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By constructing a suitable Lyapunov function and using the comparison theorem of difference equation, sufficient conditions which
ensure the permanence and global attractivity of the discrete predator-prey system with Hassell-Varley-Holling III type functional
response are obtained. An example together with its numerical simulation shows that the main results are verifiable.

1. Introduction

Recently, there were many works on predator-prey system
done by scholars [1–6]. In particular, since Hassell-Varley [7]
proposed a general predator-prey model with Hassell-Varley
type functional response in 1969, many excellent works have
been conducted for the Hassell-Varley type system [1, 7–13].

Liu and Huang [8] studied the following discrete pre-
dator-prey system with Hassell-Varley-Holling III type func-
tional response:

𝑥 (𝑘 + 1)

=𝑥 (𝑘) exp{𝑎 (𝑘) − 𝑏 (𝑘) 𝑥 (𝑘) −

𝐴 (𝑘) 𝑥 (𝑘) 𝑦 (𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

} ,

𝑦 (𝑘 + 1)

=𝑦 (𝑘) exp{−𝑑 (𝑘)+

𝐵 (𝑘) 𝑥
2
(𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

} , 𝑅 ∈ (0, 1) ,

(1)

where 𝑥(𝑘), 𝑦(𝑘) denote the density of prey and predator
species at the 𝑘th generation, respectively. 𝑎, 𝑏, 𝐴, 𝑟, 𝑑, 𝐵 are
all periodic positive sequences with common period𝑋. Here
𝑎(𝑘) represents the intrinsic growth rate of prey species at the
𝑘th generation, and 𝑏(𝑘) measures the intraspecific effects of

the 𝑘th generation of prey species on their own population;
𝑑(𝑘) is the death rate of the predator; 𝐴(𝑘) is the capturing
rate; 𝐵(𝑘) is the maximal growth rate of the predator. Liu
and Huang obtained the necessary and sufficient conditions
for the existences of positive periodic solutions by applying
a new estimation technique of solutions and the invariance
property of homotopy. As we know, the persistent property is
one of the most important topics in the study of population
dynamics. For more papers on permanence and extinction
of population dynamics, one could refer to [2–5, 14–17] and
the references cited therein. The purpose of this paper is to
investigate permanence and global attractivity of this system.

We argue that a general nonautonomous nonperiodic sys-
tem is more appropriate, and thus, we assume that the coeffi-
cients of system (1) satisfy the following:

(A) 𝑎, 𝑏, 𝐴, 𝑟, 𝑑, 𝐵 are nonnegative sequences bounded
above and below by positive constants.

By the biological meaning, we consider (1) together with
the following initial conditions as

𝑥 (0) > 0, 𝑦 (0) > 0. (2)

For the rest of the paper, we use the following notations:
for any bounded sequence {ℎ(𝑘)}, set ℎ𝑢 = sup

𝑘∈𝑁
{ℎ(𝑘)} and

ℎ
𝑙
= inf
𝑘∈𝑁

{ℎ(𝑘)}.
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2. Permanence

Now, let us state several lemmas which will be useful to prove
our main conclusion.

Definition 1 (see [5]). System (1) said to be permanent if there
exist positive constants 𝑚 and 𝑀, which are independent of
the solution of system (1), such that for any positive solution
{𝑥(𝑘), 𝑦(𝑘)} of system (1) satisfies

𝑚 ≤ lim inf
𝑘→+∞

{𝑥 (𝑘) , 𝑦 (𝑘)} ≤ lim sup
𝑘→+∞

{𝑥 (𝑘) , 𝑦 (𝑘)} ≤ 𝑀.

(3)

Lemma 2 (see [14]). Assume that {𝑥(𝑘)} satisfies 𝑥(𝑘) > 0 and

𝑥 (𝑘 + 1) ≤ 𝑥 (𝑘) exp {𝑎 (𝑘) − 𝑏 (𝑘) 𝑥 (𝑘)} , (4)

for 𝑘 ∈ 𝑁, where 𝑎(𝑘) and 𝑏(𝑘) are all nonnegative sequences
bounded above and below by positive constants. Then,

lim sup
𝑘→+∞

𝑥 (𝑘) ≤

1

𝑏
𝑙
exp (𝑎

𝑢
− 1) . (5)

Lemma 3 (see [14]). Assume that {𝑥(𝑘)} satisfies

𝑥 (𝑘 + 1) ≥ 𝑥 (𝑘) exp {𝑎 (𝑘) − 𝑏 (𝑘) 𝑥 (𝑘)} , 𝑘 ≥ 𝑁
0
, (6)

lim sup
𝑘→+∞

𝑥(𝑘) ≤ 𝑥
∗, and 𝑥(𝑁

0
) > 0, where 𝑎(𝑘) and 𝑏(𝑘)

are all nonnegative sequences bounded above and below by
positive constants and𝑁

0
∈ 𝑁. Then,

lim inf
𝑘→+∞

𝑥 (𝑘) ≥ min{

𝑎
𝑙

𝑏
𝑢
exp {𝑎

𝑙
− 𝑏
𝑢
𝑥
∗
} ,

𝑎
𝑙

𝑏
𝑢
} . (7)

Theorem 4. Assume that

𝑎
𝑙
−

𝐴
𝑢
𝑀
1−𝑅

2

2√𝑟
𝑙

> 0, (𝐻1)

𝐵
𝑙
− 𝑑
𝑢
𝑟
𝑢
> 0 (𝐻2)

hold, then system (1) is permanent, that is, for any positive solu-
tion {𝑥(𝑘), 𝑦(𝑘)} of system (1), one has

𝑚
1
≤ lim inf
𝑘→+∞

𝑥 (𝑘) ≤ lim sup
𝑘→+∞

𝑥 (𝑘) ≤ 𝑀
1
,

𝑚
2
≤ lim inf
𝑘→+∞

𝑦 (𝑘) ≤ lim sup
𝑘→+∞

𝑦 (𝑘) ≤ 𝑀
2
,

(8)

where

𝑚
1
=

𝑎
𝑙
− (𝐴
𝑢
𝑀
1−𝑅

2
/2√𝑟
𝑙
)

𝑏
𝑢

× exp{𝑎
𝑙
−

𝐴
𝑢
𝑀
1−𝑅

2

2√𝑟
𝑙

− 𝑏
𝑢
𝑀
1
} ,

𝑚
2
= min

{

{

{

{

(𝐵
𝑙
− 𝑟
𝑢
𝑑
𝑢
)𝑚
2

1

𝑑
𝑢

}

1/2𝑅

, {

(𝐵
𝑙
− 𝑟
𝑢
𝑑
𝑢
)𝑚
2

1

𝑑
𝑢

}

1/2𝑅

× exp{−𝑑
𝑢
+

𝐵
𝑙
𝑚
2

1

𝑟
𝑢
𝑚
2

1
+ 𝑀
2𝑅

2

}

}

}

}

,

𝑀
1
=

1

𝑏
𝑙
exp (𝑎

𝑢
− 1) ,

𝑀
2
= {

𝐵
𝑢
𝑀
2

1

𝑑
𝑙

}

1/2𝑅

exp{−𝑑
𝑙
+

𝐵
𝑢

𝑟
𝑙
} .

(9)

Proof. We divided the proof into four steps.

Step 1. We show

lim sup
𝑘→+∞

𝑥 (𝑘) ≤ 𝑀
1
. (10)

From the first equation of (1), we have

𝑥 (𝑘 + 1) ≤ 𝑥 (𝑘) exp {𝑎 (𝑘) − 𝑏 (𝑘) 𝑥 (𝑘)} . (11)

By Lemma 2, we have

lim sup
𝑘→+∞

𝑥 (𝑘) ≤

1

𝑏
𝑙
exp (𝑎

𝑢
− 1) = 𝑀

1
. (12)

Previous inequality shows that for any 𝜀 > 0, there exists a
𝑘
1
> 0, such that

𝑥 (𝑘) ≤ 𝑀
1
+ 𝜀, ∀𝑘 ≥ 𝑘

1
. (13)

Step 2. We prove lim sup
𝑘→+∞

𝑦(𝑘) ≤ 𝑀
2
by distinguishing

two cases.

Case 1. There exists a 𝑙
0
≥ 𝑘
1
, such that 𝑦(𝑙

0
+ 1) ≥ 𝑦(𝑙

0
).

By the second equation of system (1), we have

−𝑑 (𝑙
0
) +

𝐵 (𝑙
0
) 𝑥
2
(𝑙
0
)

𝑟 (𝑙
0
) 𝑥
2
(𝑙
0
) + 𝑦
2𝑅

(𝑙
0
)

≥ 0, (14)

which implies

−𝑑 (𝑙
0
) +

𝐵 (𝑙
0
) 𝑥
2
(𝑙
0
)

𝑦
2𝑅

(𝑙
0
)

≥ 0. (15)
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The previous inequality combined with (13) leads to 𝑦(𝑙
0
) ≤

{𝐵
𝑢
(𝑀
1
+ 𝜀)
2
/𝑑
𝑙
}

1/2𝑅

. Thus, from the second equation of sys-
tem (1), again we have

𝑦 (𝑙
0
+ 1)

= 𝑦 (𝑙
0
) exp{−𝑑 (𝑙

0
) +

𝐵 (𝑙
0
) 𝑥
2
(𝑙
0
)

𝑟 (𝑙
0
) 𝑥
2
(𝑙
0
) + 𝑦
2𝑅

(𝑙
0
)

}

≤ {

𝐵
𝑢
(𝑀
1
+ 𝜀)
2

𝑑
𝑙

}

1/2𝑅

exp{−𝑑
𝑙
+

𝐵
𝑢

𝑟
𝑙
}

def
= 𝑀
2𝜀
.

(16)

We claim that

𝑦 (𝑘) ≤ 𝑀
2𝜀

∀𝑘 ≥ 𝑙
0
. (17)

By a way of contradiction, assume that there exists a 𝑝
0

≥

𝑙
0
such that 𝑦(𝑝

0
) > 𝑀

2𝜀
. Then 𝑝

0
≥ 𝑙
0
+ 2. Let 𝑝

0
≥

𝑙
0
+ 2 be the smallest integer such that 𝑦(𝑝

0
) > 𝑀

2𝜀
. Then

𝑦(𝑝
0
) > 𝑦(𝑝

0
− 1). The previous argument produces that

𝑦(𝑝
0
) ≤ 𝑀

2𝜀
, a contradiction. This proves the claim. There-

fore, lim sup
𝑘→+∞

𝑦(𝑘) ≤ 𝑀
2𝜀
. Setting 𝜀 → 0 in it leads to

lim sup
𝑘→+∞

𝑦(𝑘) ≤ 𝑀
2
.

Case 2. Suppose 𝑦(𝑘 + 1) < 𝑦(𝑘) for all 𝑘 ≥ 𝑘
1
. Since 𝑦(𝑘)

is nonincreasing and has a lower bound 0, we know that
lim
𝑘→+∞

𝑦(𝑘) exists, denoted by 𝑦, we claim that

𝑦 ≤ {

𝐵
𝑢
𝑀
2

1

𝑑
𝑙

}

1/2𝑅

. (18)

By a way of contradiction, assume that 𝑦 > {𝐵
𝑢
𝑀
2

1
/𝑑
𝑙
}
1/2𝑅.

Taking limit in the second equation in system (1) gives

lim
𝑘→+∞

{−𝑑 (𝑘) +

𝐵 (𝑘) 𝑥
2
(𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

} = 0, (19)

however,

lim
𝑘→+∞

{−𝑑 (𝑘) +

𝐵 (𝑘) 𝑥
2
(𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

}

≤ lim sup
𝑘→+∞

{−𝑑 (𝑘) +

𝐵 (𝑘) 𝑥
2
(𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

}

≤ −𝑑
𝑙
+

𝐵
𝑢
𝑀
2

1

𝑦
2𝑅

< 0,

(20)

which is a contradiction. It implies that 𝑦 ≤ {𝐵
𝑢
𝑀
2

1
/𝑑
𝑙
}
1/2𝑅.

By the fact 𝐵𝑢 > 𝑑
𝑙
𝑟
𝑙, we obtain that

𝑦 ≤ {

𝐵
𝑢
𝑀
2

1

𝑑
𝑙

}

1/2𝑅

≤ {

𝐵
𝑢
𝑀
2

1

𝑑
𝑙

}

1/2𝑅

exp{−𝑑
𝑙
+

𝐵
𝑢

𝑟
𝑙
} = 𝑀

2
.

(21)

Therefore, we have

lim
𝑘→+∞

𝑦 (𝑘) = 𝑦 ≤ 𝑀
2
. (22)

Then,

lim sup
𝑘→+∞

𝑦 (𝑘) ≤ 𝑀
2
. (23)

Step 3. We verify

lim inf
𝑘→+∞

𝑥 (𝑘) ≥ 𝑚
1
. (24)

Conditions (𝐻1) imply that for enough small positive con-
stant 𝜀, we have

𝑎
𝑙
−

𝐴
𝑢
(𝑀
2
+ 𝜀)
1−𝑅

2√𝑟
𝑙

> 0. (25)

For the previous 𝜀, it follows from Steps 1 and 2 that there
exists a 𝑘

2
such that for all 𝑘 ≥ 𝑘

2

𝑥 (𝑘) ≤ 𝑀
1
+ 𝜀, 𝑦 (𝑘) ≤ 𝑀

2
+ 𝜀. (26)

Then, for 𝑘 ≥ 𝑘
2
, it follows from (26) and the first equation of

system (1) that

𝑥 (𝑘 + 1) ≥ 𝑥 (𝑘) exp{𝑎
𝑙
−

𝐴
𝑢
(𝑀
2
+ 𝜀)
1−𝑅

2√𝑟
𝑙

− 𝑏
𝑢
𝑥 (𝑘)} .

(27)

According to Lemma 3, one has

lim inf
𝑘→+∞

𝑥 (𝑘)

≥ min{𝑚
1∗
,

𝑎
𝑙
− 𝐴
𝑢
(𝑀
2
+ 𝜀)
1−𝑅

/2√𝑟
𝑙

𝑏
𝑢

}

= 𝑚
1∗
,

(28)

where

𝑚
1∗

=

𝑎
𝑙
− 𝐴
𝑢
(𝑀
2
+ 𝜀)
1−𝑅

/2√𝑟
𝑙

𝑏
𝑢

× exp{𝑎
𝑙
−

𝐴
𝑢
(𝑀
2
+ 𝜀)
1−𝑅

2√𝑟
𝑙

− 𝑏
𝑢
(𝑀
1
+ 𝜀)} .

(29)

Setting 𝜀 → 0 in (28) leads to

lim inf
𝑘→+∞

𝑥 (𝑘) ≥

𝑎
𝑙
− 𝐴
𝑢
𝑀
1−𝑅

2
/2√𝑟
𝑙

𝑏
𝑢

× exp{𝑎
𝑙
−

𝐴
𝑢
𝑀
1−𝑅

2

2√𝑟
𝑙

− 𝑏
𝑢
𝑀
1
} = 𝑚

1
.

(30)



4 Discrete Dynamics in Nature and Society

By the fact thatmin
𝑥∈𝑅
+{[exp(𝑥−1)]/𝑥} = 1, we see that𝑀

1
=

exp(𝑎𝑢 − 1)/𝑏
𝑙
≥ 𝑎
𝑢
/𝑏
𝑙
≥ 𝑎
𝑙
/𝑏
𝑢
≥ (𝑎
𝑙
− 𝐴
𝑢
𝑀
1−𝑅

2
/2√𝑟
𝑙
)/𝑏
𝑙
≥

𝑚
1
.
This ends the proof of Step 3.

Step 4. We present two cases to prove that

lim inf
𝑘→+∞

𝑦 (𝑘) ≥ 𝑚
2
. (31)

For any small positive constant 𝜀 < 𝑚
1
/2, from Step 1 to Step

3, it follows that there exists a 𝑘
3
≥ 𝑘
2
such that for all 𝑘 ≥ 𝑘

3

𝑥 (𝑘) ≥ 𝑚
1
− 𝜀, 𝑥 (𝑘) ≤ 𝑀

1
+ 𝜀,

𝑦 (𝑘) ≤ 𝑀
2
+ 𝜀.

(32)

Case 1.There exists a 𝑛
0
≥ 𝑘
3
such that 𝑦(𝑛

0
+1) ≤ 𝑦(𝑛

0
), then

−𝑑 (𝑛
0
) +

𝐵 (𝑛
0
) 𝑥
2
(𝑛
0
)

𝑟 (𝑛
0
) 𝑥
2
(𝑛
0
) + 𝑦
2𝑅

(𝑛
0
)

≤ 0. (33)

Hence,

𝑦 (𝑛
0
) ≥

{

{

{

(𝐵
𝑙
− 𝑟
𝑢
𝑑
𝑢
) (𝑚
1
− 𝜀)
2

𝑑
𝑢

}

}

}

1/2𝑅

def
= 𝑐
1𝜀
, (34)

and so,

𝑦 (𝑛
0
+ 1)

≥

{

{

{

(𝐵
𝑙
− 𝑟
𝑢
𝑑
𝑢
) (𝑚
1
− 𝜀)
2

𝑑
𝑢

}

}

}

1/2𝑅

× exp{−𝑑
𝑢
+

𝐵
𝑙
(𝑚
1
− 𝜀)
2

𝑟
𝑢
(𝑚
1
− 𝜀)
2

+ (𝑀
2
+ 𝜀)
2𝑅

}

def
= 𝑐
2𝜀
.

(35)

Set

𝑚
2𝜀

= min {𝑐
1𝜀
, 𝑐
2𝜀
} . (36)

We claim that

𝑦 (𝑘) ≥ 𝑚
2𝜀

∀𝑘 ≥ 𝑛
0
. (37)

By a way of contradiction, assume that there exists a 𝑞
0
≥ 𝑛
0
,

such that 𝑦(𝑞
0
) < 𝑚

2𝜀
.Then 𝑞

0
≥ 𝑛
0
+2. Let 𝑞

0
≥ 𝑛
0
+2 be the

smallest integer such that𝑦(𝑞
0
) < 𝑚

2𝜀
.Then𝑦(𝑞

0
) < 𝑦(𝑞

0
−1),

which implies that 𝑦(𝑞
0
) ≥ 𝑚

2𝜀
, a contradiction, this proves

the claim. Therefore, lim inf
𝑘→+∞

𝑦(𝑘) ≥ 𝑚
2𝜀
, setting 𝜀 → 0

in it leads to lim inf
𝑘→+∞

𝑦(𝑘) ≥ 𝑚
2
.

Case 2. Assume that 𝑦(𝑘 + 1) > 𝑦(𝑘) for all 𝑘 ≥ 𝑘
3
, then,

lim
𝑘→+∞

𝑦(𝑘) exists, denoted by 𝑦, then lim
𝑘→+∞

𝑦(𝑘) = 𝑦.
We claim that

𝑦 ≥ 𝑚
2
. (38)

By a way of contradiction, assume that 𝑦 < 𝑚
2
. Taking limit

in the second equation in system (1) gives

lim
𝑘→+∞

{−𝑑 (𝑘) +

𝐵 (𝑘) 𝑥
2
(𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

} = 0, (39)

which is a contradiction since

lim
𝑘→+∞

{−𝑑 (𝑘) +

𝐵 (𝑘) 𝑥
2
(𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

}

≥ lim inf
𝑘→+∞

{−𝑑 (𝑘) +

𝐵 (𝑘) 𝑥
2
(𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

}

≥ −𝑑
𝑢
+

𝐵
𝑙
𝑚
2

1

𝑟
𝑢
𝑚
2

1
+ 𝑦
2𝑅

> 0.

(40)

This proves the claim, then we have

lim
𝑘→+∞

𝑦 (𝑘) = 𝑦 ≥ 𝑚
2
. (41)

So,

lim inf
𝑘→+∞

𝑦 (𝑘) ≥ 𝑚
2
. (42)

Obviously, 𝑀
2
= {𝐵
𝑢
𝑀
2

1
/𝑑
𝑙
}
1/2𝑅 exp{−𝑑𝑙 + 𝐵

𝑢
/𝑟
𝑙
} ≥ {(𝐵

𝑙
−

𝑟
𝑢
𝑑
𝑢
)𝑚
2

1
/𝑑
𝑢
}
1/2𝑅

≥ 𝑚
2
. This completes the proof of the theo-

rem.

3. Global Attractivity

Definition 5 (see [18]). System (1) is said to be globally attrac-
tive if any two positive solutions (𝑥

1
(𝑘), 𝑦
1
(𝑘)) and (𝑥

2
(𝑘),

𝑦
2
(𝑘)) of system (1) satisfy

lim
𝑘→+∞





𝑥
1
(𝑘) − 𝑥

2
(𝑘)





= 0, lim

𝑘→+∞





𝑦
1
(𝑘) − 𝑦

2
(𝑘)





= 0.

(43)

Theorem 6. Assume that (𝐻1) and (𝐻2) hold. Assume further
that there exist positive constants 𝛼, 𝛽, and 𝛿 such that

𝛼min{𝑏
𝑙
,

2

𝑀
1

− 𝑏
𝑢
}

− 𝛼

𝐴
𝑢
𝑀
1−𝑅

2

4𝑚
𝑅

2

− 𝛼

𝐴
𝑢
𝑀
2

4𝑟
𝑙
𝑚
2

1

− 𝛽

𝐵
𝑢
𝑀
𝑅

2

2𝑟
𝑙
𝑚
𝑅

1

> 𝛿,

(𝐻3)

𝛽min {𝐺
1
, 𝐺
2
, 𝐺
3
, 𝐺
4
} − 𝛼

𝐴
𝑢
𝑀
1

4𝑚
2𝑅

2

− 𝛼

𝐴
𝑢
(𝑀
2
+ 𝜀)
𝑅

4𝑟
𝑙
𝑚
1
(𝑚
2
+ 𝜀)
𝑅

− 𝛼

𝐴
𝑢
𝑅

2𝑟
𝑙
𝑚
1

max{(𝑀
2

𝑚
2

)

1−𝑅

, (

𝑀
2

𝑚
2

)

𝑅

} > 𝛿,

(𝐻4)
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where

𝐺
1
=

2𝑅𝐵
𝑙
𝑚
2

1
𝑚
2𝑅−1

2

(𝑟
𝑢
𝑀
2

1
+ 𝑀
2𝑅

2
)
2
,

𝐺
2
=

2𝑅𝐵
𝑙
𝑚
2

1
𝑀
2𝑅−1

2

(𝑟
𝑢
𝑀
2

1
+ 𝑀
2𝑅

2
)
2
,

𝐺
3
=

2

𝑀
2

−

2𝑅𝐵
𝑢
𝑀
2

1
𝑀
2𝑅−1

2

(𝑟
𝑙
𝑚
2

1
+ 𝑚
2𝑅

2
)
2
,

𝐺
4
=

2

𝑀
2

−

2𝑅𝐵
𝑢
𝑀
2

1
𝑚
2𝑅−1

2

(𝑟
𝑙
𝑚
2

1
+ 𝑚
2𝑅

2
)
2
.

(44)

Then, system (1), with initial condition (2), is globally
attractive, that is, for any two positive solutions (𝑥

1
(𝑘), 𝑦
1
(𝑘))

and (𝑥
2
(𝑘), 𝑦
2
(𝑘)) of system (1), we have

lim
𝑘→+∞





𝑥
1
(𝑘) − 𝑥

2
(𝑘)





= 0, lim

𝑘→+∞





𝑦
1
(𝑘) − 𝑦

2
(𝑘)





= 0.

(45)

Proof. From conditions (𝐻3) and (𝐻4), there exists an
enough small positive constant 𝜀 < min{𝑚

1
/2,𝑚
2
/2} such

that

𝛼min{𝑏
𝑙
,

2

𝑀
1
+ 𝜀

− 𝑏
𝑢
} − 𝛼

𝐴
𝑢
(𝑀
2
+ 𝜀)
1−𝑅

4(𝑚
2
− 𝜀)
𝑅

− 𝛼

𝐴
𝑢
(𝑀
2
+ 𝜀)

4𝑟
𝑙
(𝑚
1
− 𝜀)
2
− 𝛽

𝐵
𝑢
(𝑀
2
+ 𝜀)
𝑅

2𝑟
𝑙
(𝑚
2
− 𝜀)
𝑅

(𝑚
1
− 𝜀)

> 𝛿,

𝛽min {𝐺
1𝜀
, 𝐺
2𝜀
, 𝐺
3𝜀
, 𝐺
4𝜀
} − 𝛼

𝐴
𝑢
(𝑀
1
+ 𝜀)

4(𝑚
2
− 𝜀)
2𝑅

− 𝛼

𝐴
𝑢

4𝑟
𝑙
(𝑚
1
− 𝜀)

(

𝑀
2
+ 𝜀

𝑚
2
− 𝜀

)

𝑅

− 𝛼

𝐴
𝑢
𝑅

2𝑟
𝑙
(𝑚
1
− 𝜀)

×max{(𝑀
2
+ 𝜀

𝑚
2
− 𝜀

)

1−𝑅

, (

𝑀
2
+ 𝜀

𝑚
2
− 𝜀

)

𝑅

} > 𝛿,

(46)

where

𝐺
1𝜀

=

2𝑅𝐵
𝑙
(𝑚
1
− 𝜀)
2

(𝑚
2
− 𝜀)
2𝑅−1

[𝑟
𝑢
(𝑀
1
+ 𝜀)
2

+ (𝑀
2
+ 𝜀)
2𝑅

]

2
,

𝐺
2𝜀

=

2𝑅𝐵
𝑙
(𝑚
1
− 𝜀)
2

(𝑀
2
+ 𝜀)
2𝑅−1

[𝑟
𝑢
(𝑀
1
+ 𝜀)
2

+ (𝑀
2
+ 𝜀)
2𝑅

]

2
,

𝐺
3𝜀

=

2

𝑀
2
+ 𝜀

−

2𝑅𝐵
𝑢
(𝑀
1
+ 𝜀)
2

(𝑀
2
+ 𝜀)
2𝑅−1

[𝑟
𝑙
(𝑚
1
− 𝜀)
2

+ (𝑚
2
− 𝜀)
2𝑅

]

2
,

𝐺
4𝜀

=

2

𝑀
2
+ 𝜀

−

2𝑅𝐵
𝑢
(𝑀
1
+ 𝜀)
2

(𝑚
2
− 𝜀)
2𝑅−1

[𝑟
𝑙
(𝑚
1
− 𝜀)
2

+ (𝑚
2
− 𝜀)
2𝑅

]

2
.

(47)

Since (𝐻1) and (𝐻2) hold, for any positive solutions
(𝑥
1
(𝑘), 𝑦
1
(𝑘)) and (𝑥

2
(𝑘), 𝑦
2
(𝑘)) of system (1), it follows from

Theorem 4 that

𝑚
1
≤ lim inf
𝑘→+∞

𝑥
𝑖
(𝑘) ≤ lim sup

𝑘→+∞

𝑥
𝑖
(𝑘) ≤ 𝑀

1
,

𝑚
2
≤ lim inf
𝑘→+∞

𝑦
𝑖
(𝑘) ≤ lim sup

𝑘→+∞

𝑦
𝑖
(𝑘) ≤ 𝑀

2
, 𝑖 = 1, 2.

(48)

For the previous 𝜀 and (48), there exists a 𝑘
4
> 0 such that for

all 𝑘 > 𝑘
4
,

𝑚
1
− 𝜀 ≤ 𝑥

𝑖
(𝑘) ≤ 𝑀

1
+ 𝜀,

𝑚
2
− 𝜀 ≤ 𝑥

𝑖
(𝑘) ≤ 𝑀

2
+ 𝜀,

𝑖 = 1, 2.

(49)

Let

𝑉
1
(𝑘) =





ln𝑥
1
(𝑘) − ln𝑥

2
(𝑘)





. (50)

Then from the first equation of system (1), we have

𝑉
1
(𝑘 + 1)

=




ln𝑥
1
(𝑘 + 1) − ln𝑥

2
(𝑘 + 1)






≤




ln𝑥
1
(𝑘) − ln𝑥

2
(𝑘) − 𝑏 (𝑘) (𝑥

1
(𝑘) − 𝑥

2
(𝑘))






+ 𝐴 (𝑘)











𝑥
1
(𝑘) 𝑦
1
(𝑘)

𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)

−

𝑥
2
(𝑘) 𝑦
2
(𝑘)

𝑟 (𝑘) 𝑥
2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘)











.

(51)

Using the mean value theorem, we get

𝑥
1
(𝑘) − 𝑥

2
(𝑘)

= exp (ln𝑥
1
(𝑘)) − exp (ln𝑥

2
(𝑘))

= 𝜉
1
(𝑘) (ln𝑥

1
(𝑘) − ln𝑥

2
(𝑘)) ,

𝑦
2𝑅

1
(𝑘) − 𝑦

2𝑅

2
(𝑘) = 2𝑅𝜉

2𝑅−1

2
(𝑘) (𝑦

1
(𝑘) − 𝑦

2
(𝑘)) ,

(52)

where 𝜉
1
(𝑘) lies between 𝑥

1
(𝑘) and 𝑥

2
(𝑘), 𝜉
2
(𝑘) lies between

𝑦
1
(𝑘) and 𝑦

2
(𝑘).

It follows from (51) and (52) that

𝑉
1
(𝑘 + 1)

≤




ln𝑥
1
(𝑘) − ln𝑥

2
(𝑘)






− (

1

𝜉
1
(𝑘)

−










1

𝜉
1
(𝑘)

− 𝑏 (𝑘)










)




𝑥
1
(𝑘) − 𝑥

2
(𝑘)






+











𝐴 (𝑘) 𝑟 (𝑘) 𝑥
1
(𝑘) 𝑥
2
(𝑘) 𝑦
1
(𝑘)

(𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘))











×




𝑥
1
(𝑘) − 𝑥

2
(𝑘)






+











𝐴 (𝑘) 𝑦
2𝑅

1
(𝑘) 𝑦
2
(𝑘)

(𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘))
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×




𝑥
1
(𝑘) − 𝑥

2
(𝑘)






+











𝐴 (𝑘) 𝑟 (𝑘) 𝑥
2

1
(𝑘) 𝑥
2
(𝑘)

(𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘))











×




𝑦
1
(𝑘) − 𝑦

2
(𝑘)






+











𝐴 (𝑘) 𝑥
1
(𝑘) 𝑦
2𝑅

1
(𝑘)

(𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘))











×




𝑦
1
(𝑘) − 𝑦

2
(𝑘)






+











𝐴 (𝑘) 𝑥
1
(𝑘) 𝑦
1
(𝑘)

(𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘))

× 2𝑅𝜉
2𝑅−1

2
(𝑘)















𝑦
1
(𝑘) − 𝑦

2
(𝑘)





.

(53)

And so, for 𝑘 > 𝑘
4
,

Δ𝑉
1

≤ −min{𝑏
𝑙
,

2

𝑀
1
+ 𝜀

− 𝑏
𝑢
}




𝑥
1
(𝑘) − 𝑥

2
(𝑘)






+

𝐴
𝑢
(𝑀
2
+ 𝜀)
1−𝑅

4(𝑚
2
− 𝜀)
𝑅





𝑥
1
(𝑘) − 𝑥

2
(𝑘)






+

𝐴
𝑢
(𝑀
1
+ 𝜀)

4𝑟
𝑙
(𝑚
1
− 𝜀)
2





𝑥
1
(𝑘) − 𝑥

2
(𝑘)






+

𝐴
𝑢
(𝑀
1
+ 𝜀)

4(𝑚
2
− 𝜀)
2𝑅





𝑦
1
(𝑘) − 𝑦

2
(𝑘)






+

𝐴
𝑢

4𝑟
𝑙
(𝑚
1
− 𝜀)

(

𝑀
2
+ 𝜀

𝑚
2
− 𝜀

)

𝑅





𝑦
1
(𝑘) − 𝑦

2
(𝑘)






+

𝑅𝐴
𝑢

2𝑟
𝑙
(𝑚
1
− 𝜀)

max{(𝑀
2
+ 𝜀

𝑚
2
− 𝜀

)

1−𝑅

, (

𝑀
2
+ 𝜀

𝑚
2
− 𝜀

)

𝑅

}

×




𝑦
1
(𝑘) − 𝑦

2
(𝑘)





.

(54)

Let

𝑉
2
(𝑘) =





ln𝑦
1
(𝑘) − ln𝑦

2
(𝑘)





. (55)

Then, from the second equation of system (1), we have

𝑉
2
(𝑘 + 1)

=




ln𝑦
1
(𝑘 + 1) − ln𝑦

2
(𝑘 + 1)






=











ln𝑦
1
(𝑘) − ln𝑦

2
(𝑘) + 𝐵 (𝑘)

×(

𝑥
2

1
(𝑘)

𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)

−

𝑥
2

2
(𝑘)

𝑟 (𝑘) 𝑥
2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘)

)











≤













ln𝑦
1
(𝑘) − ln𝑦

2
(𝑘)

−

𝐵 (𝑘) 𝑥
2

2
(𝑘) (𝑦

2𝑅

1
(𝑘) − 𝑦

2𝑅

2
(𝑘))

(𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘))













+











𝐵 (𝑘) 𝑦
2𝑅

2
(𝑘) (𝑥

1
(𝑘) + 𝑥

2
(𝑘))

(𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘))











×




𝑥
1
(𝑘) − 𝑥

2
(𝑘)





.

(56)

Using the mean value theorem, we get

𝑦
1
(𝑘) − 𝑦

2
(𝑘) = exp (ln𝑦

1
(𝑘)) − exp (ln𝑦

2
(𝑘))

= 𝜉
3
(𝑘) (ln𝑦

1
(𝑘) − ln𝑦

2
(𝑛)) ,

𝑦
2𝑅

1
(𝑘) − 𝑦

2𝑅

2
(𝑘) = 2𝑅𝜉

2𝑅−1

2
(𝑘) (𝑦

1
(𝑘) − 𝑦

2
(𝑘)) ,

(57)

where 𝜉
3
(𝑘), 𝜉

2
(𝑘) lies between 𝑦

1
(𝑘) and 𝑦

2
(𝑘), respectively.

Then, it follows from (56) and (57) that for 𝑘 > 𝑘
4
,

Δ𝑉
2

≤ −(

1

𝜉
3
(𝑘)

−











1

𝜉
3
(𝑘)

−

𝐵 (𝑘) 𝑥
2

2
(𝑘) 2𝑅𝜉

2𝑅−1

2
(𝑘)

(𝑟 (𝑘) 𝑥
2

1
(𝑘)+𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘)+𝑦

2𝑅

2
(𝑘))











)

×




𝑦
1
(𝑘) − 𝑦

2
(𝑘)






+

𝐵 (𝑘) 𝑦
2𝑅

2
(𝑘) (𝑥

1
(𝑘) + 𝑥

2
(𝑘))

(𝑟 (𝑘) 𝑥
2

1
(𝑘) + 𝑦

2𝑅

1
(𝑘)) (𝑟 (𝑘) 𝑥

2

2
(𝑘) + 𝑦

2𝑅

2
(𝑘))

×




𝑥
1
(𝑘) − 𝑥

2
(𝑘)






≤ −min {𝐺
1𝜀
, 𝐺
2𝜀
, 𝐺
3𝜀
, 𝐺
4𝜀
} ×





𝑦
1
(𝑘) − 𝑦

2
(𝑘)






+

𝐵
𝑢
(𝑀
2
+ 𝜀)
𝑅

2𝑟
𝑙
(𝑚
1
− 𝜀) (𝑚

2
− 𝜀)
𝑅





𝑥
1
(𝑘) − 𝑥

2
(𝑘)





.

(58)

Now, we define a Lyapunov function as follows:

𝑉 (𝑘) = 𝛼𝑉
1
(𝑘) + 𝛽𝑉

2
(𝑘) . (59)
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Calculating the difference of 𝑉 along the solution of system
(1), for 𝑘 > 𝑘

4
, it follows from (54) and (58) that

Δ𝑉

≤ −[𝛼min{𝑏
𝑙
,

2

𝑀
1
+ 𝜀

− 𝑏
𝑢
}

− 𝛼

𝐴
𝑢
(𝑀
2
+ 𝜀)
1−𝑅

4(𝑚
2
− 𝜀)
𝑅

− 𝛼

𝐴
𝑢
(𝑀
2
+ 𝜀)

4𝑟
𝑙
(𝑚
1
− 𝜀)
2

− 𝛽

𝐵
𝑢
(𝑀
2
+ 𝜀)
𝑅

2𝑟
𝑙
(𝑚
2
− 𝜀)
𝑅

(𝑚
1
− 𝜀)

]

×




𝑥
1
(𝑘) − 𝑥

2
(𝑘)






− [𝛽min {𝐺
1𝜀
, 𝐺
2𝜀
, 𝐺
3𝜀
, 𝐺
4𝜀
} − 𝛼

𝐴
𝑢
(𝑀
1
+ 𝜀)

4(𝑚
2
− 𝜀)
2𝑅

− 𝛼

𝐴
𝑢
(𝑀
1
+ 𝜀) (𝑀

2
+ 𝜀)
𝑅

4𝑟
𝑙
(𝑚
1
− 𝜀) (𝑚

2
− 𝜀)
𝑅

− 𝛼

𝐴
𝑢
2𝑅

2𝑟
𝑙
(𝑚
1
− 𝜀)

×max{(𝑀
2
+ 𝜀

𝑚
2
− 𝜀

)

1−𝑅

, (

𝑀
2
+ 𝜀

𝑚
2
− 𝜀

)

𝑅

}]

×




𝑦
1
(𝑘) − 𝑦

2
(𝑘)






≤ −𝛿 (




𝑥
1
(𝑘) − 𝑥

2
(𝑘)





+




𝑦
1
(𝑘) − 𝑦

2
(𝑘)





) .

(60)

Summating both sides of the previous inequalities from 𝑘
4
to

𝑘, we have

𝑘

∑

𝑝=𝑘
4

(𝑉 (𝑝 + 1) − V (𝑝))

≤ −𝛿

𝑘

∑

𝑝=𝑘
4

(




𝑥
1
(𝑝) − 𝑥

2
(𝑝)





+




𝑦
1
(𝑝) − 𝑦

2
(𝑝)





) ,

(61)

which implies

𝑉 (𝑘 + 1) + 𝛿

𝑘

∑

𝑝=𝑘
4

(




𝑥
1
(𝑝) − 𝑥

2
(𝑝)





+




𝑦
1
(𝑝) − 𝑦

2
(𝑝)





)

≤ 𝑉 (𝑘
4
) .

(62)

It follows that

𝑘

∑

𝑝=𝑘
4

(




𝑥
1
(𝑝) − 𝑥

2
(𝑝)





+




𝑦
1
(𝑝) − 𝑦

2
(𝑝)





) ≤

𝑉 (𝑘
4
)

𝛿

. (63)

Using the fundamental theorem of positive series, there exists
small enough positive constant 𝜀 > 0 such that
+∞

∑

𝑝=𝑘
4

(




𝑥
1
(𝑝) − 𝑥

2
(𝑝)





+




𝑦
1
(𝑝) − 𝑦

2
(𝑝)





) ≤

𝑉 (𝑘
4
)

𝛿

+ 𝜀,

(64)

which implies that

lim
𝑘→+∞

(




𝑥
1
(𝑘) − 𝑥

2
(𝑘)





+




𝑦
1
(𝑘) − 𝑦

2
(𝑘)





) = 0, (65)

that is,

lim
𝑘→+∞





𝑥
1
(𝑘) − 𝑥

2
(𝑘)





= 0, lim

𝑘→+∞





𝑦
1
(𝑘) − 𝑦

2
(𝑘)





= 0.

(66)

This completes the proof of Theorem 6.

4. Extinction of the Predator Species

This section is devoted to study the extinction of the predator
species 𝑦.

Theorem 7. Assume that

−𝑑
𝑙
+

𝐵
𝑢

𝑟
𝑙
< 0. (𝐻5)

Then, the species 𝑦 will be driven to extinction, and the species
𝑥 is permanent, that is, for any positive solution (𝑥(𝑘), 𝑦(𝑘)) of
system (1),

lim
𝑘→+∞

𝑦 (𝑘) = 0,

𝑚
∗
≤ lim inf
𝑘→+∞

𝑥 (𝑘) ≤ lim sup
𝑘→+∞

𝑥 (𝑘) ≤ 𝑀
1
,

(67)

where

𝑚
∗
=

𝑎
𝑙

𝑏
𝑢
exp {𝑎

𝑙
− 𝑏
𝑢
𝑀
1
} ,

𝑀
1
=

1

𝑏
𝑙
exp (𝑎

𝑢
− 1) .

(68)

Proof. For condition (𝐻5), there exists small enough positive
𝛾 > 0, such that

−𝑑
𝑙
+

𝐵
𝑢

𝑟
𝑙
< 0, (69)

for all 𝑘 ∈ 𝑁, from (69) and the second equation of the system
(1), one can easily obtain that

𝑦 (𝑘 + 1)

= 𝑦 (𝑘) exp{−𝑑 (𝑘) +

𝐵 (𝑘) 𝑥
2
(𝑘)

𝑟 (𝑘) 𝑥
2
(𝑘) + 𝑦

2𝑅
(𝑘)

}

< 𝑦 (𝑘) exp{−𝑑
𝑙
+

𝐵
𝑢

𝑟
𝑙
}

< 𝑦 (𝑘) exp {−𝛾} .

(70)
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Therefore,

𝑦 (𝑘 + 1) < 𝑦 (0) exp {−𝑘𝛾} , (71)

which yields

lim
𝑘→+∞

𝑦 (𝑘) = 0. (72)

From the proof of Theorem 4, we have

lim sup
𝑘→+∞

𝑥 (𝑘) ≤ 𝑀
1
. (73)

For enough small positive constant 𝜀 > 0,

𝑎
𝑙
− 𝐴
𝑢
𝜀
1−𝑅

/2√𝑟
𝑙

𝑏
𝑢

> 0. (74)

For the previous 𝜀, from (72) and (73) there exists a 𝑘
5
> 0

such that for all 𝑘 > 𝑘
5
,

𝑥 (𝑘) < 𝑀
1
+ 𝜀, 𝑦 (𝑘) < 𝜀. (75)

From the first equation of (1), we have

𝑥 (𝑘 + 1) ≥ 𝑥 (𝑘) exp{𝑎
𝑙
−

𝑎
𝑙
− 𝐴
𝑢
𝜀
1−𝑅

/2√𝑟
𝑙

𝑏
𝑢

− 𝑏
𝑢
𝑥 (𝑘)} .

(76)

By Lemma 3, we have

lim inf
𝑘→+∞

𝑥 (𝑘) ≥

𝑎
𝑙
− 𝐴
𝑢
𝜀
1−𝑅

/2√𝑟
𝑙

𝑏
𝑢

× exp{𝑎
𝑙
−

𝐴
𝑢
𝜀
1−𝑅

2√𝑟
𝑙

− 𝑏
𝑢
(𝑀
1
+ 𝜀)} .

(77)

Setting 𝜀 → 0 in (72) leads to

lim inf
𝑘→+∞

𝑥 (𝑘) ≥

𝑎
𝑙

𝑏
𝑢
exp {𝑎

𝑙
− 𝑏
𝑢
𝑀
1
}

def
= 𝑚
∗
. (78)

The proof of Theorem 7 is completed.

5. Example

The following example shows the feasibility of the main
results.

Example 8. Consider the following system:

𝑥 (𝑘 + 1)

= 𝑥 (𝑘) exp{0.85 + 0.05 cos (𝑘) − 2.4𝑥 (𝑘)

−

1.7𝑥 (𝑘) 𝑦 (𝑘)

0.3𝑥(𝑘)
2
+ 𝑦 (𝑘)

} ,

𝑦 (𝑘 + 1) = 𝑦 (𝑘) exp{−4.1 +

1.6𝑥(𝑘)
2

0.3𝑥(𝑘)
2
+ 𝑦 (𝑘)

} .

(79)
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Figure 1: Dynamics behaviors of system (1) with initial conditions
(𝑥(0), 𝑦(0)) = (0.3, 0.3), (0.4, 0.2), (0.2, 0.4), respectively.

One could easily see that

𝑎
𝑙
−

𝐴
𝑢
𝑀
1−𝑅

2

2√𝑟
𝑙

= 0.1228 > 0, (𝐻6)

𝐵
𝑙
− 𝑑
𝑢
𝑟
𝑢
= 0.37 > 0. (𝐻7)

Clearly, conditions (𝐻6) and (𝐻7) are satisfied. It follows from
Theorem 4 that the system is permanent. Numerical simu-
lation from Figure 1 shows that solutions do converge and
system is permanent and globally attractive.

6. Conclusion

In this paper, a discrete predator-prey model with Hassell-
Varley-Holling III type functional response is discussed. The
main topics are focused on permanence, global attractivity,
and extinction of predator species. The numerical simulation
shows that the main results are verifiable.

The investigation in this paper suggests the following bio-
logical implications. Theorem 4 shows that the coefficients,
such as the death rate of the predator, the capturing rate,
and the intraspecific effects of prey species, influence perma-
nence. Conditions (𝐻1) and (𝐻2) imply that the higher the
intraspecific effects of prey species are, the more favourable
permanence is. Those results have further application on
predator-prey population dynamics. However, the conditions
for global attractivity in Theorem 4 is so complicated that
its application is very difficult. A further study is required to
simplify the application.
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