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We study the bifurcation of limit cycles from periodic orbits of a four-dimensional systemwhen the perturbation is piecewise linear
with two switching boundaries. Our main result shows that when the parameter is sufficiently small at most, six limit cycles can
bifurcate from periodic orbits in a class of asymmetric piecewise linear perturbed systems, and, at most, three limit cycles can
bifurcate from periodic orbits in another class of asymmetric piecewise linear perturbed systems. Moreover, there are perturbed
systems having six limit cycles. The main technique is the averaging method.

1. Introduction and Statement of
the Main Result

Piecewise linear systems are used extensively to model many
physical phenomena, such as switching circuits in power
electronics [1, 2] and impact and dry frictions in mechan-
ical systems [3]. These systems exhibit not only standard
bifurcations but also complicated dynamical phenomena not
existing in smooth systems. The study and classification of
various kinds of bifurcation phenomena for piecewise linear
systems have attracted great attentions since the last century,
see, for example, [4, 5] and the references therein.

In recent years, many papers studied the bifurcation of
limit cycles and the number and distribution of these limit
cycles. Most of them studied the planar piecewise linear
system, see for example, [6–9] and the references quoted
there.There are also somepaperswhich studied bifurcation of
limit cycles of 3D piecewise linear systems [10, 11]. For high-
dimensional cases, there are a few papers [12–16]. Especially
in [12] the authors studied the bifurcation of limit cycles of
a class of piecewise linear systems in R4. They showed that
three is an upper bound for the number of limit cycles that
bifurcate from periodic orbits.

In this paper, we study the limit cycles bifurcated from
periodic orbits of a linear differential system in R4 when
the perturbation is piecewise linear with two switching

boundaries. We consider two classes of asymmetric pertur-
bation. With the first class of asymmetric perturbation, six
is the upper bound for the number of limit cycles bifurcated
from periodic orbits, and there are perturbed systems having
six limit cycles. With the second class of asymmetric pertur-
bation, three is the upper bound for the number of limit cycles
bifurcated from periodic orbits, which generalizes the result
of the paper [12].

More precisely, we study the maximum number of limit
cycles of the 4-dimensional continuous piecewise linear vec-
tor fields with three zones of the form

�̇� = 𝐴

0
𝑥 + 𝜀𝐹 (𝑥) , (1)

for 𝜀 ̸= 0 sufficiently small real parameter, where

𝐴

0
= (

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

) , (2)

and 𝐹 : R4 → R4 is given by

𝐹 (𝑥) = 𝐴𝑥 + 𝜑 (𝑘

𝑇
𝑥) 𝑏, (3)

with 𝐴 ∈ 𝑀

4
(R), 𝑘, 𝑏 ∈ R4 \ {0}, and 𝜑 : R → R the

piecewise linear function
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if 𝑚
1
< 0 < 𝑚

2
,

𝜑 (𝑥) =

{

{

{

{

{

ℎ𝑚

1
, for 𝑥 ∈ (−∞,𝑚

1
) ,

ℎ𝑥, for 𝑥 ∈ (𝑚
1
, 𝑚

2
) ,

ℎ𝑚

2
, for 𝑥 ∈ (𝑚

2
, +∞) ;

(4)

if 𝑚
1
< 𝑚

2
< 0,

𝜑 (𝑥) =

{

{

{

{

{

ℎ𝑚

1
− ℎ𝑚

2
, for 𝑥 ∈ (−∞,𝑚

1
) ,

ℎ𝑥 − ℎ𝑚

2
, for 𝑥 ∈ (𝑚

1
, 𝑚

2
) ,

0, for 𝑥 ∈ (𝑚
2
, +∞) ;

(5)

if 0 < 𝑚
1
< 𝑚

2
,

𝜑 (𝑥) =

{

{

{

{

{

0, for 𝑥 ∈ (−∞,𝑚

1
) ,

ℎ𝑥 − ℎ𝑚

1
, for 𝑥 ∈ (𝑚

1
, 𝑚

2
) ,

ℎ𝑚

2
− ℎ𝑚

1
, for 𝑥 ∈ (𝑚

2
, +∞) ,

(6)

where ℎ ∈ R \ {0}. The independent variable is denoted by 𝑡;
vectors of R4 are column vectors, and 𝑘𝑇 denotes a trans-
posed vector.

For 𝜀 = 0, system (1) becomes

�̇�

1
= −𝑥

2
, �̇�

2
= 𝑥

1
, �̇�

3
= −𝑥

4
, �̇�

4
= 𝑥

3
. (7)

Our main results are the following.

Theorem 1. If 𝑚
1
𝑚

2
> 0, six is the upper bound for the

number of limit cycles of system (1) which bifurcate from the
periodic orbits of system (7)with 𝜀 sufficiently small.Moreover,
there are systems of form (1) having six limit cycles.

Theorem 2. If 𝑚
1
𝑚

2
< 0, three is the upper bound for the

number of limit cycles of system (1) which bifurcate from the
periodic orbits of system (7)with 𝜀 sufficiently small.Moreover,
there are systems of form (1) having three limit cycles.

It is worth to note that Theorem 2 generalizes the result
of paper [12]. The method for computing the number of
limit cycles bifurcated from periodic orbits is the averaging
method, which is obtained by Buică and Llibre [17]. Bymeans
of the result of paper [18], we can study the stability of the
limit cycles of Theorem 1; for more details see Remark 10.

Theorems 1 and 2will be proved in Section 3. In Section 2,
we review the results from the averaging theory necessary
for proving these two theorems. Further discussions on the
number of limit cycles of the perturbed system are present in
Section 4. There is a conclusion given in the last section.

2. First-Order Averaging Method

The aim of this section is to review the first-order averaging
method which is obtained by Buică and Llibre [17]. The
advantage of this method is that the smoothness assumptions
for the vector field of the differential system are minimal.

Theorem 3 (see [17]). Consider the following differential sys-
tem:

�̇� (𝑡) = 𝜀𝐻 (𝑡, 𝜀) + 𝜀

2
𝑅 (𝑡, 𝑥, 𝜀) , (8)

where 𝐻 : R × 𝐷 → R𝑛, 𝑅 : R × 𝐷 × (−𝜀

0
, 𝜀

0
) → R𝑛 are

continuous functions. T-periodic in the first variable, and 𝐷 is
an open subset of R𝑛. We define ℎ : 𝐷 → R𝑛 as

ℎ (𝑧) = ∫

𝑇

0

𝐻(𝑠, 𝑧) 𝑑𝑠,
(9)

and assume that

(i) 𝐻 and 𝑅 are locally Lipschitz with respect to 𝑥;
(ii) for 𝑎 ∈ 𝐷 with ℎ(𝑎) = 0, there exists a neighborhood

𝑉 of 𝑎 such that ℎ(𝑧) ̸= 0 for all 𝑧 ∈ 𝑉 \ {𝑎} and
𝑑

𝐵
(ℎ, 𝑉, 0) ̸= 0.

Then, for |𝜀| > 0 sufficiently small, there exists an isolated T-
periodic solution 𝜙(⋅, 𝜀) of system (8) such that 𝜙(⋅, 𝜀) → 𝑎 as
𝜀 → 0.

We remind here that 𝑑
𝐵
(ℎ, 𝑉, 𝑎) denotes the Brouwer

degree of the function ℎ with respect to the set 𝑉 and the
point 𝑎, as is defined in [19]. The following fact is useful for
the proof of Theorems 1 and 2.

Fact 1. Let ℎ : 𝐷 → R𝑛 be a 𝐶1 function, with ℎ(𝑎) = 0,
where 𝐷 is an open subset of R𝑛 and 𝑎 ∈ 𝐷. Whenever 𝑎 is
a simple zero of ℎ (i.e., 𝐽(𝑎) ̸= 0), there exists a neighborhood
𝑉 of 𝑎 such that ℎ(𝑧) ̸= 0 for all 𝑧 ∈ 𝑉\{𝑎}.Then, 𝑑

𝐵
(ℎ, 𝑉, 0) ∈

{−1, 1}.

3. Proof of Main Theorems

Theproof ofTheorems 1 and 2 is based on the first-order aver-
aging method presented in the previous section. In order to
apply this method, we will first reduce the four parameters
of the vector 𝑘 in the definition of the function 𝐹(𝑥) to one,
and then we will change the variables in order to transform
the system into the standard form for the averaging method.
After that, we will calculate the number of its isolated zeros.

Lemma 4. By a linear change of variables, system (1) can be
transformed into the system

�̇� = 𝐴

0
𝑥 + 𝜀𝐴𝑥 + 𝜀𝜑 (𝑥

1
) 𝑏,

(10)

where 𝐴 ∈ 𝑀

4
(R) is an arbitrary matrix and 𝑏 = (𝑏

1
, 𝑏

2
, 0,

0)

𝑇 or 𝑏 = 𝑒
3
.

Proof. A linear change of variables 𝑥 = 𝑃𝑦, with 𝑃 invertible,
transforms system (1) into

̇𝑦 = 𝑃

−1
𝐴

0
𝑃𝑦 + 𝜀𝑃

−1
𝐴𝑃𝑦 + 𝜀𝜑 (𝑘

𝑇
𝑃𝑦)𝑃

−1
𝑏, (11)

where 𝑏 = (𝑏
1
, 𝑏

2
, 𝑏

3
, 𝑏

4
)

𝑇, 𝑘 = (𝑘
1
, 𝑘

2
, 𝑘

3
, 𝑘

4
)

𝑇.
We have to find 𝑃 invertible which satisfies

𝑃

−1
𝐴

0
𝑃 = 𝐴

0
,

𝑘

𝑇
𝑃 = 𝑒

𝑇

1
.

(12)
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It is easy to obtain that 𝑃−1 has the following form:

𝑃

−1
= (

𝑘

1
𝑘

2
𝑘

3
𝑘

4

−𝑘

2
𝑘

1
−𝑘

4
𝑘

3

𝑝

31
𝑝

32
𝑝

33
𝑝

34

−𝑝

32
𝑝

31
−𝑝

34
𝑝

33

). (13)

Thus, we have

𝑃

−1
𝑏 = 𝑏,

(14)

where

𝑏

1
=

4

∑

𝑖=1

𝑘

𝑖
𝑏

𝑖
, 𝑏

2
= −𝑘

2
𝑏

1
+ 𝑘

1
𝑏

2
− 𝑘

4
𝑏

3
+ 𝑘

3
𝑏

4
,

𝑏

3
=

4

∑

𝑖=1

𝑝

3𝑖
𝑏

𝑖
, 𝑏

4
= −𝑝

32
𝑏

1
+ 𝑝

31
𝑏

2
− 𝑝

34
𝑏

3
+ 𝑝

33
𝑏

4
.

(15)

If 𝑏
2

1
+ 𝑏

2

2
̸= 0, it is easy to find 𝑃−1 invertible with 𝑝

31
, 𝑝
32
,

𝑝

33
, 𝑝
34

satisfying

𝑏

3
=

4

∑

𝑖=1

𝑝

3𝑖
𝑏

𝑖
= 0,

𝑏

4
= −𝑝

32
𝑏

1
+ 𝑝

31
𝑏

2
− 𝑝

34
𝑏

3
+ 𝑝

33
𝑏

4
= 0.

(16)

If 𝑏
2

1
+ 𝑏

2

2
= 0, it is easy to find 𝑃−1 invertible with 𝑝

31
, 𝑝
32
,

𝑝

33
, 𝑝
34

satisfying

𝑏

3
=

4

∑

𝑖=1

𝑝

3𝑖
𝑏

𝑖
= 1,

𝑏

4
= −𝑝

32
𝑏

1
+ 𝑝

31
𝑏

2
− 𝑝

34
𝑏

3
+ 𝑝

33
𝑏

4
= 0.

(17)

Changing variables 𝑦 to 𝑥 with 𝑥 = 𝑦, then we obtain sys-
tem (10).

The standard form of the averaging method is obtained
by changing variables (𝑥

1
, 𝑥

2
, 𝑥

3
, 𝑥

4
) to (𝑟, 𝜃, 𝜌, 𝑠) with

𝑥

1
= 𝑟 cos 𝜃, 𝑥

2
= 𝑟 sin 𝜃,

𝑥

3
= 𝜌 cos (𝜃 + 𝑠) , 𝑥

4
= 𝜌 sin (𝜃 + 𝑠) .

(18)

Thus, system (10) is transformed into the following system:

𝑑𝑟

𝑑𝜃

= 𝜀𝐻

1
(𝜃, 𝑟, 𝜌, 𝑠) + 𝜀

2
𝑂 (1) ,

𝑑𝜌

𝑑𝜃

= 𝜀𝐻

2
(𝜃, 𝑟, 𝜌, 𝑠) + 𝜀

2
𝑂 (1) ,

𝑑𝑠

𝑑𝜃

= 𝜀𝐻

3
(𝜃, 𝑟, 𝜌, 𝑠) + 𝜀

2
𝑂 (1) ,

(19)

where 𝐻
1
, 𝐻
2
, and 𝐻

3
are given by

𝐻

1
= cos 𝜃𝐹

1
+ sin 𝜃𝐹

2
,

𝐻

2
= cos (𝜃 + 𝑠) 𝐹

3
+ sin (𝜃 + 𝑠) 𝐹

4
,

𝐻

3
=

1

𝑟

sin 𝜃𝐹
1
−

1

𝑟

cos 𝜃𝐹
2
−

1

𝜌

sin (𝜃 + 𝑠) 𝐹
3

+

1

𝜌

cos (𝜃 + 𝑠) 𝐹
4

(20)

and for every 𝑖 = 1, 2, . . . , 4,

𝐹

𝑖
= 𝑎

𝑖1
𝑟 cos 𝜃 + 𝑎

𝑖2
𝑟 sin 𝜃 + 𝑎

𝑖3
𝜌 cos (𝜃 + 𝑠) + 𝑎

𝑖4
𝜌 sin (𝜃 + 𝑠)

+ 𝜑 (𝑟 cos 𝜃) 𝑏
𝑖
,

(21)

where 𝑎
𝑖𝑗
are elements of the matrix 𝐴 of Lemma 4.

We take 𝜀
0
sufficiently small, 𝑚 arbitrarily large and

𝐷

𝑚
= {(𝑟, 𝜌, 𝑠) | (𝑟, 𝜌, 𝑠) ∈ (

1

𝑚

,𝑚)

2

× 𝑆} . (22)

Then, the vector of system (19) is well defined and continuous
on 𝑆 × 𝐷

𝑚
× (−𝜀

0
, 𝜀

0
). Moreover, the system is 2𝜋-periodic

with respect to variable 𝜃 and locally Lipschitz with respect
to variables (𝑟, 𝜌, 𝑠). Our next step is to find the correspond-
ing function ℎ : 𝐷 → R3, ℎ = (ℎ

1
, ℎ

2
, ℎ

3
), where

ℎ

𝑖
(𝑟, 𝜌, 𝑠) = ∫

2𝜋

0

𝐻

𝑖
(𝑟, 𝜃, 𝜌, 𝑠) 𝑑𝜃,

(23)

for 𝑖 = 1, 2, 3.
In order to calculate the exact expression of ℎ, we denote

𝐼

1
(𝑟) = ∫

2𝜋

0

𝜑 (𝑟 cos 𝜃) cos 𝜃𝑑𝜃, (24)

𝐼

2
(𝑟) = ∫

2𝜋

0

𝜑 (𝑟 cos 𝜃) sin 𝜃𝑑𝜃, (25)

for each 𝑟 > 0, where 𝜑 is the piecewise linear function
given by (4)–(6). Without loss of generality, we assume that
the slope ℎ of 𝜑 is positive.

Lemma 5. The integrals 𝐼
1
and 𝐼
2
given by (24)-(25), respec-

tively, have the following expressions:

𝐼

2
(𝑟) = 0, ∀𝑟 > 0, 𝑚

1
, 𝑚

2
, (26)

and

(1) if 0 < 𝑚
1
< 𝑚

2
,

𝐼

1
(𝑟) =

{

{

{

{

{

0, 𝑖𝑓 0 < 𝑟 ≤ 𝑚

1
,

𝐽 (𝑟, 𝑚

1
) , 𝑖𝑓 𝑚

1
< 𝑟 < 𝑚

2
,

𝐾 (𝑟,𝑚

1
, 𝑚

2
) , 𝑖𝑓 𝑟 ≥ 𝑚

2
;

(27)

(2) if 𝑚
1
< 𝑚

2
< 0,

𝐼

1
(𝑟) =

{

{

{

{

{

0, 𝑖𝑓 0 < 𝑟 ≤









𝑚

2









,

−𝐽 (𝑟, 𝑚

2
) , 𝑖𝑓









𝑚

2









< 𝑟 <









𝑚

1









,

𝐾 (𝑟,𝑚

1
, 𝑚

2
) , 𝑖𝑓 𝑟 ≥









𝑚

1









;

(28)
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(3) if 𝑚
1
< 0 < 𝑚

2
and |𝑚

1
| < |𝑚

2
|,

𝐼

1
(𝑟) =

{

{

{

{

{

𝜋ℎ𝑟, 𝑖𝑓 0 < 𝑟 ≤









𝑚

1









,

𝜋ℎ𝑟 + 𝐽 (𝑟,𝑚

1
) , 𝑖𝑓









𝑚

1









< 𝑟 < 𝑚

2
,

𝜋ℎ𝑟 + 𝐾 (𝑟,𝑚

1
, 𝑚

2
) , 𝑖𝑓 𝑟 ≥ 𝑚

2
;

(29)

(4) if 𝑚
1
< 0 < 𝑚

2
and |𝑚

1
| > |𝑚

2
|,

𝐼

1
(𝑟) =

{

{

{

{

{

𝜋ℎ𝑟, 𝑖𝑓 0 < 𝑟 ≤ 𝑚

2
,

𝜋ℎ𝑟 − 𝐽 (𝑟,𝑚

2
) , 𝑖𝑓 𝑚

2
< 𝑟 <









𝑚

1









,

𝜋ℎ𝑟 + 𝐾 (𝑟,𝑚

1
, 𝑚

2
) , 𝑖𝑓 𝑟 ≥









𝑚

1









;

(30)

(5) if 𝑚
1
< 0 < 𝑚

2
and |𝑚

1
| = |𝑚

2
| = 𝑚,

𝐼

1
(𝑟) = {

𝜋ℎ𝑟, 𝑖𝑓 0 < 𝑟 ≤ 𝑚,

𝜋ℎ𝑟 − 2𝐽 (𝑟, 𝑚) , 𝑖𝑓 𝑟 > 𝑚,

(31)

where

𝐽 (𝑟,𝑚

𝑖
) = ℎ𝑟(arctan

√𝑟

2
− 𝑚

2

𝑖

𝑚

𝑖

−

𝑚

𝑖
√𝑟

2
− 𝑚

2

𝑖

𝑟

2
), (32)

for 𝑖 = 1, 2, and

𝐾(𝑟,𝑚

1
, 𝑚

2
) = ℎ𝑟(arctan

√𝑟

2
− 𝑚

2

1

𝑚

1

− arctan
√𝑟

2
− 𝑚

2

2

𝑚

2

−

𝑚

1
√𝑟

2
− 𝑚

2

1

𝑟

2
+

𝑚

2
√𝑟

2
− 𝑚

2

2

𝑟

2
).

(33)

The proof of this lemma is given in the appendix.

Remark 6. If𝑚
1
< 0 < 𝑚

2
and |𝑚

1
| = |𝑚

2
|, system (1) can be

transformed into the system which is studied in the paper
[12].

Lemma 7. If 𝑚
1
𝑚

2
> 0, one defines 𝑚 = max(|𝑚

1
|, |𝑚

2
|),

𝑚 = min(|𝑚
1
|, |𝑚

2
|) and consider the equation 𝐼

1
(𝑟) = 𝑐𝑟,

𝑟 > 0 with 𝐼
1
given by (24), and 𝑐 is a real parameter. Then,

(1) if 𝑐 < 0 or 𝑐 > ℎ(arctan(𝑚/𝑚) − arctan(𝑚/𝑚)), the
equation has no solutions;

(2) if 𝑐 = 0, then the interval (0, 𝑚] is a continuum of
solutions;

(3) if 𝑐 = ℎ(arctan(𝑚/𝑚) − arctan(𝑚/𝑚)), there is an
unique solution 𝑟∗ = √𝑚2 + 𝑚2;

(4) if 𝑐 ∈ (0, ℎ(arctan(𝑚/𝑚) − arctan(𝑚/𝑚))), there are
two solutions 𝑟∗

1
<
√
𝑚

2
+ 𝑚

2 and 𝑟∗
2
>
√
𝑚

2
+ 𝑚

2.

Proof. If 0 < 𝑚
1
< 𝑚

2
, we have 𝑚 = 𝑚

2
and 𝑚 = 𝑚

1
. It is

easy to see that all 𝑟 ∈ (0,𝑚] are a solution if 𝑐 = 0. If
𝑐 ̸= 0 changing the variable 𝑢 = √𝑟

2
− 𝑚

2

1
/𝑚

1
and defin-

ing 𝑔(𝑢) = 𝐼
1
(𝑟)/ℎ𝑟, we obtain the equivalent equation

𝑔 (𝑢) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

arctan 𝑢 − 𝑢
1 + 𝑢
2
, if 𝑢 ∈ (0,

√𝑚
2

2
− 𝑚
2

1

𝑚
1

]
]

]

,

arctan 𝑢 − 𝑢
1 + 𝑢
2

− arctan
√(1 + 𝑢

2
)𝑚
2

1
− 𝑚
2

2

𝑚
2

+

𝑚
2
√(1 + 𝑢

2
)𝑚
2

1
− 𝑚
2

2

𝑚
2

1
(1 + 𝑢

2
)
,

if 𝑢 ∈ (
√𝑚
2

2
− 𝑚
2

1

𝑚
1

, +∞)

(34)

with simple computation; we find that the function 𝑔 is
strictly monotonically increasing of variable 𝑢 when 𝑢 ∈

(0,𝑚

2
/𝑚

1
) and strictly monotonically decreasing when

𝑢 ∈ (𝑚

2
/𝑚

1
, +∞). The function 𝑔 gets to the maximal

value 𝑔max = arctan(𝑚
2
/𝑚

1
) − arctan(𝑚

1
/𝑚

2
) when 𝑢 =

𝑚

2
/𝑚

1
. Also we have 𝑓(𝑢) → 0 as 𝑢 → 0 and 𝑢 → +∞.

The proof is similar if 𝑚
1
< 𝑚

2
< 0.

Lemma 8. If 𝑚
1
𝑚

2
< 0, one defines 𝑚 = min(|𝑚

1
|, |𝑚

2
|)

and consider the equation 𝐼
1
(𝑟) = 𝑐𝑟, 𝑟 > 0 with 𝐼

1
given by

(24), and 𝑐 is a real parameter. Then,

(1) if 𝑐 < 0 or 𝑐 > 𝜋ℎ, the equation has no solutions;

(2) if 𝑐 = 𝜋ℎ, then the interval (0, 𝑚] is a continuum of
solutions;

(3) if 𝑐 ∈ (0, 𝜋ℎ), there is an unique solution 𝑟∗.

Proof. Weonly consider the case when |𝑚
1
| < |𝑚

2
|: the proof

is similar when |𝑚
1
| > |𝑚

2
| and |𝑚

1
| = |𝑚

2
|. It is easy to see

that all 𝑟 ∈ (0, |𝑚
1
|] are a solution if 𝑐 = 𝜋ℎ. If 𝑐 ̸= 0 changing

the variable 𝑢 = √𝑟2 − 𝑚2
1
/𝑚

1
and defining 𝑔(𝑢) = 𝐼

1
(𝑟)/ℎ𝑟,

we obtain the equivalent equation

𝑔 (𝑢) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜋 + arctan 𝑢 − 𝑢
1 + 𝑢
2
, if 𝑢 ∈ [

𝑚
2

2
− 𝑚
2

1

𝑚
1

, 0) ,

𝜋 + arctan 𝑢 − 𝑢
1 + 𝑢
2

− arctan
√(1 + 𝑢

2
)𝑚
2

1
− 𝑚
2

2

𝑚
2

+

𝑚
2
√(1 + 𝑢

2
)𝑚
2

1
− 𝑚
2

2

𝑚
2

1
(1 + 𝑢

2
)
,

if 𝑢 ∈ (−∞,
√𝑚
2

2
− 𝑚
2

1

𝑚
1

).

(35)

With simple computation, we find that the function 𝑔 is
strictly monotonically increasing of variable 𝑢. It is easy to
know 𝑓(𝑢) → 𝜋 as 𝑢 → 0 and 𝑓(𝑢) → 0 as 𝑢 → −∞.

With Lemma 5, we obtain the expressions for the compo-
nents of function ℎ,

ℎ

1
(𝑟, 𝜌, 𝑠) = 𝑐

1
𝑟 + 𝑐

2
𝜌 cos 𝑠 + 𝑐

3
𝜌 sin 𝑠 + 𝑏

1
𝐼

1
(𝑟) ,
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ℎ

2
(𝑟, 𝜌, 𝑠) = 𝑐

7
𝜌 + 𝑐

5
𝑟 cos 𝑠 + 𝑐

6
𝑟 sin 𝑠 + 𝑏

3
cos 𝑠𝐼
1
(𝑟) ,

ℎ

3
(𝑟, 𝜌, 𝑠) = 𝑐

4
+ (𝑐

3
cos 𝑠 − 𝑐

2
sin 𝑠)

𝜌

𝑟

+ (𝑐

6
cos 𝑠 − 𝑐

5
sin 𝑠) 𝑟

𝜌

− 𝑏

3
sin 𝑠𝐼1 (𝑟)

𝜌

− 𝑏

2

𝐼

1
(𝑟)

𝑟

,

(36)

where 𝑐
𝑖
are constants that depend linearly on 𝑎

𝑖𝑗

𝑐

1
= (𝑎

11
+ 𝑎

22
) 𝜋, 𝑐

2
= (𝑎

13
+ 𝑎

24
) 𝜋,

𝑐

3
= (𝑎

14
− 𝑎

23
) 𝜋, 𝑐

4
= (𝑎

43
+ 𝑎

12
− 𝑎

34
− 𝑎

21
) 𝜋,

𝑐

5
= (𝑎

31
+ 𝑎

42
) 𝜋, 𝑐

6
= (𝑎

41
− 𝑎

32
) 𝜋,

𝑐

7
= (𝑎

33
+ 𝑎

44
) 𝜋.

(37)

According to Theorem 3 and Fact 1, for each simple zero
(𝑟

∗
, 𝜌

∗
, 𝑠

∗
) of (36) there is an isolated 2𝜋-periodic solu-

tion 𝜙(⋅, 𝜀) of system (19) with |𝜀| ̸= 0 sufficiently small such
that 𝜙(⋅, 𝜀) → (𝑟

∗
, 𝜌

∗
, 𝑠

∗
) as 𝜀 → 0. Any isolated 2𝜋-peri-

odic solution of system (19) with |𝜀| ̸= 0 sufficiently small
corresponds to a limit cycle of system (10). Thus, the most
important task is to calculate the number of the simple zeros
of function ℎ. We solve the two first equations of (36), then,
we get

𝐼

1
(𝑟) =

𝑘

2
(𝑠)

𝑑 (𝑠)

𝜌, 𝑟 =

𝑘

1
(𝑠)

𝑑 (𝑠)

𝜌, (38)

where

𝑑 (𝑠) = (𝑏

1
𝑐

5
− 𝑏

3
𝑐

1
) cos 𝑠 + 𝑏

1
𝑐

6
sin 𝑠,

𝑘

1
(𝑠) = 𝑏

3
cos 𝑠 (𝑐

2
cos 𝑠 + 𝑐

3
sin 𝑠) + 𝑏

1
𝑐

7
,

𝑘

2
(𝑠) = 𝑐

1
𝑐

7
− 𝑐

2
𝑐

5
cos2𝑠 − 𝑐

3
𝑐

6
sin2𝑠

− (𝑐

2
𝑐

6
+ 𝑐

3
𝑐

5
) sin 𝑠 cos 𝑠.

(39)

Substituting (38) into the third equation, we obtain

ℎ

3
(𝑟, 𝜌, 𝑠) =

𝑓 (𝑠)

𝑑 (𝑠) 𝑘

1
(𝑠)

= 0, (40)

where

𝑓 (𝑠) = 𝑐

4
𝑑 (𝑠) 𝑘

1
(𝑠) + (𝑐

3
cos−𝑐

2
sin 𝑠) 𝑑2 (𝑠)

+ (𝑐

6
cos 𝑠 − 𝑐

5
sin 𝑠) 𝑘2

1
(𝑠)

− 𝑏

3
sin 𝑠𝑘
1
(𝑠) 𝑘

2
(𝑠) − 𝑏

2
𝑑 (𝑠) 𝑘

2
(𝑠) .

(41)

It is necessary to study the zeros of 𝑓 instead of the zeros of ℎ.

Lemma 9. The function 𝑓 : [0, 2𝜋) → R given by formula
(41) can have atmost six isolated zeros, and they appear in pairs
{𝑠

∗
, 𝑠

∗
+ 𝜋(mod 2𝜋)}.

Proof. Substituting cos 𝑠 = 𝑥 and sin 𝑠 = √1 − 𝑥2 in𝑓(𝑠) = 0
we get

𝐷

1
𝑥 + 𝐷

3
𝑥

3
+ (𝐷

0
+ 𝐷

2
𝑥

2
)

√

1 − 𝑥

2
= 0,

(42)

where

𝐷

0
= 𝑏

2

1
(𝑐

2
𝑐

2

6
− 𝑐

4
𝑐

6
𝑐

7
+ 𝑐

5
𝑐

2

7
) + 𝑏

1
𝑏

2
(𝑐

3
𝑐

2

6
− 𝑐

1
𝑐

6
𝑐

7
) ,

𝐷

1
= 𝑏

2

1
(2𝑐

2
𝑐

5
𝑐

6
− 𝑐

3
𝑐

2

6
− 𝑐

4
𝑐

5
𝑐

7
− 𝑐

6
𝑐

2

7
) + 𝑏

2

3
(𝑐

1
𝑐

3
𝑐

7
− 𝑐

6
𝑐

2

3
)

+ 𝑏

1
𝑏

2
(2𝑐

2
𝑐

5
𝑐

6
+ 𝑐

3
𝑐

2

5
− 𝑐

1
𝑐

5
𝑐

7
) ,

𝐷

2
= 𝑏

2

1
(𝑐

2
𝑐

2

5
− 𝑐

2
𝑐

2

6
− 2𝑐

3
𝑐

5
𝑐

6
)

+ 𝑏

2

3
(𝑐

1
𝑐

2
𝑐

7
+ 𝑐

2
𝑐

2

1
− 𝑐

1
𝑐

3
𝑐

4
− 2𝑐

2
𝑐

3
𝑐

6
)

+ 𝑏

1
𝑏

2
(2𝑐

2
𝑐

5
𝑐

6
+ 𝑐

3
𝑐

2

5
− 𝑐

3
𝑐

2

6
) ,

𝐷

3
= 𝑏

2

1
(𝑐

3
𝑐

2

6
− 𝑐

3
𝑐

2

5
− 2𝑐

2
𝑐

5
𝑐

6
)

+ 𝑏

2

3
(𝑐

2

3
𝑐

6
− 𝑐

3
𝑐

2

1
− 𝑐

1
𝑐

2
𝑐

4
− 𝑐

1
𝑐

3
𝑐

7
− 𝑐

6
𝑐

2

2
)

+ 𝑏

1
𝑏

2
(𝑐

2
𝑐

2

5
− 2𝑐

3
𝑐

5
𝑐

6
− 𝑐

2
𝑐

2

6
) .

(43)

When we consider the case cos 𝑠 = 𝑥 and sin 𝑠 = −√1 − 𝑥2,
𝑓(𝑠) = 0 becomes

𝐷

1
𝑥 + 𝐷

3
𝑥

3
− (𝐷

0
+ 𝐷

2
𝑥

2
)

√

1 − 𝑥

2
= 0.

(44)

It follows that we have to find solutions of (42) or (44) in the
interval [−1, 1]. This is equivalent to

𝐷

1
𝑥 + 𝐷

3
𝑥

3
− (𝐷

0
+ 𝐷

2
𝑥

2
)

2

(1 − 𝑥

2
) = 0

(45)

which is the polynomial equation

(𝐷

2

3
+ 𝐷

2

2
) 𝑥

6
+ (2𝐷

1
𝐷

3
+ 2𝐷

0
𝐷

2
− 𝐷

2

2
) 𝑥

4

+ (𝐷

2

1
+ 𝐷

2

0
− 2𝐷

0
𝐷

2
) 𝑥

2
− 𝐷

2

0
= 0.

(46)

This equation can have at most six roots in the interval
[−1, 1]. Then, 𝑓(𝑠) = 0 has at most six solutions 𝑠 ∈ [0, 2𝜋).
Since 𝑓(𝑠 + 𝜋) = −𝑓(𝑠) for all 𝑠 ∈ [0, 2𝜋), it is clear that
if 𝑠∗ is a zero of 𝑓 then 𝑠∗ + 𝜋(mod 2𝜋) is also a zero.

The functions 𝑓(𝑠), 𝑑(𝑠), 𝑘
1
(𝑠), and 𝑘

2
(𝑠) have the prop-

erties 𝑓(𝑠 + 𝜋) = −𝑓(𝑠), 𝑑(𝑠 + 𝜋) = −𝑑(𝑠), 𝑘
1
(𝑠 + 𝜋) =

𝑘

1
(𝑠), and 𝑘

2
(𝑠 + 𝜋) = 𝑘

2
(𝑠). So, we have

𝑘

1
(𝑠)

𝑑 (𝑠)

> 0 ⇒

𝑘

1
(𝑠 + 𝜋)

𝑑 (𝑠 + 𝜋)

< 0. (47)

Thus, the equation ℎ

3
= 0 at most three zeros that sat-

isfy 𝑘
1
(𝑠)/𝑑(𝑠) > 0. With Lemma 7 for a fixed 𝑠∗, we at most

find two isolated value of 𝑟∗ from 𝐼

1
(𝑟)/𝑟 = 𝑘

2
(𝑠

∗
)/𝑑(𝑠

∗
).

With Lemma 8 for a fixed 𝑠∗, we at most find one isolated
value of 𝑟∗ from 𝐼

1
(𝑟)/𝑟 = 𝑘

2
(𝑠

∗
)/𝑑(𝑠

∗
). For fixed 𝑠∗ and

fixed 𝑟∗, 𝜌/𝑟 = 𝑘
1
(𝑠

∗
)/𝑑(𝑠

∗
) gives at most one isolated value

for 𝜌∗. Thus, we conclude that if 𝑚
1
𝑚

2
> 0 the maximum

number of limit cycles for system (1) is six, and if 𝑚
1
𝑚

2
<

0 themaximumnumber of limit cycles for system (1) is three.
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Remark 10. Using the main result of [18], the stability of the
limit cycles associated with the solution (𝑟∗, 𝜌∗, 𝑠∗) is given
by the eigenvalues of the matrix

𝜕 (ℎ

1
, ℎ

2
, ℎ

3
)

𝜕 (𝑟, 𝜌, 𝑠)

















(𝑟,𝜌,𝑠)=(𝑟
∗
,𝜌
∗
,𝑠
∗
)

. (48)

In order to show that there exist examples with exactly six
limit cycles, we consider the following values of the coeffi-
cients:

𝑐

1
= −1, 𝑐

2
=

−4
√
3

3

, 𝑐

3
= 0,

𝑐

4
=

−4
√
3

3

, 𝑐

5
= 0, 𝑐

6
= 1, 𝑐

7
= −1,

𝑏

1
= 1, 𝑏

2
= 𝑏

3
= 𝑏

4
= 0, ℎ = 6,

𝑚

1
= 1, 𝑚

2
=

√

3.

(49)

More precisely, the system has the following form:

�̇� = 𝐴

0
𝑥 + 𝜀𝐴𝑥 + 𝜀𝜑 (𝑥

1
) 𝑏,

(50)

where

𝜑 (𝑥

1
) =

{

{

{

{

{

0, for 𝑥
1
∈ (−∞, 1) ,

6𝑥

1
− 6, for 𝑥

1
∈ (1,

√
3) ,

6
√
3 − 6, for 𝑥

1
∈ (
√
3, +∞) ,

𝐴

0
= (

0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

) ,

𝐴 = (

𝑎

11
𝑎

12
𝑎

13
𝑎

14

𝑎

21
𝑎

22
𝑎

14
𝑎

24

𝑎

31
𝑎

32
𝑎

33
𝑎

34

𝑎

41
−𝑎

31
𝑎

43
𝑎

44

), 𝑏 = (

1

0

0

0

) ,

(51)

and 𝑎
𝑖𝑗
∈ R satisfy

(𝑎

11
+ 𝑎

22
) 𝜋 = −1, (𝑎

13
+ 𝑎

24
) 𝜋 =

−4
√
3

3

,

(𝑎

43
+ 𝑎

12
− 𝑎

34
− 𝑎

21
) 𝜋 =

−4
√
3

3

,

(𝑎

41
− 𝑎

32
) 𝜋 = 1, (𝑎

33
+ 𝑎

44
) 𝜋 = −1.

(52)

It is easy to know 6(arctan√3 − arctan(√3/3)) = 𝜋.
Computing the six solutions of 𝑓(𝑠) = 0, we get {𝜋/6, 𝜋/3,
𝜋/2, 7𝜋/6, 4𝜋/3, 3𝜋/2}. The values of 𝑑(𝑠∗), 𝑘

1
(𝑠

∗
) and 𝑘

2
(𝑠

∗
)

are given in Table 1.

There are three values of 𝑠∗ that satisfy 𝑘
1
(𝑠

∗
)/𝑑(𝑠

∗
) >

0 and 0 < 𝑘

2
(𝑠

∗
)/𝑘

1
(𝑠

∗
) < 𝜋. These three solutions are

{𝜋/6, 𝜋/3, 𝜋/2}.
The six values of solution 𝑠∗, 𝑟∗, 𝜌∗ and the value of the

Jacobian at the solution (𝑟∗, 𝜌∗, 𝑠∗) are given in Table 2.

Table 1: The values of 𝑠∗, 𝑑(𝑠∗), 𝑘
1
(𝑠

∗
), and 𝑘

2
(𝑠

∗
).

𝑠

∗
𝑘

1
(𝑠

∗
) 𝑑(𝑠

∗
) 𝑘

2
(𝑠

∗
)

𝜋/6 1 1/2 2

𝜋/3 1
√
3/2 2

𝜋/2 1 1 1

7𝜋/6 1 −1/2 2

4𝜋/3 1 −
√
3/2 2

3𝜋/2 1 −1 1

Table 2: The values of solution 𝑠

∗
, 𝑟

∗
, 𝜌

∗ and the Jacobian
𝐽ℎ(𝑟

∗
, 𝜌

∗
, 𝑠

∗
).

𝑠

∗
𝑟

∗
𝜌

∗
𝐽ℎ(𝑟

∗
, 𝜌

∗
, 𝑠

∗
)

𝜋/6 1.484 0.742 11.957
𝜋/6 4.139 2.07 −4.688

𝜋/3 1.484 1.285 −3.27

𝜋/3 4.139 3.585 −1.144

𝜋/2 1.254 1.254 5.732
𝜋/2 8.672 8.672 −0.964

4. Conclusion

In this paper, we have studied the limit cycles bifurcated from
periodic orbits of a linear differential system in R4 when the
perturbation is piecewise linear with two switching bound-
aries. We considered two classes of asymmetric perturbation.
We have found that the perturbed system could have at most
six limit cycles with one class of the asymmetric perturbation
and three limit cycles with the other class of asymmetric
perturbation, which generalized the result of paper [12].

Appendix

The Proof of Lemma 5

Case 1 (0 < 𝑚
1
< 𝑚

2
). We have |𝑟 sin 𝜃| ≤ 𝑚

1
and |𝑟 cos 𝜃| ≤

𝑚

1
for all 𝜃 ∈ [0, 2𝜋) if 0 < 𝑟 ≤ 𝑚

1
. Then, 𝜑(𝑟 cos 𝜃) = 0 for

every 𝜃. Thus,

𝐼

1
(𝑟) = 𝐼

2
(𝑟) = 0. (A.1)

We now fix 𝑚
1
< 𝑟 < 𝑚

2
and consider 𝜃

𝑐
∈ (0, 𝜋/2) which

satisfies 𝑟 cos 𝜃
𝑐
= 𝑚

1
. Then, we have

𝐼

1
(𝑟) = ∫

𝜃
𝑐

0

(ℎ𝑟 cos 𝜃 − ℎ𝑚
1
) cos 𝜃𝑑𝜃

+ ∫

2𝜋

2𝜋−𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
1
) cos 𝜃𝑑𝜃

= ℎ𝑟𝜃

𝑐
− ℎ𝑚

1
sin 𝜃
𝑐
,

𝐼

2
(𝑟) = ∫

𝜃
𝑐

0

(ℎ𝑟 cos 𝜃 − ℎ𝑚
1
) sin 𝜃𝑑𝜃

+ ∫

2𝜋

2𝜋−𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
1
) sin 𝜃𝑑𝜃

= 0.

(A.2)
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We now fix 𝑟 ≥ 𝑚
2
and consider 0 < ̃

𝜃

𝑐
< 𝜃

𝑐
< 𝜋/2 which

satisfies 𝑟 cos ̃𝜃
𝑐
= 𝑚

2
. Then, we have

𝐼

1
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

(ℎ𝑚

2
− ℎ𝑚

1
) cos 𝜃𝑑𝜃

+ ∫

𝜃
𝑐

𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
1
) cos 𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

2𝜋−𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
1
) cos 𝜃𝑑𝜃,

𝐼

2
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

(ℎ𝑚

2
− ℎ𝑚

1
) sin 𝜃𝑑𝜃

+ ∫

𝜃
𝑐

𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
1
) sin 𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

2𝜋−𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
1
) sin 𝜃𝑑𝜃.

(A.3)

With simple computation, we get

𝐼

1
(𝑟) = ℎ𝑚

2
sin ̃𝜃
𝑐
− ℎ𝑚

1
sin 𝜃
𝑐
+ ℎ𝑟𝜃

𝑐
− ℎ𝑟

̃

𝜃

𝑐
,

𝐼

2
(𝑟) = 0,

(A.4)

where

sin 𝜃
𝑐
=

√𝑟

2
− 𝑚

2

1

𝑟

, sin ̃𝜃
𝑐
=

√𝑟

2
− 𝑚

2

2

𝑟

,

(A.5)

𝜃

𝑐
= arctan

√𝑟

2
− 𝑚

2

1

𝑚

1

,

̃

𝜃

𝑐
= arctan

√𝑟

2
− 𝑚

2

2

𝑚

2

.

(A.6)

Case 2 (𝑚
1
< 𝑚

2
< 0). We have |𝑟 sin 𝜃| ≤ |𝑚

2
| and

|𝑟 cos 𝜃| ≤ |𝑚

2
| for all 𝜃 ∈ [0, 2𝜋) if 0 < 𝑟 ≤ |𝑚

2
|.

Then, 𝜑(𝑟 cos 𝜃) = 0 for every 𝜃. Thus,

𝐼

1
(𝑟) = 𝐼

2
(𝑟) = 0. (A.7)

We fix now |𝑚

2
| < 𝑟 < |𝑚

1
| and consider 𝜃

𝑐
∈ (𝜋/2, 𝜋)

which satisfies 𝑟 cos 𝜃
𝑐
= 𝑚

2
. Then, we have

𝐼

1
(𝑟) = ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
2
) cos 𝜃𝑑𝜃

= 𝜋ℎ𝑟 − ℎ𝑟𝜃

𝑐
+ ℎ𝑚

2
sin 𝜃
𝑐
,

𝐼

2
(𝑟) = ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
2
) sin 𝜃𝑑𝜃 = 0.

(A.8)

We now fix 𝑟 ≥ |𝑚

1
| and consider ̃𝜃

𝑐
∈ (𝜋/2, 𝜋) which

satisfies 𝑟 cos ̃𝜃
𝑐
= 𝑚

1
. Obviously, 𝜃

𝑐
<

̃

𝜃

𝑐
. Then, we have

𝐼

1
(𝑟) = ∫

𝜃
𝑐

𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
2
) cos 𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

(ℎ𝑚

1
− ℎ𝑚

2
) cos 𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

2𝜋−𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
2
) cos 𝜃𝑑𝜃,

𝐼

2
(𝑟) = ∫

𝜃
𝑐

𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
2
) sin 𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

(ℎ𝑚

1
− ℎ𝑚

2
) sin 𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

2𝜋−𝜃
𝑐

(ℎ𝑟 cos 𝜃 − ℎ𝑚
2
) sin 𝜃𝑑𝜃.

(A.9)

With simple computation, we get

𝐼

1
(𝑟) = ℎ𝑚

2
sin 𝜃
𝑐
− ℎ𝑚

1
sin ̃𝜃
𝑐
− ℎ𝑟𝜃

𝑐
+ ℎ𝑟

̃

𝜃

𝑐
,

𝐼

2
(𝑟) = 0,

(A.10)

where

sin 𝜃
𝑐
=

√𝑟

2
− 𝑚

2

2

𝑟

, sin ̃𝜃
𝑐
=

√𝑟

2
− 𝑚

2

1

𝑟

,

𝜃

𝑐
= 𝜋 + arctan

√𝑟

2
− 𝑚

2

2

𝑚

2

,

̃

𝜃

𝑐
= 𝜋 + arctan

√𝑟

2
− 𝑚

2

1

𝑚

1

.

(A.11)

Case 3 (𝑚
1
< 0 < 𝑚

2
and |𝑚

1
| < |𝑚

2
|). We have |𝑟 sin 𝜃| ≤

|𝑚

1
| and |𝑟 cos 𝜃| ≤ |𝑚

1
| for all 𝜃 ∈ [0, 2𝜋) if 0 < 𝑟 ≤ |𝑚

1
|.

Then, 𝜑(𝑟 cos 𝜃) = ℎ𝑟 cos 𝜃 for every 𝜃. Thus,

𝐼

1
(𝑟) = ∫

2𝜋

0

ℎ𝑟cos2𝜃𝑑𝜃 = 𝜋ℎ𝑟,

𝐼

2
(𝑟) = ∫

2𝜋

0

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃 = 0.
(A.12)

We fix now |𝑚

1
| < 𝑟 < |𝑚

2
| and consider 𝜃

𝑐
∈ (𝜋/2, 𝜋)

which satisfies 𝑟 cos 𝜃
𝑐
= 𝑚

1
. Then, we have

𝐼

1
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑟cos2𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑚

1
cos 𝜃𝑑𝜃 = ℎ𝑟𝜃

𝑐
− ℎ𝑚

1
sin 𝜃
𝑐
,

𝐼

2
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑟 sin 𝜃 cos 𝜃𝑑𝜃 + ∫
2𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑚

1
sin 𝜃𝑑𝜃 = 0.

(A.13)
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Wenowfix 𝑟 ≥ 𝑚
2
and consider ̃𝜃

𝑐
∈ (0, 𝜋/2) which satisfies

𝑟 cos ̃𝜃
𝑐
= 𝑚

2
. Then, we can write

𝐼

1
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑚

2
cos 𝜃𝑑𝜃 + ∫

𝜃
𝑐

𝜃
𝑐

ℎ𝑟cos2𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑚

1
cos 𝜃𝑑𝜃 + ∫

2𝜋−𝜃
𝑐

2𝜋−𝜃
𝑐

ℎ𝑟cos2𝜃𝑑𝜃,

(A.14)

𝐼

2
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑚

2
sin 𝜃𝑑𝜃 + ∫

𝜃
𝑐

𝜃
𝑐

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑚

1
sin 𝜃𝑑𝜃 + ∫

2𝜋−𝜃
𝑐

2𝜋−𝜃
𝑐

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃.

(A.15)

With simple computation, we get

𝐼

1
(𝑟) = ℎ𝑚

2
sin ̃𝜃
𝑐
− ℎ𝑚

1
sin 𝜃
𝑐
+ ℎ𝑟𝜃

𝑐
− ℎ𝑟

̃

𝜃

𝑐
,

(A.16)

𝐼

2
(𝑟) = 0, (A.17)

where

sin 𝜃
𝑐
=

√𝑟

2
− 𝑚

2

1

𝑟

, sin ̃𝜃
𝑐
=

√𝑟

2
− 𝑚

2

2

𝑟

,

(A.18)

𝜃

𝑐
= 𝜋 + arctan

√𝑟

2
− 𝑚

2

1

𝑚

1

,

̃

𝜃

𝑐
= arctan

√𝑟

2
− 𝑚

2

2

𝑚

2

.

(A.19)

Case 4 (𝑚
1
< 0 < 𝑚

2
and |𝑚

1
| > |𝑚

2
|). We have |𝑟 sin 𝜃| ≤

𝑚

2
and |𝑟 cos 𝜃| ≤ 𝑚

2
for all 𝜃 ∈ [0, 2𝜋) if 0 < 𝑟 ≤ 𝑚

2
.

Then, 𝜑(𝑟 cos 𝜃) = ℎ𝑟 cos 𝜃 for every 𝜃. Thus,

𝐼

1
(𝑟) = ∫

2𝜋

0

ℎ𝑟cos2𝜃𝑑𝜃 = 𝜋ℎ𝑟,

𝐼

2
(𝑟) = ∫

2𝜋

0

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃 = 0.
(A.20)

We fix now 𝑚

2
< 𝑟 < |𝑚

1
| and consider 𝜃

𝑐
∈ (0, 𝜋/2) which

satisfies 𝑟 cos 𝜃
𝑐
= 𝑚

2
. Then, we have

𝐼

1
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑚

2
cos 𝜃𝑑𝜃 + ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑟cos2𝜃𝑑𝜃

= 𝜋ℎ𝑟 − ℎ𝑟𝜃

𝑐
+ ℎ𝑚

2
sin 𝜃
𝑐
,

𝐼

1
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑚

2
sin 𝜃𝑑𝜃 + ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃 = 0.

(A.21)

We now fix 𝑟 ≥ |𝑚

1
| and consider ̃𝜃

𝑐
∈ (𝜋/2, 𝜋) which

satisfies 𝑟 cos ̃𝜃
𝑐
= 𝑚

1
. Then, we have

𝐼

1
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑚

2
cos 𝜃𝑑𝜃 + ∫

𝜃
𝑐

𝜃
𝑐

ℎ𝑟cos2𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑚

1
cos 𝜃𝑑𝜃 + ∫

2𝜋−𝜃
𝑐

2𝜋−𝜃
𝑐

ℎ𝑟cos2𝜃𝑑𝜃,

𝐼

2
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑚

2
sin 𝜃𝑑𝜃 + ∫

𝜃
𝑐

𝜃
𝑐

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃

+ ∫

2𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑚

1
sin 𝜃𝑑𝜃 + ∫

2𝜋−𝜃
𝑐

2𝜋−𝜃
𝑐

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃.

(A.22)

With simple computation, we get

𝐼

1
(𝑟) = ℎ𝑚

2
sin 𝜃
𝑐
− ℎ𝑚

1
sin ̃𝜃
𝑐
− ℎ𝑟𝜃

𝑐
+ ℎ𝑟

̃

𝜃

𝑐
,

𝐼

2
(𝑟) = 0,

(A.23)

where

sin 𝜃
𝑐
=

√𝑟

2
− 𝑚

2

2

𝑟

, sin ̃𝜃
𝑐
=

√𝑟

2
− 𝑚

2

1

𝑟

,

𝜃

𝑐
= arctan

√𝑟

2
− 𝑚

2

2

𝑚

2

,

̃

𝜃

𝑐
= 𝜋 + arctan

√𝑟

2
− 𝑚

2

1

𝑚

1

.

(A.24)

Case 5 (𝑚
1
< 0 < 𝑚

2
and |𝑚

1
| = |𝑚

2
| = 𝑚). We have

|𝑟 sin 𝜃| ≤ 𝑚 and |𝑟 cos 𝜃| ≤ 𝑚 for all 𝜃 ∈ [0, 2𝜋) if 0 < 𝑟 ≤
𝑚. Then, 𝜑(𝑟 cos 𝜃) = ℎ𝑟 cos 𝜃 for every 𝜃. Thus,

𝐼

1
(𝑟) = ∫

2𝜋

0

ℎ𝑟cos2𝜃𝑑𝜃 = 𝜋ℎ𝑟,

𝐼

2
(𝑟) = ∫

2𝜋

0

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃 = 0.
(A.25)

We fix now 𝑟 > 𝑚 and consider 𝜃
𝑐
∈ (0, 𝜋/2) which satisfies

𝑟 cos 𝜃
𝑐
= 𝑚. Then, we have

𝐼

1
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑚 cos 𝜃𝑑𝜃 + ∫
𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑟cos2𝜃𝑑𝜃

− ∫

𝜋+𝜃
𝑐

𝜋−𝜃
𝑐

ℎ𝑚 cos 𝜃𝑑𝜃 + ∫
2𝜋−𝜃
𝑐

𝜋+𝜃
𝑐

ℎ𝑟cos2𝜃𝑑𝜃,

𝐼

1
(𝑟) = ∫

𝜃
𝑐

−𝜃
𝑐

ℎ𝑚 sin 𝜃𝑑𝜃 + ∫
𝜋−𝜃
𝑐

𝜃
𝑐

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃

− ∫

𝜋+𝜃
𝑐

𝜋−𝜃
𝑐

ℎ𝑚 sin 𝜃𝑑𝜃 + ∫
2𝜋−𝜃
𝑐

𝜋+𝜃
𝑐

ℎ𝑟 cos 𝜃 sin 𝜃𝑑𝜃.

(A.26)

With simple computation, we get

𝐼

1
(𝑟) = 𝜋ℎ𝑟 + 2ℎ𝑚 sin 𝜃

𝑐
− 2ℎ𝑟𝜃

𝑐
,

𝐼

2
(𝑟) = 0,

(A.27)
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where

sin 𝜃
𝑐
=

√

𝑟

2
− 𝑚

2

𝑟

, 𝜃

𝑐
= arctan

√

𝑟

2
− 𝑚

2

𝑚

.

(A.28)

This completes the proof of the lemma.
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