𝐿
𝑇

𝑖
𝐸
𝑇

𝑖
+ 𝑌
𝑖

𝐴
𝑑𝑖

∗ − (1−𝑑)𝑄
]

< 0,

(41)

[
[
[
[
[

[

𝐿
𝑇

𝑖
𝑄𝐿
𝑖
+ 𝜏𝐿
𝑇

𝑖
𝑅𝐿
𝑖
+

𝑁

∑

𝑖 ̸= 𝑗=1

𝑟
𝑖𝑗
𝐿
𝑇

𝑖
𝐸
𝑇

𝑗
𝑋𝐸
𝑗
𝐿
𝑖
− 𝑌
𝑖

0

∗ −
1

𝜏
𝑅

]
]
]
]
]

]

< 0.

(42)

It is easy to know that

𝐵
𝑖
𝐾
𝑖
𝑆
𝑖
T𝑀
𝑖
+ (𝐵
𝑖
𝐾
𝑖
𝑆
𝑖
T𝑀
𝑖
)
𝑇

= 𝐵
𝑖
𝐾
𝑖
XX
−1

𝑆
𝑖
T𝑀
𝑖

+ (𝐵
𝑖
𝐾
𝑖
XX
−1

𝑆
𝑖
T𝑀
𝑖
)
𝑇

≤ (𝐵
𝑖
𝐾
𝑖
X)X
−1

(X𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
)

+ (𝑀
𝑇

𝑖
T𝑆
𝑇

𝑖
)X
−1

(𝑆
𝑖
T𝑀
𝑖
) .

(43)

Using Shur’s complement, the following inequality can
ensure (41) as

[
𝐴𝑖𝐿 𝑖 + 𝐿

𝑇

𝑖
𝐴
𝑇

𝑖
+ 𝐵𝑖𝐾𝑖X𝐸

𝑇

𝑖
+ (𝐵𝑖𝐾𝑖X𝐸

𝑇

𝑖
)

𝑇

+ 𝑟𝑖𝑖𝐿
𝑇

𝑖
𝐸
𝑇

𝑖
+ 𝑌𝑖 𝐴𝑑𝑖 𝑁1

∗ − (1 − 𝑑)𝑄 0

∗ ∗ 𝑁2

]

> 0,

(44)

where 𝑁
1
= [𝐵

𝑖
𝐾
𝑖
X,𝑀𝑇
𝑖
T𝑆𝑇
𝑖
] and 𝑁

2
= diag[−X, −X].

Equation (42) is equivalent to

[
[
[

[

𝑄 + 𝜏𝑅 +

𝑁

∑

𝑖 ̸= 𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑋𝐸
𝑗
− 𝑃
𝑇

𝑖
𝑌
𝑖
𝑃
𝑖

0

∗ −
1

𝜏
𝑅

]
]
]

]

< 0. (45)

There exists a matrix𝐻𝑇 = 𝐻 > 0 such that

[
[
[

[

𝑄 + 𝜏𝑅 +

𝑁

∑

𝑖 ̸= 𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑋𝐸
𝑗
− 𝑃
𝑇

𝑖
𝑌
𝑖
𝑃
𝑖

0

∗ −
1

𝜏
𝑅

]
]
]

]

<

[
[
[

[

𝑄 + 𝜏𝑅 +

𝑁

∑

𝑖 ̸= 𝑗=1

𝑟
𝑖𝑗
𝐸
𝑇

𝑗
𝑋𝐸
𝑗
− 𝐻 0

∗ −
1

𝜏
𝑅

]
]
]

]

< 0

(46)
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Figure 1: State trajectories of the open-loop system.

if and only if

−𝑃
𝑇

𝑖
𝑌
𝑖
𝑃
𝑖
< −𝐻 < 0. (47)

The above inequality is equivalent to the following inequality:

[
−𝑌
𝑖
𝐿
𝑇

𝑖
𝐻

∗ −𝐻
] < 0. (48)

And the following inequality can guarantee that (48) is true:

[
[
[

[

−𝑌
𝑖

0 𝐿
𝑇

𝑖
0

∗ −𝐻 0 𝐻

∗ ∗ −𝐼 0

∗ ∗ ∗ −𝐼

]
]
]

]

< 0. (49)

By Shur’s complement, the right of (46) is equivalent to

[
[

[

𝑄 + 𝜏𝑅 − 𝐻 0 𝑁
3

∗ −
1

𝜏
𝑅 0

∗ ∗ 𝑁
4

]
]

]

< 0, (50)

where 𝑁
3

= [𝐸
1𝑅
, . . . , 𝐸

𝑖−1,𝑅
, 𝐸
𝑖+1,𝑅

, . . . , 𝐸
𝑛𝑅
] and 𝑁

4
=

diag[−(1/𝑟
𝑖1
)𝐸
𝑇

1𝑅
X𝐸
1𝑅
, . . . , −(1/𝑟

𝑖,𝑖−1
)𝐸
𝑇

𝑖−1,𝑅
X𝐸
𝑖−1,𝑅

, −(1/𝑟
𝑖,𝑖+1

)

𝐸
𝑇

𝑖+1𝑅
X𝐸
𝑖+1𝑅

, . . . , −(1/𝑟
𝑖𝑛
)𝐸
𝑇

𝑛𝑅
X𝐸
𝑛𝑅
]. 𝐸
𝑖
is decomposed as

𝐸
𝑖
= 𝐸
𝑖𝐿
𝐸
𝑇

𝑖𝑅
with 𝐸

𝑖𝐿
∈ R𝑛×𝑟 and 𝐸

𝑖𝑅
∈ R𝑛×𝑟 are of full column

rank. This completes the proof.

Remark 12. From the proof of the Theorem 11, it is not
difficult to know that Theorem 11 is more easy to compute
thanTheorem 9.

3.3. Sliding Mode Control Design. After switching surface
design, the next important part of sliding mode control is
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𝑡 (s)

𝑠

Figure 2: Switching surface 𝑠(𝑡).
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Figure 3: State trajectories of the closed-loop system.

to design a slide mode controller to guarantee the existence
of a sliding mode. Now, we design an SMC law, by which
the trajectories of singular system (1) can be driven onto the
designed sliding surface 𝑆(𝑡) = 0 in a finite time.

Theorem 13. With the constant matrix 𝐾
𝑖
mentioned in

Theorem 11 and the integral sliding surface given by (29), the
trajectory of the closed-loop system (1) can be driven onto the
sliding surface in finite time with the control (51) as

𝑢
𝑖
(𝑡) = 𝐾

𝑖
𝑥 (𝑡) − (𝜌

𝑖
+ 𝜖
𝑖
‖𝑥 (𝑡)‖) sign (𝐵𝑇

𝑖
𝐺
𝑇

𝑖
𝑆 (𝑡)) , (51)

where 𝜌
𝑖
is a positive constant.
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Figure 4: Controller input 𝑢(𝑡).

Proof. Choose 𝐺
𝑖
under the condition of 𝐺

𝑖
𝐵
𝑖
is nonsingular.

Consider the following Lyapunov function:

𝑉 (𝑆 (𝑡) , 𝑡) =
1

2
𝑆
𝑇

(𝑡) 𝑆 (𝑡) . (52)

Due to (29), we have

𝑑𝑆 = 𝐺
𝑖
𝐵
𝑖
[−𝐾
𝑖
𝑥 (𝑡) + 𝑢

𝑖
(𝑡) + 𝑓

𝑖
] 𝑑𝑡. (53)

Differentiating 𝑉
𝑖
(𝑡) along the closed-loop trajectories and

using (53), we have

L𝑉 (𝑆 (𝑡) , (𝑡)) = 𝑆
𝑇

𝑖
(𝑡) 𝑑𝑆
𝑖
(𝑡)

= 𝑆
𝑇

𝑖
(𝑡) 𝐺
𝑖
𝐵
𝑖
[−𝐾
𝑖
𝑥 (𝑡) + 𝑢

𝑖
(𝑡) + 𝑓

𝑖
]

=𝑆
𝑇

𝑖
(𝑡) 𝐺
𝑖
𝐵
𝑖
[ − (𝜌 + 𝜖 ‖𝑥 (𝑡)‖) sign

× (𝐵
𝑇

𝑖
𝐺
𝑇

𝑖
𝑆 (𝑡)) + 𝑓

𝑖
]

≤ − (𝜌 + 𝜖 ‖𝑥 (𝑡)‖)

𝐵
𝑇

𝑖
𝐺
𝑇

𝑖
𝑆
𝑖
(𝑡)


+

𝑓
𝑖




𝐵
𝑇

𝑖
𝐺
𝑇

𝑖
𝑆
𝑖
(𝑡)


≤ −𝜌

𝐵
𝑇

𝑖
𝐺
𝑇

𝑖
𝑆
𝑖
(𝑡)


≤ −𝜌
𝑆𝑖 (𝑡)

 < 0, if 𝑆
𝑖
(𝑡) ̸= 0,

(54)

where 𝜌
𝑖
> 𝜌
𝑖
√𝜆min(𝐺𝑖𝐵𝑖𝐵

𝑇

𝑖
𝐺
𝑇

𝑖
). Then the state trajectory

converges to the surface and is restricted to the surface for
all subsequent time. This completes the proof.

4. Numerical Example

In this section, a numerical example is presented to illustrate
the effectiveness of the main results in this paper.

Example 14. Let us consider the system (1) with Markovian
process that governs that the mode switching has generator
∏ = (𝑟

𝑖𝑗
), (𝑖, 𝑗 = 1, 2), 𝑟

12
= 0.25, 𝑟

21
= 0.2. The system data

are as follows:

E
1
= [

[

1 0 0

0 1 0

0 0 0

]

]

, A
1
= [

[

−6.7 1.6 0

0 −5 0

0.5 2.2 3.2

]

]

,

A
𝑑1
= [

[

−0.2 0 0

0 −0.1 0

0 0 −0.1

]

]

, B
1
= [

[

1

1

0

]

]

,

M
1
= [0 0 1] , S

1
= [

[

0

0

1

]

]

, E
1𝑅
= [

[

1 0

0 1

0 0

]

]

,

E
2
= [

[

1 0 0

0 0 0

0 0 1

]

]

, A
2
= [

[

−5.7 −4.2 0

−3.7 4.8 1.3

0 2.4 −6

]

]

,

A
𝑑2
= [

[

−0.1 0 0

0 −0.1 0

0 0 0

]

]

, B
2
= [

[

1

1

1

]

]

,

M
2
= [0 1 0] , S

2
= [

[

0

1

0

]

]

E
2𝑅
= [

[

1 0

0 0

0 1

]

]

.

(55)

In addition, 𝜏 = 0.3, 𝑑 = 0.3, 𝜏(t) = 0.3𝑒
−𝑡 and 𝑓

1
(𝑥) =

0.65𝐵
1
𝑥(𝑡) sin𝑥(𝑡), 𝑓

2
(𝑥) = 0.65𝐵

2
𝑥(𝑡) sin𝑥(𝑡). Solve the

LMI (33), (34), and (35) as follows:

K1 = [0.0963 −0.0506 −0.003]

K2 = [0.0953 −0.0039 0.1793] .

(56)

For det(𝐺
𝑖
𝐵
𝑖
) ̸= 0, we can choose 𝐺

1
and 𝐺

2
as

𝐺
1
= [1.2 1.6 1.1] ; 𝐺

2
= [1.3 1.2 1.5] . (57)

Thus the sliding surface function is

𝑠
1
(𝑡) =

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝑠
1
(𝑡) = [1.2, 1.6, 0] 𝑥 (𝑡)

− ∫

𝑡

0

[−7.2204,−3.8017,−3.5116]𝑥 (𝜃) 𝑑𝜃

− ∫

𝑡

0

[−0.24,−0.016,−0.11]𝑥(𝜃− 𝜏 (𝜃)) 𝑑𝜃,

𝑖 = 1

𝑠
2
(𝑡) = [1.3, 0, 1.5] 𝑥 (𝑡)

− ∫

𝑡

0

[−11.4688, 3.8852,−6.7228] 𝑥 (𝜃) 𝑑𝜃

− ∫

𝑡

0

[−0.13, −0.12, 0] 𝑥 (𝜃 − 𝜏 (𝜃)) 𝑑𝜃,

𝑖 = 2.

(58)
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Figure 5: State trajectories of sliding mode.

Take 𝜌
1
= 𝜌
2
= 0.64, then the SMC law designed in (51) can

be described as

𝑢 (𝑡) =

{{{{

{{{{

{

𝑢
1
(𝑡) = [0.0963, −0.0506, −0.003] 𝑥 (𝑡)

−𝜌 (𝑡) sign (2.8𝑠
1
(𝑡)) , 𝑖 = 1

𝑢
2
(𝑡) = [0.0953, −0.0037, 0.1793] 𝑥 (𝑡)

−𝜌 (𝑡) sign (4𝑠
2
(𝑡)) , 𝑖 = 2,

(59)

where 𝜌(𝑡) = 0.64 + 0.65‖𝑥(𝑡)‖. The simulation results are
given in Figures 1, 2, 3, 4, and 5, which show the validity of
the proposed method.

Remark 15. Obviously, our results includeMarkovian switch-
ing and nonlinear perturbation effects, and this model can
not be dealt with by the results of [6, 8, 10–14, 16, 18, 20, 22,
26, 27, 34, 37], which show that our results are new.

5. Conclusion

In this paper, the stochastically admissible using sliding
mode control for singular system with time-varying delay
and nonlinear perturbations is studied by LMI method. The
sliding mode control is designed to ensure that the closed-
loop system is stochastically admissible. Anumerical example
demonstrates the effectiveness of the method mentioned
above.
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