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This paper studies a small neural network with three neurons. First, the activation function takes the sign function. Although the
network is a simple hybrid systemwith all subsystems being exponentially stable, we find that it can exhibit very complex dynamics
such as limit cycles and chaos. Since the sign function is a limit case of sigmoidal functions, we find that chaos robustly exists with
some different activation functions, which implies that such chaos in this network is more related to its weight matrix than the type
of activation functions. For chaos, we present a rigorous computer-assisted study by virtue of topological horseshoe theory.

1. Introduction

Since substantial evidence of chaos is found in biological
studies of natural neuronal systems, researchers have realized
that chaos is much helpful for neural networks escaping the
localminima andmay play an essential role in the storage and
retrieval of information [1–3].Thus, a thorough investigation
on chaotic dynamics of neural networks is significant for neu-
ral networks studies, which has become a popular research
field in recent decades. A lot of artificial neural networks have
been proposed in order to realize chaotic and hyperchaotic
attractors [4–12].

Generally, neural networks in real world have very high
dimension, which is too hard to study. Fortunately, research
in anatomy and physiology shows that neurons in biological
brains are grouped together into functional circuits [13, 14].
This implies that a first step before studying chaos in high-
dimensional neural networks should be to have detailed
investigations on chaos in low-dimensional networks with
only a few nerons [15–19].

The nonlinearity of neural systems usually comes from
the activation functions, which is the reason causing chaos.
There are many types of sigmoid functions used in literature,

such as the hyperbolic tangent function, piecewise linear
functions, the Logistic (sigmoid) function, and the sign
functions. So, we are interested in whether chaos in a neural
network can take place with all these functions or whether
chaos can take place for any type sigmoidal activation func-
tion.

In order to answer the two questions, this paper will
take a limit of the sigmoidal functions by zooming out the
input scale and study a small Hopfield neural network (HNN)
with hard switches. Such sign function is not only extremely
easy to implement, but also of dynamical and biological
significance in gene regulatory networks [4, 5]. An interesting
phenomenon we find in this paper is that the HNN can
demonstrate chaos, although it is a switching system that only
consisted of stable subsystems; such chaos still exists even
whenwe replace the sign functionwithmany other activation
functions.

The following paper is organized as follows. Section 2
presents the HNN and demonstrates its chaotic behavior
with different activation functions; Section 3 first recalls some
theoretical results of topological horseshoe and then presents
computer-assisted proof of the existence of chaos; Section 4
draws conclusions.
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2. Chaos in the Small Network with
Different Activation Functions

TheHopfield neural network is described by [20]
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an 𝑛 × 𝑛 matrix, called weight matrix or connection matrix
describing the strength of connections between neurons.

In this paper, we only consider three neurons, that is,
𝑛 = 3 and take 𝑏
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= 0, then the small network can be written

with the following equation in vector form:
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−0.97 0.31 + 𝑝 0.05
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) , (3)

where 𝑝 is a parameter. Then we can easily solve the isolated
equilibrium points of (2) while the parameter 𝑝 from −∞

to +∞, as illustrated in Table 1. Since (2) is symmetric with
respect to the origin, its equilibria appears in pairs, and
the origin is always an equilibrium. Numerical computation
suggests that the origin is always unstable. Since 𝑓 only takes
value of −1, 0, and 1, it is easy to see from the equation that
the other equilibria are always exponentially stable.

To explore complex dynamics in (2), we simulate the
system with 𝑝 < 0.61 then numerically find that there are
limit circles and strange attractors, as illustrated with the
bifurcation plot in Figure 1.The dynamics relies greatly on its
initial condition; that is, different initial value may result in
different kind of dynamics. During our simulation, we chose
𝑥(0) = [0.2, 0.3, −0.4]

𝑇. The bifurcation diagram indicates
that the system (2) is very likely to be chaotic when 𝑝 is near
to zero.

After careful numerical computation,we obtain an invari-
ant set called attractor in the sense that almost every trajec-
tory with initial point near this set tends to this set, while this
set contains a trajectory, that is, dense in it, as illustrated in
Figure 2 for 𝑝 = 0. It seems a chaotic attractor. In the next
section, wewill prove that this attractor is indeed chaotic with
the topological horseshoe theory.

Since the sign function is a limit of most sigmoidal func-
tions with large-scale input, we in this section will study exis-
tence of chaos for the HNN (1) with other sigmoidal activa-
tion function. For this purpose, we considerate the following
equations:

�̇� = − diag (𝑎) 𝑥 +𝑊𝑓 (𝑘𝑥) , (4)

where 𝑘 is a positive scale factor. Replacing 𝑥 with 𝑘−1𝑥, we
have the equivalent system

�̇� = − diag (𝑎) 𝑥 + 𝑘𝑊𝑓 (𝑥) . (5)
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Table 1: Equilibrium points of (2) as we adjust 𝑝 from −∞ to +∞.

Region of 𝑝 Number of isolated
equilibrium points Stable Unstable

𝑝 ≤ 0.61
1

0 1

0.61 < 𝑝 < 0.71
3

2 1

0.71 ≤ 𝑝
5

4 1

So for any type sigmoidal activation function𝑓(𝑥)with its
output range from −1 to 1, if 𝑘 is great enough, 𝑓(𝑘𝑥) will
be sufficiently close to the discontinuous sign function. The
robustness of (2) suggests that (4) could exhibit chaos with
the same weight matrix (3). Taking the consideration of the
bias, (1) may exhibit chaos for any type sigmoidal activation
function when 𝑛 = 3.

To illustrate this fact, we will give examples with a hyper-
bolic tangent function, a Logistic function, a piecewise linear
function, and a very complicated function.

Case 1. 𝑓 takes the hyperbolic tangent function. Let 𝑓(𝑥) =
tanh(𝑥). In order to make the neural system (5) chaos, we
take 𝑘 = 60. Then we get an attractor shown in Figure 3. The
Lyapunov exponents are 0.156, 0.000, and −1.4273. The first
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Figure 3:The phase portrait of (5) with 𝑓(𝑥) = tanh(𝑥) and 𝑘 = 60.
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and 𝑘 = 60.

one is positive showing that the attractor is most likely
chaotic.

Case 2. 𝑓 takes the Logistic (sigmoid) function. Take 𝑓(𝑥) =
1/(1+𝑒

−𝑥
) = 0.5 tanh(𝑥)+0.5, then tanh(𝑥) = 2𝑓(𝑥)+1. From

the previous subsection, we have a Hopfield neural network
with the Logistic (sigmoid) activation function:

�̇� = − diag (𝑎) 𝑥 + 2𝑘𝑊𝑓 (𝑥) + 𝑏. (6)

Here, 𝑏 = 𝑘𝑊[1, 1, 1]𝑇 is the bias.

Case 3. 𝑓 is a piecewise linear function. Let 𝑓(𝑥) = 0.5(|𝑥 +
1| − |𝑥 − 1|). In order to make the neural system (5) chaos, we
also take 𝑘 = 60. Then we get an attractor shown in Figure 4.
The three Lyapunov exponents are 0.169, 0.000, and −1.450.
The first one is positive suggesting the attractor is chaotic.

Case 4. 𝑓 is a complicated piecewise linear function. For the
system (4) and the weight matrix (3) at 𝑝 = 0, we take a more
complicated 𝑓(𝑥

𝑖
) randomly as shown in Figure 5. Let 𝑘 =

100, a chaotic attractor appears as shown in Figure 6. Since
the activation function is too complicate, it is not easy to
compute the Lyapunov exponent of the attractor in Figure 6
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with enough accuracy; so, in next section we will prove that
this attractor is indeed chaotic with the topological horseshoe
theory.

It is clear to see from Figures 3 to 6 that although their
activation functions are much different, the chaotic attractor
exists in all four cases and they all look similar. All the
above four cases suggest that the existence of chaos in this
neural network is robust on the type of activation functions.
In another word, the complex dynamics of a small neural
network should be more related to its weight matrix.

3. Computer-Assisted Proof of Chaos

The existence of a topological horseshoe is recognized as
one of the most important signatures of chaos. With the
horseshoe theory, one can not only prove chaos rigorously but
also reveal the mechanism of chaos with its invariant set. So
we will present computer-assisted proof of chaos in the HNN
in this section. First, let us recall a theorem on topological
horseshoe and the m-shift and then present our main results.

Let 𝑋 be a metric space, 𝑄 is a compact subset of 𝑋, and
𝑔 : 𝑄 → 𝑋 is map satisfying the assumption that there exist
𝑚mutually disjoint compact subsets𝑄

1
, 𝑄

2
, . . . , 𝑄

𝑚
of𝑄, the

restriction of 𝑔 to each 𝑄
𝑖
, that is, 𝑔 | 𝑄

𝑖
is continuous.

Definition 1. Let 𝛾 be a compact subset of 𝑄, such that for
each 1 ≤ 𝑖 ≤ 𝑚, 𝛾

𝑖
= 𝛾 ∩ 𝑄

𝑖
is nonempty and compact; then
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Theorem 2. Suppose that there exists a 𝑔-connected family
with respect to 𝑄
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𝑚
. Then there exists a compact

invariant set 𝐾 ⊂ 𝑄, such that 𝐾 is semiconjugate to𝑚-shift.

In this theorem, the 𝑚-shift is also called Bernoulli shift
sometimes, denoted by 𝜎 : Σ
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→ Σ
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and the shift map 𝜎 is defined as

𝜎 (𝑠) = {. . . , 𝑠−𝑛+1
, . . . , 𝑠

0
; 𝑠

1
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It is well known that Σ
𝑚
is a Cantor set, which is compact,

totally disconnected, and perfect. As a dynamical system
defined on Σ

𝑚
, 𝜎 has a countable infinity of periodic orbits

consisting of orbits of all periods, an uncountable infinity
of aperiodic orbits, and a dense orbit. A direct consequence
of these three properties is that the dynamics generated by
the shift map is sensitive to initial conditions. Since 𝑔 is
topologically semiconjugate to 𝜎, which means that there
exists a continuous surjection ℎ : Σ

𝑚
→ 𝑋 such that

𝑓 ∘ ℎ = ℎ ∘ 𝜎, 𝑔 must be also sensitive to initial conditions.
Mathematically, the complexity of the system 𝑔 can be
measured by its topological entropy, which roughly means
the exponential growth rate of the number of distinguishable
orbits as time advances. As another result of the semiconju-
gate, the topological entropy of 𝑔, denoted by ent(𝑔), is not
less then 𝑚. When 𝑚 > 1, ent(𝑔) > 0, therefore the system
is chaotic. For more details of the above symbolic dynamics
and horseshoe theory, we refer the reader to [21–24].

In what follows we will study existence of horseshoes
embedded in the attractor in Figure 2. For this purpose, we
will utilize the technique of cross section and the correspond-
ing Poincaré map. Consider the section plane 𝑃 : 𝑥

3
= 0.2, as

shown in Figure 2.The Poincaré map 𝜋 : 𝑃 → 𝑃 is chosen as
follows. For each 𝑥 ∈ 𝑃, 𝜋(𝑥) is taken to be the second return
point in 𝑃 under the flow with the initial condition 𝑥.

To find the horseshoe, we use the efficient method
proposed in [21, 25] which has been implemented with a
MATLAB toolbox called “a toolbox for finding horseshoes
in 2Dmap” (download: http://www.mathworks.com/matlab-
central/fileexchange/14075).Themethod is so powerful that it
has been successfully applied in a number of chaotic systems
[26–29], a fractional-order system [30],even a hyperchaotic
system [31].
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Generally, (2) can be regarded as a switching system
consisting of eight very simple continuous subsystems and
12 quarter planes called switching planes; for detail, see [5].
In this system, every trajectory in the neighborhood of the
attractor transversely intersects with the switching plane, and
the Poincaré map 𝜋 can be regarded as a composition of
a series of continuous submaps by the subsystems. Since
each subsystem is linear, it is easy to prove that for the
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It is easy to see fromTheorem 3 that the entropy of𝜋 is not
less than log 2, so the attractor in Figure 2 is a chaotic attractor
indeed.

So we can prove the existence of chaos in the attractor
shown in Figure 6 by the same way in Section 3. The new
vertices of the two subsets |𝐴

1
𝐵

1
𝐶

1
𝐷

1
| and |𝐴

2
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2
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2
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2
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(12)

The images of |𝐴
1
𝐵

1
𝐶

1
𝐷

1
| and |𝐴

2
𝐵

2
𝐶

2
𝐷

2
| are shown

in Figure 9, from which we can see easily that the images
of |𝐴

1
𝐵

1
𝐶

1
𝐷

1
| and |𝐴

2
𝐵

2
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2
𝐷
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| across simultaneously
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1
𝐶

1
𝐷

1
| and |𝐴

2
𝐵

2
𝐶

2
𝐷

2
|, that is, analogous to Fig-

ures 7 and 8. From Theorem 2, we infer that there exists
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Figure 9: The new topological horseshoe.

a 𝛽-connected family with respect to |𝐴

1
𝐵

1
𝐶

1
𝐷

1
| and

|𝐴

2
𝐵

2
𝐶

2
𝐷

2
|, where 𝛽 is the corresponding Poincaré map.

From the topological horseshoe theory we have ent(𝜋) ⩾
log 2 after similar arguments. The positive entropy suggests
that the attractor in Figure 6 is chaotic indeed.

4. Conclusions

In this paper, we have studied a 3D Hopfield neural network
with the sign activation function. Computer simulation
shows that this HNN can exhibit chaotic attractors and
limit cycles with respect to 𝑝. In order to verify the chaotic
behavior, we present a computer-assisted verification for the
existence of horseshoes imbedded in this system. We also
show evidence that chaos could possibly be exhibited by
the HNN with any type of sigmoidal activation function. In
another word, such chaos should bemore related to its weight
matrix than the type of activation functions. In addition,
since the HNN is a switching system only consisting of stable
subsystems, this fact suggests that the dynamics of a hybrid
system could be much more complex than we used to think.
This may be of interest to researchers of neural networks,
nonlinear dynamics, and so on.
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