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We consider a Markovian regime-switching risk model (also called the Markov-modulated risk model) with stochastic premium
income, in which the premium income and the claim occurrence are driven by the Markovian regime-switching process. The
purpose of this paper is to study the integral equations satisfied by the expected discounted penalty function. In particular, the
discount interest force process is also regulated by the Markovian regime-switching process. Applications of the integral equations
are given to be the Laplace transform of the time of ruin, the deficit at ruin, and the surplus immediately before ruin occurs. For
exponential distribution, the explicit expressions for these quantities are obtained. Finally, a numerical example is also given to
illustrate the effect of the related parameters on these quantities.

1. Introduction

In recent years, ruin theory under regime-switching model
is becoming a popular topic. This model is proposed in
Reinhard [1] and Asmussen [2]. Asmussen calls it a Markov-
modulated riskmodel. And thismodel is also a generalization
of the classical compound Poisson risk model. The primary
motivation for this generalization is to enhance the flexibility
of the model parameter settings for the classical risk process.
The examples usually given are weather conditions and epi-
demic outbreaks, even though seasonality would play a role
and can probably not be modeled by a Markovian regime-
switching model. Many papers on ruin probabilities and the
expected discounted penalty function under the Markovian
regime-switching risk model have been published. Some
works in this area include Ng and Yang [3], Li and Lu [4],
Lu and Li [5], Zhang [6], Zhu and Yang [7, 8], Yu [9], Dong
et al. [10], Wei et al. [11], Elliott et al. [12], Ma et al. [13], Dong
and Liu [14], Mo and Yang [15], Zhang and Siu [16], Li and
Ren [17], and the references therein.

All of the researches mentioned above only take the
constant interest force into consideration and do not take into

account the impact of the change of the external environment.
This provides the practical motivation to develop the ruin
theory with stochastic interest force. In recent years, the
ruin theory with stochastic interest force has attracted much
attention in the actuarial science literature. See, for example,
Ouyang and Yan [18], Cai [19], Zhao and Liu [20], Zhao
et al. [21], and Li and Wu [22]. But these papers have only
considered the question in which the interest force process,
from the beginning to its end, has been described to be
one process. Since the risk management of an insurance
company is a longer-term program, these models cannot
capture the feature that interest policies may need to change
if economical or political environment changes. So it is
natural to introduce the stochastic interest force regulated
by theMarkovian regime-switching process in insurance risk
analysis. Zhang and Zhao [23] first consider the expected
discounted penalty function in a classical risk model, in
which the discount interest force process was modeled by the
Markovian regime-switching process. Xie and Zou [24] study
a compound binomial risk model with a constant dividend
barrier under stochastic interest rates. Two types of individual
claims, main claims and by-claims, are defined, where every
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by-claim is induced by themain claim andmay be delayed for
one time period with a certain probability. In the evaluation
of the expected present value of dividends, the interest rates
are assumed to follow a Markov chain with finite state space.
Inspired by thework of Zhang andZhao [23], in this paper, we
generalize the risk model and assume that the claim process,
the premium income process, and the stochastic interest
force process are independently regulated by the Markovian
regime-switching process.

The rest of this paper is organized as follows. In Section 2,
the risk model and the stochastic interest force model are
introduced. In Section 3, given the initial surplus and the ini-
tial environment state, the integral equation for the expected
discounted penalty function is derived. In Section 4, for
exponential distribution, we obtain the explicit expressions
of the expected discounted penalty function. The results
are illustrated by numerical examples in Section 5. Section 6
concludes the paper.

2. The Risk Model and the Stochastic Interest
Force Model

Throughout the paper, we let (Ω,F, {F
𝑡
}
𝑡≥0

, 𝑃) be a complete
probability space with a filtration {F

𝑡
}
𝑡≥0

satisfying usual
conditions containing all random variables and stochastic
processes in our discussion.

Let𝑈(𝑡) denote the surplus of an insurance company and
be described as follows:

𝑈 (𝑡) = 𝑢 +

𝑁
2
(𝑡)

∑
𝑘=1

𝑋
𝑘
−

𝑁
1
(𝑡)

∑
𝑘=1

𝑌
𝑘
, (1)

where 𝑢 ≥ 0 is the initial capital, 𝑌
𝑘
is the amount of

the 𝑘th claim, and 𝑋
𝑘
is the amount of the 𝑘th premium.

{𝑁
1
(𝑡); 𝑡 ≥ 0} represents the number of claims occurring in

(0, 𝑡], and {𝑁
2
(𝑡); 𝑡 ≥ 0} represents the number of premium

arrivals up to time 𝑡, both of which are described by the
Markovian regime-switching process with intensity processes
𝜆

1
(𝑡) and 𝜆

2
(𝑡), respectively. Let the intensity processes 𝜆

1
(𝑡)

and 𝜆
2
(𝑡) be homogeneous 𝑛-state and 𝑚-state Markovian

process, respectively. The number of claims {𝑁
1
(𝑡); 𝑡 ≥ 0}

is assumed to follow a Poisson distribution with parameter
𝛼

1𝑖
, and the corresponding claim amounts have distribution

𝐺
𝑖
(𝑧) when 𝜆

1
(𝑠) = 𝜆

1𝑖
, 𝑖 = 1, 2, . . . , 𝑛 for 𝑠 ∈ (0, 𝑡].

Similarly, the number of premium arrivals {𝑁
2
(𝑡); 𝑡 ≥ 0} has

the Poisson distribution with parameter 𝛼
2𝑗
, and the corre-

sponding premiums have distribution 𝐹
𝑗
(𝑥) when 𝜆

2
(𝑠) =

𝜆
2𝑗
, 𝑗 = 1, 2, . . . , 𝑚 for 𝑠 ∈ (0, 𝑡]. We further assume that

all states of the process 𝜆
1
(𝑡) communicate, which is also the

case of the process 𝜆
2
(𝑡). The safety loading condition holds

𝐸[∑
𝑁
2
(𝑡)

𝑘=1
𝑋

𝑘
] > 𝐸[∑

𝑁
1
(𝑡)

𝑘=1
𝑌

𝑘
]. Furthermore, we assume the

processes {𝑁
1
(𝑡); 𝑡 ≥ 0}, {𝑁

2
(𝑡); 𝑡 ≥ 0}, {𝑋

𝑖
; 𝑖 ≥ 1}, and

{𝑌
𝑖
; 𝑖 ≥ 1} are mutually independent.
Let 𝜂

𝑖
= 𝜂

𝑖
(𝜆

1𝑖
) be the rate at which the process 𝜆

1
(𝑡)

leaves the state 𝜆
1𝑖
and 𝑝

𝑖𝑘
the probability that it then goes

to 𝜆
1𝑘
; that is, the intensity 𝜂

𝑖𝑘
of transition from 𝜆

1𝑖
to 𝜆

1𝑘
is

given by

𝜂
𝑖𝑘

= {
𝜂
𝑖
𝑝

𝑖𝑘
for 𝑖 ̸= 𝑘,

−𝜂
𝑖

for 𝑖 = 𝑘.
(2)

Similarly, let 𝜂
𝑗

= 𝜂
𝑗
(𝜆

2𝑗
) be the rate at which the process

𝜆
2
(𝑡) leaves the state 𝜆

2𝑗
and 𝑝

𝑗𝑘
the probability that it then

goes to 𝜆
2𝑘
; that is, the intensity 𝜂

𝑗𝑘
of transition from 𝜆

2𝑗
to

𝜆
2𝑘
is given by

𝜂
𝑗𝑘

= {
𝜂
𝑗
𝑝

𝑗𝑘
for 𝑗 ̸= 𝑘,

−𝜂
𝑗

for 𝑗 = 𝑘.
(3)

The stochastic interest force function governed by the
Markovian regime-switching process is defined by (Zhang
and Zhao [23])

𝑟
𝐽
(𝑡) = 𝛿

𝐽
𝑡 + 𝛽

𝐽
𝐵 (𝑡) + 𝛾

𝐽
𝑃 (𝑡) , (4)

where 𝐽 = {𝐽(𝑡), 𝑡 ≥ 0} is a homogeneous, irreducible,
and recurrent Markovian process with finite state space 𝑆 =

{1, 2, . . . , 𝑑} with intensity matrix Λ = (𝜀
𝑙𝑘
)
𝑑

𝑙,𝑘=1
, where 𝜀

𝑙𝑙
:=

−𝜀
𝑙
for 𝑙 ∈ 𝑆. As pointed out by Asmussen [2], in health

insurance, sojourns of {𝐽(𝑡), 𝑡 ≥ 0} could be certain types
of epidemics, or, in automobile insurance, these could be
weather types (e.g., icy, foggy, etc.). The state of interest is
governed by 𝐽(𝑡). When the state of 𝐽(𝑡) is 𝑙, the interest force
function is

𝑟
𝑙
(𝑡) = 𝛿

𝑙
𝑡 + 𝛽

𝑙
𝐵 (𝑡) + 𝛾

𝑙
𝑃 (𝑡) , 𝑙 = 1, 2, . . . , 𝑑, (5)

where 𝛿
𝑙
, 𝛽

𝑙
, and 𝛾

𝑙
are nonnegative constants, 𝐵(𝑡) is a

standard Wiener process, and 𝑃(𝑡) is a Poisson process
with parameter 𝜁. Moreover, we also assume that 𝐵(𝑡), 𝑃(𝑡)
and 𝑁(𝑡) are independent of each other. Since stochastic
fluctuation of interest cannot be large in reality, without loss
of generality we might as well assume that

𝛿
𝑙
>

1

2
𝛽

2

𝑙
+ 𝜁 (𝑒

−𝛾
𝑙 − 1) , 𝑙 = 1, 2, . . . , 𝑑. (6)

Then the expected discounted penalty function with stochas-
tic discount interest force driven by the Markovian regime-
switching process is defined as

Φ
𝑖,𝑗,𝑙

(𝑢)

= 𝐸 [𝑒
−𝑟
𝑙
(𝑇
𝑢
)
𝑤 (𝑈 (𝑇

−

𝑢
) ,

𝑈 (𝑇
𝑢
)
) 𝐼 (𝑇𝑢

< ∞) | 𝑈 (0)

= 𝑢, 𝜆
1
(0) = 𝜆

1𝑖
, 𝜆

2
(0) = 𝜆

2𝑗
, 𝐽 (0) = 𝑙] ,

(7)

where 𝐼(⋅) is the indicator function, 𝑇
𝑢

= inf{𝑡 : 𝑈(𝑡) < 0}

denotes the time of ruin, 𝑈(𝑇−

𝑢
) is the surplus immediately

prior to ruin, |𝑈(𝑇
𝑢
)| is the deficit at ruin, and 𝑤(𝑥, 𝑦) is a

nonnegative bounded function on [0,∞) × [0,∞). We can
interpret exp{−𝑟

𝑙
(𝑇

𝑢
)} as the “stochastic discount factor.” The

probability of ruin for𝑈(0) = 𝑢, 𝜆
1
(0) = 𝜆

1𝑖
, and 𝜆

2
(0) = 𝜆

2𝑗

is
Ψ

𝑖,𝑗
(𝑢)

= Pr (𝑇
𝑢
< ∞ | 𝑈 (0) = 𝑢, 𝜆

1
(0) = 𝜆

1𝑖
, 𝜆

2
(0) = 𝜆

2𝑗
) .

(8)
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Obviously, Φ
𝑖,𝑗
(𝑢) can be reduced to Ψ

𝑖,𝑗
(𝑢), if 𝑟

𝑙
(𝑡) ≡ 0 and

𝑤(𝑥, 𝑦) = 1.

3. The Integral Equation

In this section, we derive the integral equation for the
expected discounted penalty function.

Theorem 1. Suppose that the following conditions are satis-
fied:

(1) Φ
𝑖,𝑗,𝑙

(𝑢), (𝑖 = 1, 2, . . . 𝑛; 𝑗 = 1, 2, . . . 𝑚; 𝑙 = 1, 2, . . . 𝑑) is
continuous with respect to 𝑢 on [0, +∞);

(2) 𝑤(𝑥, 𝑦) is continuous with respect to 𝑥;

(3) 𝛿
𝑙
> (1/2)𝛽2

𝑙
+ 𝜁(𝑒−𝛾

𝑙 − 1), 𝑙 = 1, 2, . . . , 𝑑.

Then Φ
𝑖,𝑗,𝑙

(𝑢) satisfies the following integral equation:

[𝛼
1𝑖
+ 𝛼

2𝑗
+ 𝛿

𝑙
−

1

2
𝛽

2

𝑙
− 𝜁 (𝑒

−𝛾
𝑙 − 1)]Φ

𝑖,𝑗,𝑙
(𝑢)

=

𝑑

∑
𝑘=1

𝜀
𝑙𝑘
Φ

𝑖,𝑗,𝑘
(𝑢) +

𝑚

∑
𝑘=1

𝜂
𝑗𝑘
Φ

𝑖,𝑘,𝑙
(𝑢)

+

𝑛

∑
𝑘=1

𝜂
𝑖𝑘
Φ

𝑘,𝑗,𝑙
(𝑢)

+ 𝛼
1𝑖
[∫

𝑢

0

Φ
𝑖,𝑗,𝑙

(𝑢 − 𝑧) 𝑑𝐺
𝑖
(𝑧)

+∫
∞

𝑢

𝑤 (𝑢, 𝑧 − 𝑢) 𝑑𝐺
𝑖
(𝑧)]

+ 𝛼
2𝑗

∫
∞

0

Φ
𝑖,𝑗,𝑙

(𝑢 + 𝑥) 𝑑𝐹
𝑗
(𝑥) + 𝑜 (ℎ) ,

(9)

where 𝐹
𝑗
(𝑥) and 𝐺

𝑖
(𝑧) are the distribution of the num-

ber of premiums and the claim amounts, respectively.

Proof. Consider 𝑈(𝑡) in an infinitesimal time interval (0, ℎ),
and separate the seven possible cases as follows:

(1) no claim occurs in (0, ℎ), no change of claim state 𝑖

in (0, ℎ), no premium-arrival in (0, ℎ), no change of
premium state 𝑗 in (0, ℎ), and no change of interest
state 𝑙 in (0, ℎ), denoted by 𝐴

1
;

(2) no claim occurs in (0, ℎ), no change of claim state 𝑖

in (0, ℎ), no premium-arrival in (0, ℎ), no change of
premium state 𝑗 in (0, ℎ), and a change of interest state
𝑙 in (0, ℎ), denoted by 𝐴

2
;

(3) no claim occurs in (0, ℎ), a change of claim state 𝑖

in (0, ℎ), no premium-arrival in (0, ℎ), no change of
premium state 𝑗 in (0, ℎ), no change of interest state 𝑙

in (0, ℎ), denoted by 𝐴
3
;

(4) one claim occurs in (0, ℎ), no change of claim state 𝑖

in (0, ℎ), no premium-arrival in (0, ℎ), no change of

premium state 𝑗 in (0, ℎ), and no change of interest
state 𝑙 in (0, ℎ), denoted by 𝐴

4
;

(5) no claim occurs in (0, ℎ), no change of claim state 𝑖

in (0, ℎ), one premium-arrival in (0, ℎ), no change of
premium state 𝑗 in (0, ℎ), and no change of interest
state 𝑙 in (0, ℎ), denoted by 𝐴

5
;

(6) no claim occurs in (0, ℎ), no change of claim state 𝑖

in (0, ℎ), no premium-arrival in (0, ℎ), a change of
premium state 𝑗 in (0, ℎ), and no change of interest
state 𝑙 in (0, ℎ), denoted by 𝐴

6
;

(7) all other events with total probability 𝑜(ℎ).

By conditioning on the occurrence of claims, the change of
claim state in (0, ℎ), the occurrence of premiums, the change
of premium state in (0, ℎ), and the change of interest state
in (0, ℎ), the expected discounted penalty function Φ

𝑖,𝑗,𝑙
(𝑢)

is equal to

Φ
𝑖,𝑗,𝑙

(𝑢)

=

6

∑
𝑘=1

𝐸 [𝑒
−𝑟
𝑙
(𝑇
𝑢
)
𝑤 (𝑈 (𝑇

−

𝑢
) ,

𝑈 (𝑇
𝑢
)
) 𝐼 (𝐴𝑘

) |

𝑈 (0) = 𝑢, 𝜆
1
(0) = 𝜆

1𝑖
, 𝜆

2
(0) = 𝜆

2𝑗
, 𝐽 (0) = 𝑙]

+ 𝑜 (ℎ)

= 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
+ 𝐼

5
+ 𝐼

6
+ 𝑜 (ℎ) .

(10)

First, we consider 𝐼
1
. We write 𝑇

𝑢
as ℎ+𝑇

𝑢
∘ 𝜃

ℎ
since 𝑇

𝑢
>

ℎ. Because 𝑟
𝑙
(𝑡) has independent and stationary increments,

𝑟
𝑙
(𝑡), 𝑁

1
(𝑡), and 𝑁

2
(𝑡) are the Markovian processes; so we

have

𝐼
1
= 𝐸

𝑢
{𝐸 [𝑒

−𝑟
𝑙
(𝑇
𝑢
)
𝑤 (𝑈 (𝑇

−

𝑢
) ,

𝑈 (𝑇
𝑢
)
) 𝐼 (𝑇𝑢

< ∞)

⋅ 𝐼 (𝑁
1
(ℎ) = 0,𝑁

2
(ℎ) = 0, 𝜆

1
(ℎ) = 𝜆

1𝑖
,

𝜆
2
(ℎ) = 𝜆

2𝑗
, 𝐽 (ℎ) = 𝑙) | F

ℎ
]}

= 𝐸
𝑢
{𝑒

−𝑟
𝑙
(ℎ)

𝐼 (𝑁
1
(ℎ) = 0,𝑁

2
(ℎ) = 0,

𝜆
1
(ℎ) = 𝜆

1𝑖
, 𝜆

2
(ℎ) = 𝜆

2𝑗
, 𝐽 (ℎ) = 𝑙)

⋅ 𝐸 [𝑒
−[𝑟
𝑙
(ℎ+𝑇
𝑢
∘𝜃
ℎ
)−𝑟
𝑙
(ℎ)]

𝑤 (𝑈 (T−

𝑢
) ,

𝑈 (𝑇
𝑢
)
)

× 𝐼 (𝑇
𝑢
< ∞) | 𝑟

𝑙
(ℎ) , 𝑈 (ℎ)] }
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= 𝐸
𝑢
{𝑒

−𝑟
𝑙
(ℎ)

𝐼 (𝑁
1
(ℎ) = 0) 𝐼 (𝑁

2
(ℎ) = 0) 𝐼 (𝜆

1
(ℎ) = 𝜆

1𝑖
)

× 𝐼 (𝜆
2
(ℎ) = 𝜆

2𝑗
) 𝐼 (𝐽 (ℎ) = 𝑙)Φ

𝑖,𝑗,𝑙
(𝑈 (ℎ))}

= (1 − 𝛼
1𝑖
ℎ + 𝑜 (ℎ)) (1 − 𝜂

𝑖
ℎ) (1 − 𝛼

2𝑗
ℎ + 𝑜 (ℎ))

⋅ (1 − 𝜂
𝑗
ℎ) (1 − 𝜀

𝑙
ℎ) 𝑒

−(𝛿
𝑙
−(1/2)𝛽

2

𝑙
−𝜁(𝑒
−𝛾
𝑙−1))ℎ

Φ
𝑖,𝑗,𝑙

(𝑢)

= [1−(𝛼
1𝑖
+𝜂

𝑖
+ 𝛼

2𝑗
+ 𝜂

𝑗
+ 𝜀

𝑙
+ 𝛿

𝑙
−

1

2
𝛽

2

𝑙
− 𝜁 (𝑒

−𝛾
𝑙 − 1)) ℎ

+𝑜 (ℎ) ]Φ
𝑖,𝑗,𝑙

(𝑢) .

(11)

In the second case, an interest state change occurs; that
is, the interest state changes from the state 𝑙 to 𝑘 (𝑘 ̸= 𝑙) at
switching time V, where V lies in [0, ℎ). Hence, the interest
discount factor at time ℎ should be written as 𝑒−𝑟

𝑘
(ℎ−V) ⋅ 𝑒−𝑟

𝑙
(V),

and 𝑒−𝑟
𝑙
(𝑇
𝑢
) should be revised as 𝑒−𝑟

𝑘
(𝑇
𝑢
−ℎ) ⋅ 𝑒−𝑟

𝑙
(V) ⋅ 𝑒−𝑟

𝑘
(ℎ−V).

Therefore, by the same approach, we may obtain

𝐼
2
= ∑

𝑘 ̸= l
𝐸

𝑢
{𝐼 (𝑁

1
(ℎ) = 0, 𝑁

2
(ℎ) = 0,

𝜆
1
(ℎ) = 𝜆

1𝑖
, 𝜆

2
(ℎ) = 𝜆

2𝑗
,

𝐽 (ℎ) = 𝑘, 0 < V ≤ ℎ)𝐸

× [𝑒
−𝑟
𝑘
(𝑇
𝑢
−ℎ)

𝑒
−𝑟
𝑙
(V)

𝑒
−𝑟
𝑘
(ℎ−V)

⋅ 𝑤 (𝑈 (𝑇
−

𝑢
) ,

𝑈 (𝑇
𝑢
)
)

× 𝐼 (𝑇
𝑢
< ∞) | F

ℎ
]}

= ∑
𝑘 ̸= 𝑙

𝐸
𝑢
{𝑒

−𝑟
𝑘
(ℎ−V)

𝑒
−𝑟
𝑙
(V)

𝐼 (𝑁
1
(ℎ) = 0) 𝐼 (𝑁

2
(ℎ) = 0)

× 𝐼 (𝜆
1
(ℎ) = 𝜆

1𝑖
) 𝐼 (𝜆

2
(ℎ) = 𝜆

2𝑖
)

× 𝐼 (𝐽 (ℎ) = 𝑘, 0 < V ≤ ℎ)

⋅ 𝐸 [𝑒
−𝑟
𝑘
(𝑇
𝑢
∘𝜃
ℎ
)
𝑤 (𝑈 (𝑇

−

𝑢
) ,

𝑈 (𝑇
𝑢
)
)

𝐼 (𝑇
𝑢
< ∞) | 𝑟

𝑘
(ℎ) , 𝑈 (ℎ) ]}

= ∑
𝑘 ̸= 𝑙

𝜀
𝑙𝑘
ℎ (1 − 𝛼

1𝑖
ℎ + 𝑜 (ℎ))

× (1 − 𝜂
𝑖
ℎ) (1 − 𝛼

2𝑗
ℎ + 𝑜 (ℎ)) (1 − 𝜂

𝑗
ℎ)

⋅ [1 − (𝛿
𝑘
−

1

2
𝛽

2

𝑘
− 𝜁 (𝑒

−𝛾
𝑘 − 1))

× ℎ + 𝑜 (ℎ) ]Φ
𝑖,𝑗,𝑘

(𝑢)

= ∑
𝑘 ̸= 𝑙

𝜀
𝑙𝑘
Φ

𝑖,𝑗,𝑘
(𝑢) ℎ + 𝑜 (ℎ) .

(12)

Now we will turn to the third term in formula (10):

𝐼
3
= (1 − 𝛼

1𝑖
ℎ + 𝑜 (ℎ)) (1 − 𝛼

2𝑗
ℎ + 𝑜 (ℎ)) (1 − 𝜂

𝑗
ℎ)

⋅ (1 − 𝜀
𝑙
ℎ) 𝑒

−(𝛿
𝑙
−(1/2)𝛽

2

𝑙
−𝜁(𝑒
−𝛾
𝑙−1))ℎ

∑
𝑘 ̸= 𝑖

𝜂
𝑖𝑘
Φ

𝑘,𝑗,𝑙
(𝑢) ℎ

= ∑
𝑘 ̸= 𝑖

𝜂
𝑖𝑘
Φ

𝑘,𝑗,𝑙
(𝑢) ℎ + 𝑜 (ℎ) .

(13)

For 𝐼
4
, 𝐼

5
, and 𝐼

6
, we have

𝐼
4

= (1 − 𝜂
𝑖
ℎ) (1 − 𝛼

2𝑗
ℎ + 𝑜 (ℎ)) (1 − 𝜂

𝑗
ℎ) (1 − 𝜀

𝑙
ℎ)

⋅ {∫
ℎ

0

𝛼
1𝑖
𝑒
−𝛼
1𝑖
𝑡

× ∫
𝑢

0

𝑒
−(𝛿
𝑙
−(1/2)𝛽

2

𝑙
−𝜁(𝑒
−𝛾
𝑙−1))𝑡

× Φ
𝑖,𝑗,𝑙

(𝑢 − 𝑧) 𝑑𝐺
𝑖
(𝑧) 𝑑𝑡

+ ∫
ℎ

0

𝛼
1𝑖
𝑒
−𝛼
1𝑖
𝑡

× ∫
∞

𝑢

𝑒
−(𝛿
𝑙
−(1/2)𝛽

2

𝑙
−𝜁(𝑒
−𝛾
𝑙−1))𝑡

× 𝑤 (𝑢, 𝑧 − 𝑢) 𝑑𝐺
𝑖
(𝑧) 𝑑𝑡} + 𝑜 (ℎ)

= 𝛼
1𝑖
ℎ [∫

𝑢

0

Φ
𝑖,𝑗,𝑙

(𝑢 − 𝑧) 𝑑𝐺
𝑖
(𝑧)

+∫
∞

𝑢

𝑤 (𝑢, 𝑧 − 𝑢) 𝑑𝐺
𝑖
(𝑧)] + 𝑜 (ℎ) ,

(14)

𝐼
5
= (1 − 𝛼

1𝑖
ℎ + 𝑜 (ℎ)) (1 − 𝜂

𝑖
ℎ) (1 − 𝜂

𝑗
ℎ) (1 − 𝜀

𝑙
ℎ)

⋅ ∫
ℎ

0

𝛼
2𝑗
𝑒
−𝛼
2𝑗

𝑡

× ∫
∞

0

𝑒
−(𝛿
𝑙
−(1/2)𝛽

2

𝑙
−𝜁(𝑒
−𝛾
𝑙−1))𝑡

Φ
𝑖,𝑗,𝑙

(𝑢 + 𝑥) 𝑑𝐹
𝑗
(𝑥) 𝑑𝑡

= 𝛼
2𝑗
ℎ∫

∞

0

Φ
𝑖,𝑗,𝑙

(𝑢 + 𝑥) 𝑑𝐹
𝑗
(𝑥) + 𝑜 (ℎ) ,

(15)

𝐼
6
= (1 − 𝛼

1𝑖
ℎ + 𝑜 (ℎ)) (1 − 𝜂

𝑖
ℎ) (1 − 𝛼

2𝑗
ℎ + 𝑜 (ℎ))

⋅ (1 − 𝜀
𝑙
ℎ) 𝑒

−(𝛿
𝑙
−(1/2)𝛽

2

𝑙
−𝜁(𝑒
−𝛾
𝑙−1))

∑
𝑘 ̸= 𝑗

𝜂
𝑗𝑘
Φ

𝑖,𝑘,𝑙
(𝑢) ℎ

= ∑
𝑘 ̸= 𝑗

𝜂
𝑗𝑘
Φ

𝑖,𝑘,𝑙
(𝑢) ℎ + 𝑜 (ℎ) .

(16)
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It follows from (10)–(16) that
Φ

𝑖,𝑗,𝑙
(𝑢)

= [1 − (𝛼
1𝑖
+ 𝜂

𝑖
+ 𝛼

2𝑗
+ 𝜂

𝑗
+ 𝜀

𝑙
+ 𝛿

𝑙
−

1

2
𝛽

2

𝑙
− 𝜁 (𝑒

−𝛾
𝑙 − 1))

× ℎ + 𝑜 (ℎ) ]Φ
𝑖,𝑗,𝑙

(𝑢)

+ ∑
𝑘 ̸= 𝑙

𝜀
𝑙𝑘
Φ

𝑖,𝑗,𝑘
(𝑢) ℎ + ∑

𝑘 ̸= 𝑖

𝜂
𝑖𝑘
Φ

𝑘,𝑗,𝑙
(𝑢) ℎ

+ 𝛼
1𝑖
ℎ [∫

𝑢

0

Φ
𝑖,𝑗,𝑙

(𝑢 − 𝑧) 𝑑𝐺
𝑖
(𝑧)

+∫
∞

𝑢

𝑤 (𝑢, 𝑧 − 𝑢) 𝑑𝐺
𝑖
(𝑧)]

+ 𝛼
2𝑗
ℎ∫

∞

0

Φ
𝑖,𝑗,𝑙

(𝑢 + 𝑥) 𝑑𝐹
𝑗
(𝑥)

+ ∑
𝑘 ̸= 𝑗

𝜂
𝑗𝑘
Φ

𝑖,𝑘,𝑙
(𝑢) ℎ + 𝑜 (ℎ) .

(17)

CancellingΦ
𝑖,𝑗,𝑙

(𝑢), dividing both sides by ℎ, and taking limit,
the above equation reduces to (9).

Remark 2. If 𝑛 = 𝑚 = 𝑑 = 1 in (9), then let 𝛼
1

= 𝛼
11
,

and 𝛼
2
= 𝛼

21
. This result can be reduced to a special case in

which the interest process is described by stochastic interest;
the premium process and the claim process are all compound
Poisson processes; then the corresponding integral equation
satisfied by the expected discounted penalty function is

[𝛼
1
+ 𝛼

2
+ 𝛿 −

1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1)]Φ (𝑢)

= 𝛼
1
[∫

𝑢

0

Φ (𝑢 − 𝑧) 𝑑𝐺 (𝑧) + ∫
∞

𝑢

𝑤 (𝑢, 𝑧 − 𝑢) 𝑑𝐺 (𝑧)]

+ 𝛼
2
∫

∞

0

Φ (𝑢 + 𝑥) 𝑑𝐹 (𝑥) .

(18)

Specially, if 𝑛 = 𝑚 = 𝑑 = 1 and 𝛽 = 𝛾 = 0, that is, 𝑟(𝑡) = 𝛿𝑡 in
(9), then we have

(𝛼
1
+ 𝛼

2
+ 𝛿)Φ (𝑢)

= 𝛼
1
[∫

𝑢

0

Φ (𝑢 − 𝑧) 𝑑𝐺 (𝑧) + ∫
∞

𝑢

𝑤 (𝑢, 𝑧 − 𝑢) 𝑑𝐺 (𝑧)]

+ 𝛼
2
∫

∞

0

Φ (𝑢 + 𝑥) 𝑑𝐹 (𝑥) .

(19)

Remark 3. If 𝑛 = 𝑚 = 1, 𝑤(𝑥, 𝑦) = 1, and 𝑟
𝐽
(𝑡) = 0 in

(9), denoting nonruin probability 𝜑(𝑢) = 1 − Φ(𝑢), then the
integral equation in (9) is equivalent to the following:

(𝛼
1
+ 𝛼

2
) 𝜑 (𝑢)

= 𝛼
1
∫

𝑢

0

𝜑 (𝑢 − 𝑧) 𝑑𝐺 (𝑧) + 𝛼
2
∫

∞

0

𝜑 (𝑢 + 𝑥) 𝑑𝐹 (𝑥) .
(20)

4. The Explicit Results for Exponential
Claim Distribution

In this section, we consider the case that the claim amounts
and premium numbers are exponentially distributed. We
find that, in some specific settings, the expected discounted
penalty function can be explicitly obtained. In most cases, it
is difficult to obtain the precise expression of Φ

𝑖,𝑗,𝑙
(𝑢), if we

considermultiple states. Even if we narrow them to two states
(i.e., 𝑚 = 𝑛 = 𝑑 = 2, at this point, we will get eight coupled
equations), it would still be very hard for us to get the accurate
expression ofΦ

𝑖,𝑗,𝑙
(𝑢). For the sake of simplicity only one state

will be taken into account, that is, 𝑚 = 𝑛 = 𝑑 = 1. The
purpose of this section is to get the explicit solution to prepare
for the numerical calculation of the next section.

If 𝑑 = 1, that is, 𝑟(𝑡) = 𝑟
𝐽
(𝑡) = 𝛿𝑡 + 𝛽𝐵(𝑡) + 𝛾𝑃(𝑡),

and if 𝑤(𝑥, 𝑦) = 1, then define 𝜙(𝑢) = 𝐸[𝑒
−𝑟(𝑇
𝑢
)
𝐼(𝑇

𝑢
<

∞) | 𝑈(0) = 𝑢], which gives the Laplace transform of the
time of ruin. Generally speaking, it is not easy to derive exact
expression for 𝜙(𝑢). But in some special cases, such as the
exponential distribution, we can obtain explicit form for the
Laplace transform of the time of ruin

Theorem4. If 𝑛 = 𝑚 = 𝑑 = 1,𝐹(𝑥) = 1−𝑒
−𝑎𝑥,𝐺(𝑧) = 1−𝑒−𝑏𝑧,

𝑎 > 0, 𝑏 > 0, 𝛼
2
/𝑎 > 𝛼

1
/𝑏, and 𝑤(𝑥, 𝑦) = 1, then for 𝑢 > 0

𝜙 (𝑢) =
𝛼

1
(𝑎 − 𝜎

1
)

(𝛼
1
+ 𝛼

2
+ 𝐴) (𝑎 − 𝜎

1
) − 𝑎𝛼

2

𝑒
𝜎
1
𝑢
, (21)

where 𝛼
1
= 𝛼

11
, 𝛼

2
= 𝛼

21
, 𝐴 = 𝛿 − (1/2)𝛽2 − 𝜁(𝑒−𝛾 − 1),

𝜎
1
= −

𝑏𝛼
2
− 𝑎𝛼

1
+ (𝑏 − 𝑎)𝐴

2 (𝛼
1
+ 𝛼

2
+ 𝐴)

−
1

2
√(−

𝑏𝛼
2
− 𝑎𝛼

1
+ (𝑏 − 𝑎)𝐴

𝛼
1
+ 𝛼

2
+ 𝐴

)

2

+
4𝑎𝑏𝐴

𝛼
1
+ 𝛼

2
+ 𝐴

< 0.

(22)

Moreover, when 𝑟(𝑡) = 0,

𝜙
0
(𝑢) =

𝛼
1
(𝑎 + 𝑏)

𝑏 (𝛼
1
+ 𝛼

2
)
𝑒
((𝑎𝛼
1
−𝑏𝛼
2
)/(𝛼
1
+𝛼
2
))𝑢

. (23)

Proof. By the methods of Yao et al. [25], let 𝜌(𝑢) = 1 − 𝜙(𝑢).
The change of 𝜌(𝑢) = 1 − 𝜙(𝑢) in (9) leads to

[𝛼
1
+ 𝛼

2
+ 𝛿 −

1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1)] 𝜌 (𝑢)

= 𝛼
1
∫

𝑢

0

𝜌 (𝑢 − 𝑧) 𝑏𝑒
−𝑏𝑧

𝑑𝑧 + 𝛼
2
∫

∞

0

𝜌 (𝑢 + 𝑥) 𝑎𝑒
−𝑎𝑥

𝑑𝑥

+ 𝛿 −
1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1) .

(24)
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Table 1: Exact values of 𝜙(𝑢) under different stochastic interest models.

𝑢 = 2

𝛽 𝛿 = 2.5 𝛿 = 2 𝛿 = 1.5

𝛾 = 0 𝛾 = 0.5 𝛾 = 1 𝛾 = 0 𝛾 = 0.5 𝛾 = 1 𝛾 = 0 𝛾 = 0.5 𝛾 = 1

0.0 0.011839 0.009891 0.008970 0.015540 0.012488 0.011144 0.021884 0.016600 0.014380
0.1 0.011868 0.009912 0.008988 0.015587 0.012520 0.011140 0.021969 0.016653 0.014422
0.2 0.011957 0.009976 0.009042 0.015730 0.012617 0.011218 0.022229 0.016814 0.014546
0.3 0.012106 0.010084 0.009132 0.015973 0.012782 0.011352 0.022674 0.017087 0.014758
0.4 0.012321 0.010239 0.009261 0.016325 0.013019 0.011543 0.023323 0.017483 0.015064
0.5 0.012607 0.010444 0.009432 0.016797 0.013335 0.011798 0.024206 0.018016 0.015473
0.6 0.012974 0.010705 0.009650 0.017408 0.013740 0.012123 0.025366 0.018707 0.016001
0.7 0.013432 0.011029 0.009918 0.018181 0.014248 0.012529 0.026865 0.019585 0.016667
0.8 0.013997 0.011426 0.010245 0.019151 0.014876 0.013028 0.028793 0.020691 0.017498
0.9 0.014691 0.011907 0.010639 0.020363 0.015649 0.013637 0.031281 0.022081 0.018531
1.0 0.015540 0.012488 0.011114 0.021884 0.016600 0.014380 0.034526 0.023837 0.019818
1.1 0.016584 0.013193 0.011684 0.023807 0.017776 0.015289 0.038836 0.026075 0.021430
1.2 0.017877 0.014048 0.012370 0.026271 0.019239 0.016406 0.044713 0.028972 0.023474
1.3 0.019494 0.015096 0.013202 0.029489 0.021084 0.017792 0.053025 0.032802 0.026106
1.4 0.021547 0.016392 0.014218 0.033797 0.023448 0.019534 0.065413 0.038014 0.029571
1.5 0.024206 0.018016 0.015473 0.039761 0.026542 0.021763 0.085361 0.045384 0.034263

Table 2: Exact values of 𝜙
1
(𝑢) under different stochastic interest models.

𝑢 = 2

𝛽 𝛿 = 2.5 𝛿 = 2 𝛿 = 1.5

𝛾 = 0 𝛾 = 0.5 𝛾 = 1 𝛾 = 0 𝛾 = 0.5 𝛾 = 1 𝛾 = 0 𝛾 = 0.5 𝛾 = 1

0.0 0.015507 0.013395 0.012366 0.019332 0.016194 0.014730 0.025491 0.020392 0.018156
0.1 0.015538 0.013418 0.012386 0.019380 0.016228 0.014758 0.025571 0.020444 0.018198
0.2 0.015632 0.013489 0.012446 0.019523 0.016330 0.014843 0.025816 0.020603 0.018325
0.3 0.015791 0.013608 0.012548 0.019767 0.016503 0.014986 0.026212 0.020874 0.018541
0.4 0.016018 0.013778 0.012693 0.020118 0.016750 0.015191 0.026837 0.021263 0.018851
0.5 0.016320 0.014003 0.012885 0.020587 0.017079 0.015463 0.027656 0.021786 0.019265
0.6 0.016703 0.014288 0.013127 0.021190 0.017499 0.015809 0.028722 0.022458 0.019795
0.7 0.017180 0.014639 0.013424 0.021947 0.018020 0.016237 0.030088 0.023306 0.020458
0.8 0.017764 0.015066 0.013784 0.022887 0.018661 0.016760 0.031824 0.024363 0.021279
0.9 0.018473 0.015579 0.014216 0.024051 0.019442 0.017393 0.034036 0.025677 0.022288
1.0 0.019332 0.016194 0.014730 0.025491 0.020392 0.018156 0.036877 0.027314 0.023529
1.1 0.020376 0.016931 0.015341 0.027286 0.021551 0.019079 0.040585 0.029370 0.025063
1.2 0.021650 0.017816 0.016070 0.029549 0.022973 0.020198 0.045541 0.031985 0.026977
1.3 0.023218 0.018884 0.016941 0.032446 0.024736 0.021566 0.052396 0.035374 0.029398
1.4 0.025174 0.020184 0.017990 0.036242 0.026953 0.023257 0.062361 0.039883 0.032519
1.5 0.027656 0.021786 0.019265 0.041372 0.029795 0.025377 0.077981 0.046101 0.036649

By taking the derivative with respect to 𝑢 on the sides of (24),
we have

[𝛼
1
+ 𝛼

2
+ 𝛿 −

1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1)] 𝜌


(𝑢) + (𝛼

2
𝑎 − 𝛼

1
𝑏) 𝜌 (𝑢)

= 𝛼
2
𝑎∫

∞

0

𝜌 (𝑢 + 𝑥) 𝑎𝑒
−𝑎𝑥

𝑑𝑥 − 𝛼
1
𝑏∫

𝑢

0

𝜌 (𝑢 − 𝑧) 𝑏𝑒
−𝑏𝑧

𝑑𝑧.

(25)

Differentiating the above equation with respect to 𝑢 again, we
arrive at

[𝛼
1
+ 𝛼

2
+ 𝛿 −

1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1)] 𝜌


(𝑢)

+ (𝛼
2
𝑎 − 𝛼

1
𝑏) 𝜌


(𝑢) + (𝑎

2
𝛼

2
+ 𝑏

2
𝛼

1
) 𝜌 (𝑢)

= 𝛼
2
𝑎

2
∫

∞

0

𝜌 (𝑢+𝑥) 𝑎e−𝑎𝑥
𝑑𝑥+𝛼

1
𝑏
2
∫

𝑢

0

𝜌 (𝑢−𝑧) 𝑏𝑒
−𝑏𝑧

𝑑𝑧,

(26)
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Table 3: Exact values of 𝜙
2
(𝑢) under different stochastic interest models.

𝑢 = 2

𝛽 𝛿 = 2.5 𝛿 = 2 𝛿 = 1.5

𝛾 = 0 𝛾 = 0.5 𝛾 = 1 𝛾 = 0 𝛾 = 0.5 𝛾 = 1 𝛾 = 0 𝛾 = 0.5 𝛾 = 1

0.0 0.005920 0.004946 0.004485 0.007770 0.006244 0.005557 0.010942 0.008300 0.007190
0.1 0.005934 0.004956 0.004494 0.007794 0.006260 0.005570 0.010984 0.008327 0.007211
0.2 0.005978 0.004988 0.004521 0.007865 0.006309 0.005609 0.011114 0.008407 0.007273
0.3 0.006053 0.005042 0.004566 0.007986 0.006391 0.005676 0.011337 0.008543 0.007379
0.4 0.006160 0.005119 0.004631 0.008162 0.006509 0.005772 0.011662 0.008741 0.007532
0.5 0.006304 0.005222 0.004716 0.008399 0.006667 0.005899 0.012103 0.009008 0.007737
0.6 0.006487 0.005353 0.004825 0.008704 0.006870 0.006062 0.012683 0.009354 0.008001
0.7 0.006716 0.005515 0.004959 0.009091 0.007124 0.006265 0.013433 0.009793 0.008334
0.8 0.006999 0.005713 0.005122 0.009575 0.007438 0.006514 0.014397 0.010346 0.008749
0.9 0.007345 0.005953 0.005320 0.010181 0.007824 0.006819 0.015640 0.011041 0.009266
1.0 0.007770 0.006244 0.005557 0.010942 0.008300 0.007190 0.017263 0.011918 0.009909
1.1 0.008290 0.006596 0.005842 0.011903 0.008888 0.007644 0.019418 0.013038 0.010715
1.2 0.008938 0.007024 0.006185 0.013136 0.009620 0.008203 0.022356 0.014486 0.011737
1.3 0.009747 0.007548 0.006601 0.014744 0.010542 0.008896 0.026513 0.016401 0.013053
1.4 0.010774 0.008196 0.007109 0.016898 0.011724 0.009767 0.032707 0.019007 0.014785
1.5 0.012103 0.009008 0.007737 0.019881 0.013271 0.010881 0.042680 0.022692 0.017132

from (24)–(26), we can obtain

[𝛼
1
+ 𝛼

2
+ 𝛿 −

1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1)] 𝜌


(𝑢)

+ [𝑏𝛼
2
− 𝑎𝛼

1
+ (𝑏 − 𝑎) (𝛿 −

1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1))] 𝜌


(𝑢)

− 𝑎𝑏 (𝛿 −
1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1)) 𝜌 (𝑢)

= −𝑎𝑏 (𝛿 −
1

2
𝛽

2
− 𝜁 (𝑒

−𝛾
− 1)) .

(27)

Since 𝛿 − (1/2)𝛽2 − 𝜁(𝑒−𝛾 − 1) > 0, the corresponding
homogeneous equation of the above differential equation
with constant coefficients is

𝜌

(𝑢) +

𝑏𝛼
2
− 𝑎𝛼

1
+ (𝑏 − 𝑎)𝐴

𝛼
1
+ 𝛼

2
+ 𝐴

𝜌

(𝑢) −

𝑎𝑏𝐴

𝛼
1
+ 𝛼

2
+ 𝐴

𝜌 (𝑢)

= 0.

(28)

Its characteristic equation is

𝜎
2
+

𝑏𝛼
2
− 𝑎𝛼

1
+ (𝑏 − 𝑎)𝐴

𝛼
1
+ 𝛼

2
+ 𝐴

𝜎 −
𝑎𝑏𝐴

𝛼
1
+ 𝛼

2
+ 𝐴

= 0, (29)

which has two real characteristic roots

𝜎
1,2

= −
𝑏𝛼

2
− 𝑎𝛼

1
+ (𝑏 − 𝑎)𝐴

2 (𝛼
1
+ 𝛼

2
+ 𝐴)

±
1

2
√(

𝑏𝛼
2
− 𝑎𝛼

1
+ (𝑏 − 𝑎)𝐴

𝛼
1
+ 𝛼

2
+ 𝐴

)

2

+
4𝑎𝑏𝐴

𝛼
1
+ 𝛼

2
+ 𝐴

.

(30)

Letting 𝜎
1
< 0, 𝜎

2
> 0 and noting that �̃�(𝑢) = 1 is one special

solution of (27), hence,

𝜌 (𝑢) = 𝐶
1
𝑒
𝜎
1
𝑢
+ 𝐶

2
𝑒
𝜎
2
𝑢
+ 1. (31)

Noting that 𝑢 → ∞, 𝜌(𝑢) → 1, and 𝜎
1

< 0, 𝜎
2

> 0, so
𝐶

2
= 0, that is,

𝜌 (𝑢) = 𝐶
1
𝑒
𝜎
1
𝑢
+ 1, (32)

which together with (24), implies

(𝛼
1
+ 𝛼

2
+ 𝐴) (1 + 𝐶

1
) = 𝛼

2
∫

∞

0

(𝐶
1
𝑒
𝜎
1
𝑥
+ 1) 𝑎𝑒

−𝑎𝑥
𝑑𝑥 + 𝐴,

(33)

so it follows that

𝜙 (𝑢) =
𝛼

1
(𝑎 − 𝜎

1
)

(𝛼
1
+ 𝛼

2
+ 𝐴) (𝑎 − 𝜎

1
) − 𝑎𝛼

2

𝑒
𝜎
1
𝑢
. (34)

When 𝑟(𝑡) = 0, (27) is equivalent to

𝜌

(𝑢) +

𝑏𝛼
2
− 𝑎𝛼

1

𝛼
1
+ 𝛼

2

𝜌

(𝑢) = 0. (35)

With the same argument, we can obtain

𝜙
0
(𝑢) =

𝛼
1
(𝑎 + 𝑏)

𝑏 (𝛼
1
+ 𝛼

2
)
𝑒
((𝑎𝛼
1
−𝑏𝛼
2
)/(𝛼
1
+𝛼
2
))𝑢

. (36)

Similarly, we can take many other suitable 𝑤(𝑥, 𝑦) in (7)
when 𝑛 = 𝑚 = 𝑑 = 1. Then corresponding integral equations
can be obtained. In general, it is not easy to derive exact
solutions for the equations. However, when 𝐹(𝑥) and 𝐺(𝑧)

are exponential, the explicit expression for the discounted
expectation of the amount of surplus immediately before ruin
occurs, and the deficit at ruin can be obtained.The process of
proof is completely similar to that of Theorem 4, and so it is
omitted here.
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Remark 5. Let 𝑤(𝑥, 𝑦) = 𝑥, and denote 𝜙
1
(𝑢) = 𝐸[𝑒−𝑟(𝑇

𝑢
)

𝑈(𝑇−

𝑢
)𝐼(𝑇

𝑢
< ∞) | 𝑈(0) = 𝑢], which can be considered as

the discounted expectation of the surplus immediately before
ruin occurs. If 𝑛 = 𝑚 = 𝑑 = 1, (9) can be reexpressed as

(𝛼
1
+ 𝛼

2
+ 𝐴) 𝜙

1
(𝑢)

= 𝛼
1
[∫

𝑢

0

𝜙
1
(𝑢 − 𝑧) 𝑑𝐺 (𝑧) + ∫

∞

𝑢

𝑢𝑑𝐺 (𝑧)]

+ 𝛼
2
∫

∞

0

𝜙
1
(𝑢 + 𝑥) 𝑑𝐹 (𝑥) .

(37)

Theorem 6. If 𝑛 = 𝑚 = 𝑑 = 1, 𝐹(𝑥) = 1 − 𝑒−𝑎𝑥, 𝐺(𝑧) =

1 − 𝑒−𝑏𝑧, 𝑎 > 0, 𝑏 > 0, and 𝛼
2
/𝑎 > 𝛼

1
/𝑏, then

𝜙
1
(𝑢) = 𝐷𝑒

𝜎
1
𝑢
−

1

𝑏
𝑒
−𝑏𝑢

, 𝑢 ≥ 0, (38)

where

𝐷 =
(𝑎 − 𝜎

1
) [(𝑎 + 𝑏) (𝛼

1
+ 𝛼

2
+ 𝐴) − 𝑎]

𝑏 (𝑎 + 𝑏) [(𝛼
1
+ 𝛼

2
+ 𝐴) (𝑎 − 𝜎

1
) − 𝑎𝛼

2
]
. (39)

Remark 7. Let 𝑤(𝑥, 𝑦) = 𝑦, and denote 𝜙
2
(𝑢) = 𝐸[𝑒−𝑟(𝑇

𝑢
)|

𝑈(𝑇
𝑢
)|𝐼(𝑇

𝑢
< ∞) | 𝑈(0) = 𝑢], which can be considered as the

discounted expectation of the deficit at ruin. If 𝑛 = 𝑚 = 𝑑 = 1,
(9) can be re-expressed as

(𝛼
1
+ 𝛼

2
+ 𝐴) 𝜙

2
(𝑢)

= 𝛼
1
[∫

𝑢

0

𝜙
2
(𝑢 − 𝑧) 𝑑𝐺 (𝑧) + ∫

∞

𝑢

(𝑧 − 𝑢) 𝑑𝐺 (𝑧)]

+ 𝛼
2
∫

∞

0

𝜙
2
(𝑢 + 𝑥) 𝑑𝐹 (𝑥) .

(40)

Theorem8. If 𝑛 = 𝑚 = 𝑑 = 1,𝐹(𝑥) = 1−𝑒−𝑎𝑥,𝐺(𝑧) = 1−𝑒−𝑏𝑧,
and 𝑎 > 0, 𝑏 > 0, 𝛼

2
/𝑎 > 𝛼

1
/𝑏, then, for 𝑢 ≥ 0,

𝜙
2
(𝑢) =

(𝑎 − 𝜎
1
) 𝛼

1

𝑏 (𝑎 − 𝜎
1
) [𝛼

1
+ 𝛼

2
+ 𝐴] − 𝑎𝑏𝛼

2

𝑒
𝜎
1
𝑢
. (41)

5. Numerical Illustrations

Taking into account the importance of the interest rates and
the simplicity of discussion, we only consider the effect of
stochastic interest on the 𝜙(𝑢), 𝜙

1
(𝑢), and 𝜙

2
(𝑢). Let us give

some data analysis about the theoretical results in formula
(21), such that we can catch the effect information of the
stochastic interest factors. We first need to determine the
value of the parameters in formula (21). For convenience, we
might as well suppose that 𝑎 = 1, 𝑏 = 2, 𝛼

1
= 1, and 𝛼

2
= 1.

The constant interest force 𝛿 is assumed to be 1.5, 2, and 2.5;
the coefficient 𝛽 starts at 0 and ends at 1.5 evenly spaced by
the value 0.1; the coefficient 𝛾 is valued at 0, 0.5, and 1, the
parameter 𝜁 is supposed to be 1. Based on the formula (21),
the above assumptions, and MATLAB, we get the values of
𝜙(𝑢) under the different combinations of parameter values
(see Table 1).

From Table 1, we can get the trend of changes of 𝜙(𝑢)

when the other two parameters keep unchanged.

(i) The 𝜙(𝑢) is increased steadily with increasing 𝛽 when
𝛿 and 𝛾 are unchanged.

(ii) The 𝜙(𝑢) is increased with a small decrease of 𝛿 when
𝛽 and 𝛾 are unchanged.

(iii) The 𝜙(𝑢) is decreased, if 𝛾 increases when 𝛿 and 𝛽 are
unchanged.

In the same way, we can also get similar conclusion for 𝜙
1
(𝑢)

(38) and 𝜙
2
(𝑢) (41); so we omit the detailed description here.

See Tables 2 and 3.

6. Conclusions

We have generalized the results in Zhang and Zhao [23]. We
suppose that the premium income process, the occurrence
of the claims, and the interest process are controlled by the
Markov regime-switching process, respectively. We not only
obtain the integral equations satisfied by the expected dis-
counted penalty function under the stochastic interest force
driven by theMarkov regime-switching process, but also offer
data analysis and direct interpretation based on the interest
models for some special cases. These all provide insights
into the effect of stochastic interest force on the expected
discounted penalty function and show the importance of
introducing stochastic interest force.
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