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We investigate the uniqueness questions of the difference operator on entire functions and obtain three uniqueness theorems using
the idea of weight sharing.

1. Introduction

A function 𝑓(𝑧) is called meromorphic, if it is analytic in the
complex plane except at poles. It is assumed that the reader is
familiar with the standard symbols and fundamental results
of Nevanlinna theory such as the characteristic function
𝑇(𝑟, 𝑓), and proximity function 𝑚(𝑟, 𝑓), counting function
𝑁(𝑟, 𝑓) (see [1, 2]). In addition we use 𝑆(𝑟, 𝑓) denotes any
quantity that satisfies the condition: 𝑆(𝑟, 𝑓) = 𝑜(𝑇(𝑟, 𝑓))
as 𝑟 → ∞ possibly outside an exceptional set of finite
logarithmic measure.

Let 𝑓 and 𝑔 be two nonconstant meromorphic functions,
𝑎 ∈ C ∪ {∞}, we say that 𝑓 and 𝑔 share the value 𝑎 IM
(ignoringmultiplicities) if𝑓−𝑎 and 𝑔−𝑎 have the same zeros,
they share the value 𝑎 CM (counting multiplicities) if 𝑓 − 𝑎
and 𝑔 − 𝑎 have the same zeros with the same multiplicities.
When 𝑎 = ∞ the zeros of 𝑓−𝑎mean the poles of 𝑓 (see [2]).

Let 𝑝 be a positive integer and 𝑎 ∈ C ∪ {∞}. We use
𝑁𝑝)(𝑟, 1/(𝑓 − 𝑎)) to denote the counting function of the
zeros of 𝑓 − 𝑎 (counted with proper multiplicities) whose
multiplicities are not bigger than 𝑝, 𝑁(𝑝+1(𝑟, 1/(𝑓 − 𝑎)) to
denote the counting function of the zeros of 𝑓 − 𝑎 whose
multiplicities are not less than 𝑝 + 1. 𝑁𝑝)(𝑟, 1/(𝑓 − 𝑎))

and 𝑁(𝑝+1(𝑟, 1/(𝑓 − 𝑎)) denote their corresponding reduced
counting functions (ignoring multiplicities), respectively. We
denote by 𝐸(𝑎, 𝑓) the set of zeros of 𝑓 − 𝑎 with multiplicity,
𝐸𝑝)(𝑎, 𝑓) the set of zeros of 𝑓 − 𝑎 (counted with proper
multiplicities) whose multiplicities are not greater than 𝑝.

In 1997, Yang and Hua (see [3]) studied the uniqueness of
the differential monomials and obtained the following result.

TheoremA. Let 𝑓 and 𝑔 be nonconstant entire functions, and
let 𝑛 ≥ 3 be an integer. If 𝑓𝑛𝑓 and 𝑔𝑛𝑔 share 1 CM, then
either 𝑓(𝑧) = 𝑐1exp𝑐𝑧, 𝑔(𝑧) = 𝑐2exp−𝑐𝑧, where 𝑐1, 𝑐2, and 𝑐 are
constants satisfying (𝑐1𝑐2)

𝑛+1𝑐2 = −1 or 𝑓 = 𝑡𝑔 for a constant
such that 𝑡𝑛+1 = 1.

Recently, a number of papers (including [1, 3–17]) have
focused on complex difference equations and differences
analogues of Nevanlinna theory.

In particular, Qi et al. (see [16]) provedTheorem B, which
can be considered as a difference counterpart of Theorem A.

Theorem B. Let 𝑓 and 𝑔 be transcendental entire functions
with finite order, 𝑐 be a nonzero complex constant and 𝑛 ≥ 6
be an integer. If 𝑓𝑛𝑓(𝑧 + 𝑐) and 𝑔𝑛𝑔(𝑧 + 𝑐) share 1 CM, then
𝑓𝑔 = 𝑡1 or 𝑓 = 𝑡2𝑔 for some constant 𝑡1 and 𝑡2 which satisfy
𝑡𝑛+1
1

= 1 and 𝑡𝑛+1
2

= 1.

In 2011, Zhang et al. (see [17]) investigated the distribution
of zeros and shared values of the difference operator onmero-
morphic functions and uniqueness of difference polynomials
with the same 1 points or fixed points. They obtained the
following results.

Theorem C. Let 𝑓 and 𝑔 be nonconstant entire functions of
finite order, and let 𝑛 ≥ 5 be an integer. Suppose that 𝑐 is a
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nonzero complex constant such that 𝑓(𝑧 + 𝑐) − 𝑓(𝑧) ̸≡ 0 and
𝑔(𝑧 + 𝑐) − 𝑔(𝑧) ̸≡ 0. If 𝑓𝑛[𝑓(𝑧 + 𝑐) − 𝑓(𝑧)] and 𝑔𝑛[𝑔(𝑧 +
𝑐) − 𝑔(𝑧)] share 1 CM, and 𝑔(𝑧+𝑐) and 𝑔(𝑧) share 0 CM, then
𝑓(𝑧) = 𝑐1exp

𝑎𝑧 and 𝑔(𝑧) = 𝑐2exp
−𝑎𝑧, where 𝑐1, 𝑐2, and 𝑎 are

constants satisfying (𝑐1𝑐2)
𝑛+1(exp𝑎𝑧+exp−𝑎𝑧−2) = −1 or𝑓 = 𝑡𝑔

for a constant such that 𝑡𝑛+1 = 1.

Theorem D. Let 𝑓 and 𝑔 be nonconstant entire functions of
finite order, and let 𝑛 ≥ 5 be an integer. Suppose that 𝑐 is a
nonzero complex constant such that 𝑓(𝑧 + 𝑐) − 𝑓(𝑧) ̸≡ 0 and
𝑔(𝑧 + 𝑐) − 𝑔(𝑧) ̸≡ 0. If 𝑓𝑛[𝑓(𝑧 + 𝑐) − 𝑓(𝑧)] and 𝑔𝑛[𝑔(𝑧 +
𝑐) − 𝑔(𝑧)] share 𝑧CM, and 𝑔(𝑧+𝑐) and 𝑔(𝑧) share 0 CM, then
𝑓 = 𝑡𝑔, where 𝑡 is a constant satisfying 𝑡𝑛+1 = 1.

We investigate the uniqueness theorem of another differ-
ences polynomial and proveTheorem 1.

Theorem 1. Let 𝑓 and 𝑔 be nonconstant transcendental entire
functions of finite order, and let 𝑛 ≥ 9 be an integer. Suppose
that 𝑐 is a nonzero real constant such that𝑓(𝑧+2𝑐)+𝑓(𝑧+𝑐)+
𝑓(𝑧) ̸= 𝑔(𝑧+2𝑐)+𝑔(𝑧+𝑐)+𝑔(𝑧) and 𝑓(𝑧+2𝑐)+𝑓(𝑧+𝑐)+𝑓(𝑧) ̸≡
0, 𝑔(𝑧 + 2𝑐) + 𝑔(𝑧 + 𝑐) + 𝑔(𝑧) ̸≡ 0. If 𝐸3)(𝑧, 𝑓𝑛[𝑓(𝑧 + 2𝑐) +
𝑓(𝑧+𝑐)+𝑓(𝑧)]) = 𝐸3)(𝑧, 𝑔

𝑛[𝑔(𝑧+2𝑐)+𝑔(𝑧+𝑐)+𝑔(𝑧)]), then
𝑓(𝑧) = 𝑡𝑔(𝑧), where 𝑡 is a constant satisfying 𝑡𝑛+1 = 1 except
that 𝑡 = 1.

In paper [15], Wang et al. improved the Theorem B and
proved the following result.

Theorem E. Let 𝑓 and 𝑔 be transcendental entire functions
with finite order, 𝑐 be a nonzero complex constant and 𝑛 ≥ 6
be an integer. If 𝐸3)(1, 𝑓𝑛𝑓(𝑧 + 𝑐)) = 𝐸3)(1, 𝑔

𝑛𝑔(𝑧 + 𝑐)), then
𝑓𝑔 = 𝑡1 or 𝑓 = 𝑡2𝑔 for some constant 𝑡1 and 𝑡2 which satisfy
𝑡𝑛+1
1

= 1 and 𝑡𝑛+1
2

= 1.

The purpose of this paper is to induce the idea of weight
sharing toTheorems C and D, the results as follow.

Theorem 2. Let 𝑓 and 𝑔 be nonconstant entire functions of
finite order, and let 𝑛 ≥ 6 be an integer. Suppose that 𝑐 is a
nonzero complex constant such that 𝑓(𝑧 + 𝑐) − 𝑓(𝑧) ̸≡ 0
and 𝑔(𝑧 + 𝑐) − 𝑔(𝑧) ̸≡ 0. If 𝐸3)(1, 𝑓𝑛[𝑓(𝑧 + 𝑐) − 𝑓(𝑧)]) =
𝐸3)(1, 𝑔

𝑛[𝑔(𝑧+ 𝑐) −𝑔(𝑧)]) share 1 CM, 𝑔(𝑧+ 𝑐) and 𝑔(𝑧) share
0 CM, then 𝑓(𝑧) = 𝑐1exp𝑎𝑧 and 𝑔(𝑧) = 𝑐2exp−𝑎𝑧, where 𝑐1, 𝑐2,
and 𝑎 are constants satisfying (𝑐1𝑐2)

𝑛+1(exp𝑎𝑧+exp−𝑎𝑧−2) = −1
or 𝑓 = 𝑡𝑔 for a constant such that 𝑡𝑛+1 = 1.

Theorem 3. Let 𝑓 and 𝑔 be nonconstant entire functions of
finite order, and let 𝑛 ≥ 6 be an integer. Suppose that 𝑐 is a
non-zero complex constant such that 𝑓(𝑧 + 𝑐) − 𝑓(𝑧) ̸≡ 0
and 𝑔(𝑧 + 𝑐) − 𝑔(𝑧) ̸≡ 0. If 𝐸3)(1, 𝑓𝑛[𝑓(𝑧 + 𝑐) − 𝑓(𝑧)]) =
𝐸3)(1, 𝑔

𝑛[𝑔(𝑧 + 𝑐) − 𝑔(𝑧)]) share 𝑧CM, 𝑔(𝑧 + 𝑐) and 𝑔(𝑧)
share 0 CM, then 𝑓 = 𝑡𝑔, where 𝑡 is a constant satisfying
𝑡𝑛+1 = 1.

Remark 4. Some ideas of this paper are based on [15,
17].

2. Some Lemmas

In order to prove our theorems, we need the following
Lemmas.

Lemma 5 is a difference analogue of the logarithmic
derivative lemma, given by Halburd and Korhonen [9] and
Chiang and Feng [7] independently.

Lemma 5 (see [9]). Let 𝑓(𝑧) be a meromorphic function of
finite order, and let 𝑐 ∈ C and 𝛿 ∈ (0, 1). Then

𝑚(𝑟,
𝑓 (𝑧 + 𝑐)

𝑓 (𝑧)
) + 𝑚(𝑟,

𝑓 (𝑧)

𝑓 (𝑧 + 𝑐)
)

= 𝑂(
𝑇 (𝑟, 𝑓)

𝑟𝛿
) = 𝑆 (𝑟, 𝑓),

(1)

for all 𝑟 outside of a possibly exceptional set with finite logari-
thmic measure.

Lemma 6 (see [2]). Let 𝑓(𝑧) be a nonconstant meromorphic
function, and let 𝑃(𝑓) = 𝑎0𝑓𝑛 +𝑎1𝑓𝑛−1 + ⋅ ⋅ ⋅ 𝑎𝑛, where 𝑎0( ̸= 0),
𝑎1, . . . , 𝑎𝑛 are small functions of 𝑓. Then

𝑇 (𝑟, 𝑃 (𝑓)) = 𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (2)

Lemma 7 (see [18]). Let 𝑓 and 𝑔 be two nonconstant mero-
morphic function satisfying 𝐸𝑘)(1, 𝑓) = 𝐸𝑘)(1, 𝑔) for some
positive integer 𝑘 ∈ N. Define𝐻 as follow

𝐻 = (
𝑓

𝑓
−

2𝑓

𝑓 − 1
) − (

𝑔

𝑔
−

2𝑔

𝑔 − 1
) . (3)

If𝐻 ̸≡ 0, then

𝑁(𝑟,𝐻)

≤ 𝑁(2 (𝑟, 𝑓) + 𝑁(2 (𝑟,
1

𝑓
)

+ 𝑁(2 (𝑟, 𝑔) + 𝑁(2 (𝑟,
1

𝑔
) + 𝑁0 (𝑟,

1

𝑓
)

+ 𝑁0 (𝑟,
1

𝑔
) + 𝑁(𝑘+1 (𝑟,

1

𝑓 − 1
)

+ 𝑁(𝑘+1 (𝑟,
1

𝑔 − 1
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔),

(4)

where𝑁0(𝑟, 1/𝑓 ) denotes the counting function of zeros of 𝑓

but not zeros of 𝑓(𝑓 − 1), and𝑁0(𝑟, 1/𝑔) is similarly defined.

Lemma 8 (see [19]). Under the conditions of Lemma 7, we
have

𝑁1) (𝑟,
1

𝑓 − 1
) = 𝑁1) (𝑟,

1

𝑔 − 1
)

≤ 𝑁 (𝑟,𝐻) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(5)
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Lemma 9 (see [19]). If𝐻 = (𝑓/𝑓 −2𝑓/(𝑓−1))− (𝑔/𝑔 −
2𝑔/(𝑔 − 1)) ≡ 0, then either 𝑓 ≡ 𝑔 or 𝑓𝑔 ≡ 1 provided that

lim sup
𝑟→∞,𝑟∈𝐼

𝑁(𝑟, 𝑓) + 𝑁 (𝑟, 𝑔) + 𝑁 (𝑟, 1/𝑓) + 𝑁 (𝑟, 1/𝑔)

𝑇 (𝑟)
≤ 1,

(6)

where 𝑇(𝑟) := max{𝑇(𝑟, 𝑓), 𝑇(𝑟, 𝑔)} and 𝐼 is a set with infinite
linear measure.

Lemma 10. Let𝑓(𝑧) be ameromorphic function of finite order,
𝑐 ∈ C. Then

𝑁(𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑁 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓 (𝑧)) . (7)

Proof. Using Lemma 5 and the formula (12) in [12]

𝑁(𝑟, 𝑓 (𝑧 + 𝑐)) ≤ 𝑁 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓 (𝑧)) . (8)

Replacing 𝑓(𝑧) with 𝑓(𝑧 − 𝑐), we have

𝑁(𝑟, 𝑓 (𝑧)) ≤ 𝑁 (𝑟, 𝑓 (𝑧 − 𝑐)) + 𝑆 (𝑟, 𝑓 (𝑧 − 𝑐))

= 𝑁 (𝑟, 𝑓 (𝑧 − 𝑐)) + 𝑆 (𝑟, 𝑓 (𝑧)) ,
(9)

for every 𝑐 ∈ C, so we deduce that

𝑁(𝑟, 𝑓 (𝑧)) ≤ 𝑁 (𝑟, 𝑓 (𝑧 + 𝑐)) + 𝑆 (𝑟, 𝑓 (𝑧)) . (10)

From (8) and (10), we obtain that

𝑁(𝑟, 𝑓 (𝑧 + 𝑐)) = 𝑁 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓 (𝑧)) . (11)

Thus we completed the proof.

Lemma 11 (see [9]). Let 𝑇 : (0, +∞) → (0, +∞) be a
nondecreasing continuous function, 𝑠 > 0, 0 < 𝛼 < 1, and
let 𝐹 ⊂ 𝑅+ be the set of all 𝑟 satisfy

𝑇 (𝑟) ≤ 𝛼𝑇 (𝑟 + 𝑠) . (12)

If the logarithmic measure of 𝐹 is infinite, then

lim sup
𝑟→∞

log𝑇 (𝑟, 𝑓)
log 𝑟

= ∞. (13)

3. Proof of Theorems

Proof of Theorem 1. We define

𝐹 (𝑧) =
𝑓𝑛 (𝑧) [𝑓 (𝑧 + 2𝑐) + 𝑓 (𝑧 + 𝑐) + 𝑓 (𝑧)]

𝑧
,

𝐺 (𝑧) =
𝑔𝑛 (𝑧) [𝑔 (𝑧 + 2𝑐) + 𝑔 (𝑧 + 𝑐) + 𝑔 (𝑧)]

𝑧
.

(14)

In Lemma 7, we replace 𝑓 and 𝑔, by 𝐹 and 𝐺 respectively,
we claim that 𝐻 ≡ 0. If it is not true, then 𝐻 ̸≡ 0. From
Lemma 8 we have that

𝑟𝑙𝑁1) (𝑟,
1

𝐹 − 1
)

= 𝑁1) (𝑟,
1

𝐺 − 1
) ≤ 𝑁 (𝑟,𝐻)

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 𝑁(2 (𝑟,
1

𝐹
) + 𝑁(2 (𝑟,

1

𝐺
)

+ 𝑁0 (𝑟,
1

𝐹
) + 𝑁0 (𝑟,

1

𝐺
)

+ 𝑁(4 (𝑟,
1

𝐹 − 1
) + 𝑁(4 (𝑟,

1

𝐺 − 1
)

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(15)

From the Nevanlinna second foundational theorem, we
can get that

𝑇 (𝑟, 𝐹) + 𝑇 (𝑟, 𝐺)

≤ 𝑁(𝑟,
1

𝐹
) + 𝑁(𝑟,

1

𝐺
)

+ 𝑁0 (𝑟,
1

𝐹
) + 𝑁0 (𝑟,

1

𝐺
)

+ 𝑁(𝑟,
1

𝐹 − 1
) + 𝑁(𝑟,

1

𝐺 − 1
)

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(16)

From the definitions of 𝑁𝑘) and 𝑁(𝑘, the following
inequalities are obvious:

𝑁(𝑟,
1

𝐹 − 1
) −

1

2
𝑁1) (𝑟,

1

𝐹 − 1
) + 𝑁(4 (𝑟,

1

𝐹 − 1
)

≤
1

2
𝑁(𝑟,

1

𝐹 − 1
) ,

𝑁(𝑟,
1

𝐺 − 1
) −

1

2
𝑁1) (𝑟,

1

𝐺 − 1
) + 𝑁(4 (𝑟,

1

𝐺 − 1
)

≤
1

2
𝑁(𝑟,

1

𝐺 − 1
) .

(17)

Combining (15), (16), and (17), we deduce that

𝑇 (𝑟, 𝐹) + 𝑇 (𝑟, 𝐺)

≤ 2𝑁(𝑟,
1

𝐹
) + 2𝑁(2 (𝑟,

1

𝐹
)
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+ 2𝑁(𝑟,
1

𝐺
) + 2𝑁(2 (𝑟,

1

𝐺
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 4𝑁(𝑟,
1

𝑓
) + 4𝑁(𝑟,

1

𝑔
) + 2𝑁(𝑟,

1

𝑓 (𝑧 + 𝑐)
)

+ 2𝑁(𝑟,
1

𝑔 (𝑧 + 𝑐)
)

+ 2𝑁(𝑟,
1

𝑓 (𝑧 + 2𝑐)
) + 2𝑁(𝑟,

1

𝑔 (𝑧 + 2𝑐)
)

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 8𝑁(𝑟,
1

𝑓
) + 8𝑁(𝑟,

1

𝑔
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 8𝑇(𝑟,
1

𝑓
) + 8𝑇(𝑟,

1

𝑔
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(18)

We can apply Lemma 5, Lemma 6, and Lemma 10 to show
that

(𝑛 + 1) 𝑇 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑓𝑛+1) ≤ 𝑇 (𝑟, 𝐹 (𝑧))

+ 𝑇(𝑟,
𝑓 (𝑧 + 2) + 𝑓 (𝑧 + 1) + 𝑓 (𝑧)

𝑓 (𝑧)
) + 𝑆 (𝑟, 𝑓 (𝑧))

= 𝑇 (𝑟, 𝐹 (𝑧)) + 𝑁(𝑟,
𝑓 (𝑧 + 2) + 𝑓 (𝑧 + 1) + 𝑓 (𝑧)

𝑓 (𝑧)
)

+ 𝑆 (𝑟, 𝑓 (𝑧))

≤ 𝑇 (𝑟, 𝐹 (𝑧)) + 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓 (𝑧)) ,

(19)

which implies

𝑇 (𝑟, 𝐹) ≥ 𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (20)

The same augment as above, we have that

𝑇 (𝑟, 𝐺) ≥ 𝑛𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) . (21)

From (18), (20), and (21), we can deduce that

(𝑛 − 8) [𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)] ≥ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) . (22)

which is a contraction. Therefore,𝐻 ≡ 0.
Noting that

𝑁(𝑟,
1

𝐹
) + 𝑁(𝑟,

1

𝐺
)

≤ 4 [𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)]

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) ≤ 𝑇 (𝑟) ,

(23)

where 𝑇(𝑟) = max𝑇(𝑟, 𝐹), 𝑇(𝑟, 𝐺).

Because of Lemma 9, we have that 𝐹 ≡ 𝐺 or 𝐹𝐺 ≡ 1. We
will consider the following two cases.

Case 1. Suppose that 𝐹(𝑧) = 𝐺(𝑧). Then

𝑓𝑛 (𝑧) [𝑓 (𝑧 + 2𝑐) + 𝑓 (𝑧 + 𝑐) + 𝑓 (𝑧)]

= 𝑔𝑛 (𝑧) [𝑔 (𝑧 + 2𝑐) + 𝑔 (𝑧 + 𝑐) + 𝑔 (𝑧)] .
(24)

Let ℎ(𝑧) = 𝑓(𝑧)/𝑔(𝑧), we deduce that

ℎ𝑛 (𝑧) [ℎ (𝑧 + 2𝑐) 𝑔 (𝑧 + 2𝑐)

+ ℎ (𝑧 + 𝑐) 𝑔 (𝑧 + 𝑐) + ℎ (𝑧) 𝑔 (𝑧)]

= 𝑔 (𝑧 + 2𝑐) + 𝑔 (𝑧 + 𝑐) + 𝑔 (𝑧) .

(25)

If ℎ(𝑧 + 𝑐) ̸≡ ℎ(𝑧), by the hypothesis 𝑓(𝑧 + 2𝑐) + 𝑓(𝑧 +
𝑐) +𝑓(𝑧) ̸= 𝑔(𝑧 + 2𝑐) + 𝑔(𝑧 + 𝑐) + 𝑔(𝑧), we get that ℎ(𝑧) ̸= 1. So

𝑇 (𝑟, ℎ𝑛) ≤ 𝑁(𝑟,
1

ℎ𝑛
) + 𝑁 (𝑟, ℎ𝑛)

+ 𝑁(𝑟,
1

ℎ𝑛 − 1
) ≤ 2𝑇 (𝑟, ℎ) + 𝑆 (𝑟, ℎ) ,

(26)

which means ℎ is a constant, because of 𝑛 ≥ 10.
Then ℎ(𝑧) = 𝑡 and 𝑡 is a constant satisfying 𝑡𝑛+1 = 1 except

that 𝑡 = 1.

Case 2. Suppose that 𝐹(𝑧) ⋅ 𝐺(𝑧) ≡ 1. Then

𝑓𝑛 (𝑧) [𝑓 (𝑧 + 2𝑐) + 𝑓 (𝑧 + 𝑐) + 𝑓 (𝑧)]

× 𝑔𝑛 (𝑧) [𝑔 (𝑧 + 2𝑐) + 𝑔 (𝑧 + 𝑐) + 𝑔 (𝑧)] = 𝑧
2.

(27)

Note that zero is a Picard exceptional value of 𝑓 and 𝑔, then
𝑓(𝑧) = 𝑒𝑃(𝑧) and 𝑔(𝑧) = 𝑒𝑄(𝑧), where 𝑃(𝑧) and 𝑄(𝑧) are
polynomials. In (27), we let 𝑧 = 0, then

𝑒𝑛𝑃(0) [𝑒𝑃(2𝑐) + 𝑒𝑃(𝑐) + 𝑒𝑃(0)] 𝑒𝑛𝑄(0) [𝑒𝑄(2𝑐) + 𝑒𝑄(𝑐) + 𝑒𝑄(0)] = 0.

(28)

It is impossible, because of 𝑐 is a real number.

Proof of Theorem 2. Denoting

𝐹 (𝑧) = 𝑓
𝑛
(𝑧) [𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧)] ,

𝐺 (𝑧) = 𝑔
𝑛
(𝑧) [𝑔 (𝑧 + 𝑐) − 𝑔 (𝑧)] .

(29)

In Lemma 7, we replace 𝑓 and 𝑔, by 𝐹 and 𝐺 respectively.
If𝐻 ̸≡ 0, by Lemma 8 we deduce that

𝑁1) (𝑟,
1

𝐹 − 1
)

= 𝑁1) (𝑟,
1

𝐺 − 1
)
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≤ 𝑁 (𝑟,𝐻) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 𝑁(2 (𝑟,
1

𝐹
) + 𝑁(2 (𝑟,

1

𝐺
)

+ 𝑁0 (𝑟,
1

𝐹
) + 𝑁0 (𝑟,

1

𝐺
)

+ 𝑁(4 (𝑟,
1

𝐹 − 1
) + 𝑁(4 (𝑟,

1

𝐺 − 1
)

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(30)

The same reasons as in the proof of Theorem 1, we have
that

𝑇 (𝑟, 𝐹) + 𝑇 (𝑟, 𝐺)

≤ 𝑁(𝑟,
1

𝐹
) + 𝑁(𝑟,

1

𝐺
)

+ 𝑁0 (𝑟,
1

𝐹
) + 𝑁0 (𝑟,

1

𝐺
)

+ 𝑁(𝑟,
1

𝐹 − 1
) + 𝑁(𝑟,

1

𝐺 − 1
)

+ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) ,

𝑁(𝑟,
1

𝐹 − 1
) −

1

2
𝑁1) (𝑟,

1

𝐹 − 1
)

+ 𝑁(4 (𝑟,
1

𝐹 − 1
) ≤

1

2
𝑁(𝑟,

1

𝐹 − 1
) ,

𝑁(𝑟,
1

𝐺 − 1
) −

1

2
𝑁1) (𝑟,

1

𝐺 − 1
)

+ 𝑁(4 (𝑟,
1

𝐺 − 1
) ≤

1

2
𝑁(𝑟,

1

𝐺 − 1
) .

(31)

Combining (30) and (31), we deduce that

𝑇 (𝑟, 𝐹) + 𝑇 (𝑟, 𝐺)

≤ 2𝑁(𝑟,
1

𝐹
) + 2𝑁(2 (𝑟,

1

𝐹
)

+ 2𝑁(𝑟,
1

𝐺
) + 2𝑁(2 (𝑟,

1

𝐺
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 4𝑁(𝑟,
1

𝑓
) + 4𝑁(𝑟,

1

𝑔
) + 2𝑁(𝑟,

1

𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧)
)

+ 2𝑁(𝑟,
1

𝑔 (𝑧 + 𝑐) − 𝑔 (𝑧)
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 4𝑁(𝑟,
1

𝑓
) + 2𝑇 (𝑟, 𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧))

+ 6𝑁(𝑟,
1

𝑔
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

= 4𝑁(𝑟,
1

𝑓
) + 2𝑚 (𝑟, 𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧))

+ 6𝑁(𝑟,
1

𝑔
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔)

≤ 6𝑇(𝑟,
1

𝑓
) + 6𝑇(𝑟,

1

𝑔
) + 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .

(32)

We can apply Lemmas 5, 6, and 10 to show that

(𝑛 + 1) 𝑇 (𝑟, 𝑓)

= 𝑇 (𝑟, 𝑓𝑛+1) ≤ 𝑇 (𝑟, 𝐹 (𝑧))

+ 𝑇(𝑟,
𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧)

𝑓 (𝑧)
) + 𝑆 (𝑟, 𝑓 (𝑧))

= 𝑇 (𝑟, 𝐹 (𝑧)) + 𝑁(𝑟,
𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧)

𝑓 (𝑧)
) + 𝑆 (𝑟, 𝑓 (𝑧))

≤ 𝑇 (𝑟, 𝐹 (𝑧)) + 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓 (𝑧)) ,

(33)

which implies

𝑇 (𝑟, 𝐹) ≥ 𝑛𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (34)

We have that𝑁(𝑟, (𝑔(𝑧 + 𝑐) − 𝑔(𝑧))/𝑔(𝑧)), Since 𝑔(𝑧 + 𝑐) and
𝑔(𝑧) share 0CM, then

𝑇 (𝑟, 𝐺) ≥ (𝑛 + 1) 𝑇 (𝑟, 𝑔) + 𝑆 (𝑟, 𝑔) . (35)

From (32), (34), and (35), we can deduce that

(𝑛 − 6) 𝑇 (𝑟, 𝑓) + (𝑛 − 5) 𝑇 (𝑟, 𝑔)

≥ 𝑆 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑔) .
(36)

which is a contraction. Therefore,𝐻 ≡ 0.
Noting that

𝑁(𝑟,
1

𝐹
) + 𝑁(𝑟,

1

𝐺
)

≤ 3 [𝑇 (𝑟, 𝑓) + 𝑇 (𝑟, 𝑔)] + 𝑆 (𝑟, 𝑓)

+ 𝑆 (𝑟, 𝑔) ≤ 𝑇 (𝑟) ,

(37)

where 𝑇(𝑟) = max𝑇(𝑟, 𝐹), 𝑇(𝑟, 𝐺).
Because of Lemma 9, we have that 𝐹 ≡ 𝐺 or 𝐹𝐺 ≡ 1.
By using the same methods as in the proof of Theo-

rem 1.10 in [17], we can complete the proof ofTheorem 2.

Proof of Theorem 3. The proof is almost literally the same as
the proof of Theorem 2, with the methods as in the proof of
Theorem 1.9 in [17] replacing the methods as in the proof of
Theorem 1.10 in [17].
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