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The spatiotemporal dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to
zero-flux boundary condition are investigated analytically and numerically. The asymptotic stability of the positive equilibrium
and the existence of Hopf bifurcation around the positive equilibrium are shown; the conditions of Turing instability are obtained.
And with the help of numerical simulations, it is found that the model exhibits complex pattern replication: stripes, spots-stripes
mixtures, and spots Turing patterns.

1. Introduction

The problem of pattern formation is, perhaps, the most
challenging inmodern ecology, biology, chemistry, andmany
other fields of science [1]. Patterns generated in abioti-
cally homogeneous environments are particularly interesting
because they require an explanation based on the individual
behavior of organisms. They are commonly called “emergent
patterns,” because they emerge from interactions in spatial
scales that are much larger than the characteristic scale of
individuals [2].

Turing [3] showed how the coupling of reaction and
diffusion can induce instability and pattern formation. Tur-
ing’s revolutionary idea was that the passive diffusion could
interact with chemical reaction in such a way that even if
the reaction by itself has no symmetry-breaking capabilities,
diffusion can destabilize the symmetry so that the system
with diffusion can have them. Segel and Jackson [4] first
used reaction-diffusion system to explain pattern formation
in ecological context based upon the seminal work by
Turing [3]. Since then, a lot of studies have been devoted to
spatiotemporal patterns which were produced by reaction-
diffusion predator-prey, models with either a prey-dependent
or a ratio-dependent predator functional response, for exam-
ple, [1, 2, 5–20] and references cited therein.

Recently, there is a growing explicit biological and physi-
ological evidence [21–23] that in many situations, especially,
when the predator has to search for food (and therefore has to
share or compete for food), a more suitable general predator-
prey theory should be based on the so-called ratio-dependent
function which can be roughly stated as that the per capital
predator growth rate should be a function of the ratio of prey
to predator abundance, and so would be the so-called preda-
tor functional responses [24].This is supported by numerous
fields and laboratory experiments and observations [25, 26].
In [24], the authors investigated the effect of time delays on
the stability of the model and discussed the local asymptotic
stability and the Hopf bifurcation. Liang and Pan [27] have
studied the local and global asymptotic stability of the
coexisting equilibrium point and obtained the conditions
for Poincare-Andronov-Hopf-bifurcating periodic solution.
M. Banerjee and S. Banerjee [28] have studied the local
asymptotic stability of the equilibriumpoint and obtained the
conditions for the occurrence of Turing-Hopf instability for
reaction-diffusion model. It is shown that prey and predator
populations exhibit spatiotemporal patterns resulting from
temporal oscillation of both the population and spatial
instability.

Besides, in [29], Smith has shown that the logistic
equation is not realistic for a food-limited population under
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the effects of environmental toxicants and established a new
growth function—Smith growth function. And it has been
proposed by several authors [29–34] for the dynamics of a
population where the growth limitations are based on the
proportion of available resources not utilized. However, pat-
tern formation in the case of Holling-Tanner type predator-
prey models with ratio-dependent functional response and
Smith growth still remains an interesting area of research.

In this present work, we will focus on the ratio-dependent
Holling-Tanner model with Smith growth for predator-prey
interaction where randommovement of both species is taken
into account. The rest of the paper is organized as follows. In
Section 2, we establish the ratio-dependent Holling-Tanner
predator-prey model with Smith growth and study the local
asymptotic stability of the positive equilibrium, existence
of Hopf bifurcation around the positive equilibrium, and
the conditions for the occurrence of Turing instability. In
Section 3, we present and discuss the results of pattern
formation via numerical simulation, which is followed by the
last section, that is, conclusions and discussions.

2. The Model and the Linear Stability Analysis

2.1. The Model. In this paper, we rigorously consider the
radio-dependent Holling-Tanner predator-prey model with
Smith growth taking the form:

𝑑𝑢

𝑑𝑡
=
𝑟𝑢 (𝐾 − 𝑢)

𝐾 + 𝑐𝑢
−

𝑚𝑢V

𝑢 + 𝑎V
,

𝑑V

𝑑𝑡
= 𝑠V(1 −

ℎV

𝑢
) ,

(1)

where 𝑢(𝑡) and V(𝑡) stand for prey and predator population
(density) at any instant of time 𝑡. 𝑟, 𝐾, 𝑚, 𝑎, 𝑠, ℎ are positive
constants that stand for prey intrinsic growth rate, carrying
capacity, capturing rate, half capturing saturation constant,
predator intrinsic growth rate, conversion rate of prey into
predators biomass, respectively. And 𝑟/𝑐 is the replacement
of mass in the population at𝐾.Themodel with Smith growth
takes into account both environmental and food chain effects
of toxicant stress.

From the standpoint of biology, we are interested only in
the dynamics of model (1) in the closed first quadrant R2

+
=

{(𝑢, V) : 𝑢 ≥ 0, V ≥ 0}. Thus, we consider only the biologically
meaningful initial conditions

𝑢 (0) > 0, V (0) > 0, (2)

which are continuous functions due to their biological sense.
Straightforward computation shows that model (1) is

continuous and Lipschitzian in R2
+
if we redefine

𝑑𝑢

𝑑𝑡
=
𝑑V

𝑑𝑡
= 0, if (𝑢, V) = (0, 0) . (3)

Hence, the solution of model (1) with positive initial condi-
tions exists and is unique.

Also considering the spatial dispersal and environmental
heterogeneity, in this paper we study the diffusive Holling-
Tanner model obtained from the temporal model (1) by
incorporating diffusion terms as follows:

𝜕𝑢

𝑑𝑡
= 𝑑
1
Δ𝑢 + 𝑟𝑢

𝐾 − 𝑢

𝐾 + 𝑐𝑢
−

𝑚𝑢V

𝑢 + 𝑎V
,

𝜕V

𝑑𝑡
= 𝑑
2
ΔV + 𝑠V(1 −

ℎV

𝑢
) ,

(4)

where the nonnegative constants 𝑑
1
and 𝑑

2
are the diffusion

coefficients of 𝑢 and V, respectively. Δ = (𝜕
2
/𝜕𝑥
2
) + (𝜕
2
/𝜕𝑦
2
),

the usual Laplacian operator in two-dimensional space, is
used to describe the Brownian random motion.

Model (4) is to be analyzed under the following nonzero
initial conditions:

𝑢 (𝑥, 𝑦, 0) > 0, V (𝑥, 𝑦, 0) > 0, (𝑥, 𝑦) ∈ Ω, (5)

and zero-flux boundary conditions:

𝜕𝑢

𝜕]
=
𝜕V

𝜕]
= 0, (𝑥, 𝑦) ∈ 𝜕Ω, 𝑡 > 0, (6)

whereΩ ⊂ R2 is a bounded domain with a smooth boundary
𝜕Ω and ] is the outward unit normal vector on 𝜕Ω. The
zero-flux boundary condition indicates that predator-prey
system is self-contained with zero population flux across the
boundary.

2.2. The Stability of the Nonspatial Model (1). In this sub-
section, we restrict ourselves to the stability analysis of the
nonspatial model (1). It is easy to verify that model (1) has
a trivial equilibrium point 𝐸

0
= (𝐾, 0). Simple computation

shows that if𝑚 < 𝑟(𝑎+ℎ), model (1) possess a unique positive
equilibrium, denoted by 𝐸∗ = (𝑢

∗
, V∗), where

𝑢
∗
=
𝐾 (𝑎𝑟 + ℎ𝑟 − 𝑚)

𝑎𝑟 + 𝑐𝑚 + ℎ𝑟
, V

∗
=
1

ℎ
𝑢
∗
. (7)

The Jacobian matrix at 𝐸
0
= (𝐾, 0) is

𝐽
0
= (

−
𝑟

1 + 𝑐
−𝑚

0 𝑠

) . (8)

Clearly, 𝐸
0
= (𝐾, 0) is a saddle point.

In the following, we will discuss the stability of the
positive equilibrium 𝐸

∗ of model (1). The Jacobian matrix at
𝐸
∗ is given by

𝐽
∗
= (

𝑎
1
𝑎
2

𝑠

ℎ
−𝑠

) , (9)

where

𝑎
1
=
𝑚 (𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) − 𝑟

2
(𝑎 + ℎ)

2

𝑟 (1 + 𝑐) (𝑎 + ℎ)
2

,

𝑎
2
= −

𝑚ℎ
2

(𝑎 + ℎ)
2
.

(10)
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Then we can get

det (𝐽∗)

= 𝑠 (
𝑎
2

ℎ
− 𝑎
1
)

=
𝑠 (𝑎𝑟 + ℎ𝑟 − 𝑚) (𝑎𝑟 + ℎ𝑟 + 𝑐𝑚)

𝑟 (1 + 𝑐) (𝑎 + ℎ)
2

> 0,

tr (𝐽∗)

= 𝑎
1
− 𝑠

=
𝑚 (𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) − 𝑟(𝑎 + ℎ)

2
(𝑟 + 𝑠 (1 + 𝑐))

𝑟 (1 + 𝑐) (𝑎 + ℎ)
2

.

(11)

Theorem 1. (i) The positive equilibrium 𝐸
∗

= (𝑢
∗
, V∗) is

locally asymptotically stable if and only if

𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) < 𝑟(𝑎 + ℎ)
2
(𝑟 + 𝑠 (1 + 𝑐)) . (12)

(ii) The positive equilibrium 𝐸
∗
= (𝑢
∗
, V∗) is unstable if

and only if

𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) > 𝑟(𝑎 + ℎ)
2
(𝑟 + 𝑠 (1 + 𝑐)) . (13)

(iii)Themodel enters into a Hopf-bifurcation around 𝐸∗ =
(𝑢
∗
, V∗) at 𝑠 = 𝑠

∗, where 𝑠∗ satisfies the equality

𝑠
∗
=
𝑚 (𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) − 𝑟

2
(𝑎 + ℎ)

2

𝑟 (1 + 𝑐) (𝑎 + ℎ)
2

. (14)

Proof. (i) If 𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) < 𝑟(𝑎 + ℎ)
2
(𝑟 + 𝑠(1 +

𝑐)), then tr(𝐽∗) < 0. Thus, the equilibrium point 𝐸∗ is locally
asymptotically stable, similar to the proof of (ii).

(iii) A Hopf bifurcation occurs if and only if there exists a
𝑠 = 𝑠
∗ such that

tr (𝐽∗) = 𝑎
1
− 𝑠
∗
= 0,

𝑑

𝑑𝑠
Re (𝜆 (𝑠))

𝑠=𝑠
∗ ̸= 0, (15)

where 𝜆 is a root of the characteristic equation of 𝐽∗:

𝜆
2
− tr (𝐽∗) 𝜆 + det (𝐽∗) = 0. (16)

The condition 𝑠
∗
= 𝑎
1
gives tr(𝐽∗) = 0. Thus for 𝑠 = 𝑠

∗,
both eigenvalues will be purely imaginary and there are no
other eigenvalues with negative real part. Now we verify the
transversality condition (𝑑/𝑑𝑠)Re(𝜆(𝑠))|

𝑠=𝑠
∗ ̸= 0.

Substituting 𝜆 = 𝛼 + 𝑖𝛽 into the equation 𝜆2 − tr(𝐽∗)𝜆 +
det(𝐽∗) = 0 and separating real and imaginary parts we
obtain

𝛼
2
− 𝛽
2
− 𝛼 tr (𝐽∗) + det (𝐽∗) = 0,

2𝛼𝛽 − 𝛽 tr (𝐽∗) = 0.

(17)

Differentiating (17) both sides with respect to 𝑠, we get

𝜑
𝑑𝛼

𝑑𝑠
− 2𝛽

𝑑𝛽

𝑑𝑠
= 𝛾,

2𝛽
𝑑𝛼

𝑑𝑠
+ 𝜑

𝑑𝛽

𝑑𝑠
= 𝜙,

(18)
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Figure 1: Phase portraits of model (1). The parameters are taken as
𝑟 = 1, 𝑚 = 1, 𝑎 = 0.4, 𝐾 = 4, ℎ = 0.7, 𝑐 = 0.8, 𝑠 = 0.55. 𝐸

0
= (𝐾, 0)

is a saddle point. 𝐸∗ = (0.21053, 0.30075) is locally asymptotically
stable. The dashed curve is the 𝑢-nullcline, and the dotted vertical
line is the V-nullcline.

where 𝜑 = 2𝛼 − tr(𝐽∗), 𝜙 = 𝛼(𝑑(tr(𝐽∗))/𝑑𝑠) − (𝑑(det
(𝐽
∗
))/𝑑𝑠), 𝛾 = 𝛽(𝑑(det(𝐽∗))/𝑑𝑠). Thus, we obtain

𝑑

𝑑𝑠
Re (𝜆 (𝑠))

𝑠=𝑠∗
=

𝛾𝜑 + 2𝛽𝜙

𝜑2 + 4𝛽2

𝑠=𝑠∗
̸= 0, (19)

which verify the transversality condition. Hence, the system
undergoes a Hopf bifurcation at 𝐸∗ as 𝑠 passes through the
value 𝑠∗. This ends the proof.

In Figure 1, we show the phase portraits of (1) with 𝑟 = 1,
𝑚 = 1, 𝑎 = 0.4, 𝐾 = 4, ℎ = 0.7, 𝑐 = 0.8, and 𝑠 = 0.55.
The horizontal axis is the prey population 𝑢, and the vertical
axis is the predator population V. The dashed curve is the 𝑢-
nullcline, and the dotted vertical line is the V-nullcline. It is
easy to see that the equilibrium 𝐸

0
= (4, 0) is a saddle and

𝐸
∗
= (0.21053, 0.30075) is locally asymptotically stable.
Figure 2 illustrates a Hopf-bifurcation situation of the

model around 𝐸
∗

= (0.21053, 0.30075) for 𝑠 = 𝑠
∗

=

0.4912764003. In this case, limit cycle arising through Hopf
bifurcation is a stable limit cycle which attracts all trajectories
starting from a point in the interior of first quadrant.

2.3. The Stability of the Spatial Model (4). In this subsection,
we will focus on the effect of diffusion on the model system
about the positive equilibrium.

Now, we study the nonlinear evolution of a perturbation

𝑈 (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑢
∗
, 𝑉 (𝑥, 𝑡) = V (𝑥, 𝑡) − V

∗ (20)

around 𝐸
∗
= (𝑢
∗
, V∗). The corresponding linearized model

(4) then takes the form
𝜕𝑈

𝑑𝑡
= 𝑑
1
Δ𝑈 + 𝑎

1
𝑈 + 𝑎
2
𝑉,

𝜕𝑉

𝑑𝑡
= 𝑑
2
Δ𝑉 +

𝑠

ℎ
𝑈 − 𝑠𝑉,

(21)

where 𝑎
1
, 𝑎
2
are defined the same as (10).
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Figure 2: Phase portraits of model (1). The parameters are taken
as 𝑟 = 1, 𝑚 = 1, 𝑎 = 0.4, 𝐾 = 4, ℎ = 0.7, 𝑐 = 0.8, 𝑠 =

0.4912764003. Model (1) enters into Hopf bifurcation around 𝐸∗ =
(0.21053, 0.30075), and there is a limit cycle.The dashed curve is the
𝑢-nullcline, and the dotted vertical line is the V-nullcline.

We use [⋅, ⋅] to denote a column vector, and let

w (𝑥, 𝑡) = [𝑈 (𝑥, 𝑡) , 𝑉 (𝑥, 𝑡)] . (22)

Let q = (𝑞
1
, 𝑞
2
) ∈ Ω and

𝑒q (𝑥) =
2

∏

𝑖=1

cos (𝑞
𝑖
𝑥
𝑖
) . (23)

Then {𝑒q(𝑥)}q∈Ω forms a basis of the space of functions in
R2 that satisfy zero-flux boundary conditions. We look for a
normalmode corresponding tomodel (21) as following form:

w (𝑥, 𝑡) = rq exp (𝜆q𝑡) 𝑒q (𝑥) , (24)

where rq is a vector depending on q. Plugging (24) intomodel
(21) yields

𝜆qrq = (

−𝑑
1
𝑞
2
+ 𝑎
1

𝑎
2

𝑠

ℎ
−𝑑
2
𝑞
2
− 𝑠

) rq, (25)

where 𝑞2 = 𝑞
2

1
+𝑞
2

2
. A nontrivial normalmode can be obtained

by setting

det(
𝜆q + 𝑑1𝑞

2
− 𝑎
1

−𝑎
2

−
𝑠

ℎ
𝜆q + 𝑑2𝑞

2
+ 𝑠

) = 0. (26)

This leads to the following dispersion formula for 𝜆q:

𝜆
2

q + 𝜌1𝜆q + 𝜌2 = 0, (27)

where

𝜌
1
= (𝑑
1
+ 𝑑
2
) 𝑞
2
− 𝑎
1
+ 𝑠,

𝜌
2
= 𝑑
1
𝑑
2
𝑞
4
+ (𝑑
1
𝑠 − 𝑑
2
𝑎
1
) 𝑞
2
+ 𝑠 (

𝑎
2

ℎ
− 𝑎
1
) .

(28)

Mathematically speaking, a positive equilibrium 𝐸
∗ of

model (4) is Turing unstable, which means that it is an
asymptotically stable steady-state solution of the model (1)
without diffusion but is unstable with respect to the solutions
of the model (4) with diffusion.

Therefore, the Turing instability sets in when at least one
of the following conditions is violated:

𝜌
1
< 0, 𝜌

2
> 0. (29)

But it is evident that 𝜌
1
< 0 is not violated if 𝑠 − 𝑎

1
< 0. Hence

only the violation of condition 𝜌
2
> 0 gives rise to diffusion

instability. As a consequence, a necessary condition is

𝑑
1
𝑠 < 𝑑
2
𝑎
1
. (30)

Otherwise 𝜌
2
> 0 for all 𝑞 > 0. For instability we must have

𝜌
2
< 0 for some 𝑞 > 0, and we notice that 𝜌

2
achieves its

minimum:

min
𝑝∈R+

𝜌
2
= −

(𝑑
1
𝑠 − 𝑑
2
𝑎
1
)
2

4𝑑
1
𝑑
2

+ 𝑠 (
𝑎
2

ℎ
− 𝑎
1
) , (31)

at the critical value 𝑝2
𝑐
> 0 when

𝑝
2

𝑐
=
𝑑
2
𝑎
1
− 𝑑
1
𝑠

2𝑑
1
𝑑
2

> 0. (32)

Summarizing the previous calculation, we conclude the
following theorem.

Theorem 2. Assume that

(A1) 𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟) < 𝑟(𝑎 + ℎ)
2
(𝑟 + 𝑠 + 𝑐𝑠),

(A2) 𝑟(𝑎+ ℎ)2(𝑑
1
𝑠(1+ 𝑐)+𝑑

2
𝑟)

+ 2√𝑑
1
𝑑
2
𝑟𝑠(1+𝑐)(𝑎 + ℎ)

2
(𝑎𝑟+ℎ𝑟 − 𝑚)(𝑎𝑟+ℎ𝑟+𝑐𝑚)

< 𝑑
2
𝑚(𝑎𝑟 + 𝑐𝑚 + 2ℎ𝑟 − 𝑎𝑐𝑟).

Then the positive equilibrium 𝐸
∗ of model (4) is Turing

unstable.

From Theorem 2, we can know that there is Turing
instability in model (4) if conditions (A1) and (A2) hold. In
this situation, the solutions to model (4) may be unstable and
Turing patterns can emerge in the model.

3. Turing Pattern Formation

In this section, we perform extensive numerical simulations
of the spatially extendedmodel (4) in two-dimensional space,
and the qualitative results are shown here. All our numerical
simulations employ the zero-flux boundary conditions with
a system size of 100 × 100. Other parameters are set as

𝑟 = 1, 𝑚 = 1, 𝑎 = 0.4, 𝐾 = 4,

ℎ = 0.7, 𝑐 = 0.8, 𝑑
1
= 0.025, 𝑑

2
= 1.

(33)

The numerical integration of model (4) is performed by
using a finite difference approximation for the spatial deriva-
tives and an explicit Euler method for the time integration
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Figure 3: Stripes pattern formation for model (4) by taking 𝑠 = 1. Other parameters are fixed as (33). Times: (a) 0; (b) 50; (c) 250; (d) 2500.

[35] with a time step size of 1/100. The initial condition
is always a small amplitude random perturbation around
the positive constant steady-state solution 𝐸

∗
= (𝑢
∗
, V∗).

After the initial period during which the perturbation spread,
the model either goes to a time-dependent state or to an
essentially steady-state solution (time independent).

We use the standard five-point approximation [36] for the
2D Laplacian with the zero-flux boundary conditions. More
precisely, the concentrations (𝑢𝑛+1

𝑖,𝑗
, V𝑛+1
𝑖,𝑗

) at the moment (𝑛 +
1)𝜏 at the mesh position (𝑥

𝑖
, 𝑦
𝑗
) are given by

𝑢
𝑛+1

𝑖,𝑗
= 𝑢
𝑛

𝑖,𝑗
+ 𝜏𝑑
1
Δ
𝑒
𝑢
𝑛

𝑖,𝑗
+ 𝜏𝑓 (𝑢

𝑛

𝑖,𝑗
, V
𝑛

𝑖,𝑗
) ,

V
𝑛+1

𝑖,𝑗
= V
𝑛

𝑖,𝑗
+ 𝜏𝑑
2
Δ
𝑒
V
𝑛

𝑖,𝑗
+ 𝜏𝑔 (𝑢

𝑛

𝑖,𝑗
, V
𝑛

𝑖,𝑗
) ,

(34)

with the Laplacian defined by

Δ
𝑒
𝑢
𝑛

𝑖,𝑗
=
𝑢
𝑛

𝑖+1,𝑗
+ 𝑢
𝑛

𝑖−1,𝑗
+ 𝑢
𝑛

𝑖,𝑗+1
+ 𝑢
𝑛

𝑖,𝑗−1
− 4𝑢
𝑛

𝑖,𝑗

𝑒2
, (35)

where 𝑓(𝑢, V) = (𝑟𝑢(𝐾 − 𝑢)/(𝐾 + 𝑐𝑢)) − (𝑚𝑢V/(𝑢 + 𝑎V)),
𝑔(𝑢, V) = 𝑠V(1 − (ℎV/𝑢)), and the space step size 𝑒 = 1/3.

In the numerical simulations, different types of dynamics
are observed and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance. We have taken some snapshots with red (blue)
corresponding to the high (low) value of prey 𝑢.

Now, we show the Turing patterns for the different values
of the control parameter 𝑠. Via numerical simulations, one
can see that the model dynamics exhibits spatiotemporal
complexity of pattern formation, including stripes, stripes-
spots mixtures, and spots Turing patterns.

In Figure 3, with 𝑠 = 1, starting with a homogeneous state
𝐸
∗
= (0.21, 0.3) (cf. Figure 3(a)), the random perturbations

lead to the formation to stripes spots (cf. Figure 3(c)), and the
latter random perturbations make these spots decay, ending
with the time-independent stripes pattern (cf. Figure 3(d)).
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Figure 4: Stripes-spots mixtures pattern formation for model (4) by taking 𝑠 = 1.375. Other parameters are fixed as (33). Times: (a) 0; (b)
50; (c) 250; (d) 2500.

In Figure 4, with 𝑠 = 1.375, we show the stripes-spots
mixtures pattern for model (4).

Figure 5 shows the time process of spots pattern forma-
tion of prey 𝑢 for 𝑠 = 2.5. In this case, the pattern takes a long
time to settle down, starting with a homogeneous state 𝐸∗ =
(0.21, 0.3) (cf. Figure 5(a)), and the random perturbations
lead to the formation of stripes and spots (cf. Figure 5(b)),
endingwith spots only (cf. Figure 5(d))—the prey 𝑢 is isolated
zones with high population density, and the remainder region
is of low density.

From Figure 3 to Figure 5, we can see that, on increasing
the control parameter 𝑠 from 1 to 2.5, the pattern sequence
“stripe → stripes-spots mixtures → spots” can be observed.

4. Conclusions and Remarks

In summary, in this paper, we have investigated the spa-
tiotemporal dynamics of a diffusive predator-prey model

where the interaction between prey and predator follows
Holling-Tanner formulation with ratio-dependent functional
response and Smith growth. The value of this study is
threefold. First, it presents the conditions for the stability
of the equilibrium and the existence of Hopf bifurcation for
the nonspatial model. Second, it rigorously proves Turing
instability by linear stability analysis for the spatial model.
Third, it illustrates the Turing pattern formation via numeri-
cal simulations, which shows that the spatial model dynamics
exhibits complex pattern replication.

By a series of numerical simulations, we find that the
spatial model (4) has rich Turing pattern replications, such
as stripes, stripes-spots mixtures, and spots patterns. In the
viewpoint of population ecology, in the case of stripe pattern
(cf. Figure 3), the prey 𝑢 is the isolated “stripes-like region”
with high density, and the remainder stripes-like region is of
low density. And in the case of spots pattern (cf. Figure 5), the
prey 𝑢 is the isolated “cycle region” with high density, and the
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Figure 5: Spots pattern formation for model (4) by taking 𝑠 = 2.5. Other parameters are fixed as (33). Times: (a) 0; (b) 50; (c) 250; (d) 2500.

remainder region is of low density, which is larger than the
“spots” region.
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