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First, we make the Jain’s derivative-free method optimal and subsequently increase its efficiency index from 1.442 to 1.587. Then,
a novel three-step computational family of iterative schemes for solving single variable nonlinear equations is given. The schemes
are free from derivative calculation per full iteration. The optimal family is constructed by applying the weight function approach
alongside an approximation for the first derivative of the function in the last step in which the first two steps are the optimized
derivative-free form of Jain’s method. The convergence rate of the proposed optimal method and the optimal family is studied.
The efficiency index for each method of the family is 1.682. The superiority of the proposed contributions is illustrated by solving
numerical examples and comparing them with some of the existing methods in the literature. In the end, we provide the basins
of attraction for some methods to observe the beauty of iterative nonlinear solvers in providing fractals and also choose the best
method in case of larger attraction basins.

1. Introduction

In order to approximate the solution of nonlinear functions,
it is suitable to use iterationmethods which lead tomonotone
sequences. The construction of iterative methods for esti-
mating the solution of nonlinear equations or systems is an
interesting task in numerical analysis [1]. During the last
years, a huge number of papers, devoted to the iterativemeth-
ods, have appeared in many journals, see, for example, [2–5]
and their bibliographies.

The first famous iterative method was attributed by New-
ton as 𝑥

𝑛+1
= 𝑥
𝑛
− 𝑓(𝑥

𝑛
)/𝑓


(𝑥
𝑛
). Steffensen approximated

𝑓


(𝑥
𝑛
), using forward finite difference of order one to obtain

its derivative-free form as 𝑥
𝑛+1

= 𝑥
𝑛
−𝑓(𝑥
𝑛
)
2

/(𝑓(𝑥
𝑛
+𝑓(𝑥
𝑛
))−

𝑓(𝑥
𝑛
)). Both methods reach the quadratically convergence

consuming two evaluations per cycle [6].
A very important aspect of an iterative process is the rate

of convergence of the sequence {𝑥
𝑛
}
∞

𝑛=0
, which approximates

a solution of 𝑓(𝑥) = 0. This concept, along with the cost

associated to the technique, allows establishing the index of
efficiency for an iterative process. In this way, the classical
efficiency index of an iterative process [6] is defined by the
value 𝑝1/𝑛, where 𝑝 is the convergence rate and 𝑛 is the total
number of evaluations per cycle. Consequently, Newton and
Steffensen schemes both have the same efficiency index 1.414.

In addition, Kung and Traub in [7] conjectured that a
multipoint iteration without memory consuming 𝑛 evalua-
tion per full iteration can reach the maximum convergence
rate 2𝑛−1. Taking into account all these, many researchers in
this topic have been trying to construct robust optimal meth-
ods; see, for example, [8, 9] and their bibliographies.

The remained contents of this study are summarized in
what follows. In Section 2, we present an optimized form
of the well-known cubically Jain’s method [10] with quar-
tic convergence. Moreover, considering the Kung-Traub con-
jecture, we build a family of three-step without memory
iterative methods of optimal convergence order 8. In order
to give this, we use an approximation of the first derivative
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of the function in the last step of a three-step cycle alongside
a well-written weight function. Analyses of convergence are
given. A comparison with the existing, without memory
methods of various orders, is provided in Section 3. We also
investigate the basins of attraction for some of the derivative-
free methods to provide the fractal behavior of such schemes
in Section 4. Section 5 gives the concluding remarks of this
research and presents the future works.

2. Main Results

Themain idea of this work is first to present a generalization
of the well-known Jain’s method with optimal order four and
the efficiency index 1.587 and then construct a three-step
family of derivative-free eighth-order methods with optimal
efficiency index 1.682.

Let us take into consideration the Jain’s derivative-free
method [10] as follows:

𝑦
𝑛
= 𝑥
𝑛
−

𝑓(𝑥
𝑛
)
2

𝑓 (𝑥
𝑛
+ 𝑓 (𝑥

𝑛
)) − 𝑓 (𝑥

𝑛
)

, 𝑥
0
given,

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑓
3

(𝑥
𝑛
)

[𝑓 (𝑥
𝑛
+ 𝑓 (𝑥

𝑛
)) − 𝑓 (𝑥

𝑛
)] [𝑓 (𝑥

𝑛
) − 𝑓 (𝑦

𝑛
)]

.

(1)

Equation (1) is a cubical technique using three function
evaluations per iteration with 3

1/3

≈ 1.442 as its efficiency
index. This index of efficiency is not optimal in the sense of
Kung-Traub hypothesis. Therefore, in order to improve the
index of efficiency and make (1) optimal, we consider the
following iteration:

𝑦
𝑛
= 𝑥
𝑛
−

𝛽𝑓(𝑥
𝑛
)
2

𝑓 (𝑤
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𝑛
)
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𝛽𝑓(𝑥
𝑛
)
3

[𝑓 (𝑤
𝑛
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𝑛
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)−(𝑓 (𝑦

𝑛
)
2
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,

(2)

wherein 𝑤
𝑛
= 𝑥
𝑛
+ 𝛽𝑓(𝑥

𝑛
) and 𝛽 ∈ R \ {0}. If we use divided

differences and define 𝑓[𝑥
𝑛
, 𝑤
𝑛
] = (𝑓(𝑤

𝑛
) − 𝑓(𝑥

𝑛
))/𝛽𝑓(𝑥

𝑛
),

then a novel modification of Jain’s method (1) in a more
simpler format than (2) can be obtained as follows:
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)
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𝑓(𝑥
𝑛
)
2
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𝑛
, 𝑤
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𝑛
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,

(3)

where its convergence order and efficiency index are optimal.
Theorem 1 illustrates this fact.

Theorem 1. Let 𝛼 ∈ 𝐼 be a simple zero of a sufficiently dif-
ferentiable function 𝑓 : 𝐼 ⊆ 𝑅 → 𝑅 in an open interval 𝐼.

If 𝑥
0
is sufficiently close to𝛼, then themethod defined by (3) has

the optimal convergence order four using only three function
evaluations.

Proof. We expand any terms of (3) around the simple zero 𝛼
in the 𝑛th iterate where 𝑐

𝑗
= 𝑓
(𝑗)

(𝛼)/𝑗!, 𝑗 ≥ 1, and 𝑒
𝑛
= 𝑥
𝑛
−𝛼.

Therefore, we have 𝑓(𝑥
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Accordingly by Taylor’s series expanding for the first step of
(3), we get that
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(4)

Now, we ought to expand 𝑓(𝑦
𝑛
) around the simple root by

using (4). We have

𝑓 (𝑦
𝑛
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1
) 𝑐
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𝑒
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+ 𝑂 (𝑒
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𝑛
) . (5)

Note that throughout this paper we omit writing many
terms of the Taylor expansions of the error equations for
the sake of simplicity. Additionally, by providing the Taylor’s
series expansion, in the second step of (3), we have
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Using (4), (6), and the second step of (3), we attain

𝑒
𝑛+1

= 𝑥
𝑛+1
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=
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1
) 𝑐
2
((2 + 𝛽𝑐

1
) 𝑐
2

2
− 𝑐
1
(1 + 𝛽𝑐

1
) 𝑐
3
)

𝑐
3

1

𝑒
4

𝑛

+ 𝑂 (𝑒
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(7)

This shows that (3) is an optimal fourth-order derivative-
free method with three evaluations per cycle. Hence, the
proof is complete.

Remark 2. It should be remarked that if one uses 𝑦
𝑛
= 𝑥
𝑛
−

(𝛽𝑓(𝑥
𝑛
)
2

)/(𝑓(𝑥
𝑛
) − 𝑓(𝑥

𝑛
− 𝛽𝑓(𝑥

𝑛
))) in (3), that is, another

variant of Steffensen’s method by backward finite difference
of order one, then a similar optimal quartical convergence
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method will be attained. To illustrate more, using this variant
will end in
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wherein 𝑤
𝑛
= 𝑥
𝑛
− 𝛽𝑓(𝑥

𝑛
) with 𝛽 ∈ R \ {0} and its error

equation is as follows:
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Therefore, we have given a modification of the well-
known cubical Jain’s method with fourth convergence order
by using the same number of evaluations as the Jain’s scheme,
while the orders are independent to the free nonzero para-
meter 𝛽. The derivative-free iterations (3) and (8) satisfy
the Kung-Traub conjecture for constructing optimal high-
order multipoint iterations without memory. This was the
first contribution of this research.

Remark 3. Although we provide the sketch for the proofs of
themainTheorems inR, the proposed Steffensen-typemeth-
ods of this paper could be applied for finding complex zeros
as well. Toward such a goal, a complex initial approximation
(seed) is needed.

Now in order to improve the convergence rate and the
index of efficiency more, we compute a Newton’s step as
follows in the third step of a three-step cycle in which the first
two steps are (3) with 𝑤

𝑛
= 𝑥
𝑛
+ 𝛽𝑓(𝑥

𝑛
) and 𝛽 ∈ R \ {0}:
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Obviously, (10) is an eighth-ordermethodwith five evalu-
ations (four function and one first derivative evaluations) per
full iteration to reach the efficiency index 81/5 ≈ 1.515. This
index of efficiency is lower than that of (3). For this reason, we
should approximate 𝑓(𝑧

𝑛
) by a combination of the already

known data, that is, in a way that the order of (10) stay at
eight but its number of evaluations lessen from five to four.

First, we consider that the new-appeared first derivative of the
function at this step can be approximated as follows:

𝑓


(𝑧
𝑛
) ≈

𝑓 (𝑧
𝑛
) − 𝜌𝑓 (𝑥

𝑛
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𝑧
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In fact, (11) is a linear combination of two divided
differences in which the best choice of 𝜌 is zero, to attain a
better order of convergence. However, (11) with 𝜌 = 0 does
not preserve the convergence rate of (10). As a result, the new
three-step method up to now (by only using (11)) will be of
order six which is not optimal. In order to reach the optimal-
ity, we use a weight function at the third step as well.Thus, we
consider the following three-step family without memory of
derivative-free methods with the parameter 𝛾 ∈ R. Theorem
4 illustrates that (12) reaches the eighth-order convergence
using only four function evaluations per full iteration to pro-
ceed
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(13)

By combining these two ideas, that is, an approximation
of the new-appeared first derivative in the last step and a
weight function, we have furnished a novel family of itera-
tions.

Theorem 4. Let 𝛼 ∈ 𝐼 be a simple zero of a sufficiently dif-
ferentiable function 𝑓 : 𝐼 ⊆ 𝑅 → 𝑅 in an open interval 𝐼. If
𝑥
0
is sufficiently close to 𝛼, then the method defined by (12) has

the optimal local convergence order eight.
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Figure 1: The distribution of colors.

Proof. Using the same definitions and symbolic computa-
tions as done in the Proof of Theorem 1, results in
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We also obtain by using (5) and (14) that
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𝑛
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𝑛
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𝑛
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9

𝑛
) .
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Note that the whole of such symbolic computations could be
done using a simpleMathematica code as given in Algorithm
1.

Additionally, applying (14) and (15) in the last step of (12)
results in the following error equation:

𝑒
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= −
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This ends the proof and shows that (12) is an optimal
eighth-order family using four function evaluations per itera-
tion.

Remark 5. The index of efficiency for (3) and (8) is 41/3 ≈
1.587 and for (12) is 81/4 ≈ 1.682, which are optimal according
to the conjecture of Kung and Traub.

A question might arise that how the weight functions in
(12) were chosen to attain as high as possible convergence
order with as small as possible number of functional eval-
uations. Although we have tried to suggest a simple family

of iterations in (12), the weight function should be chosen
generally in what follows:
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𝑓 (𝑦
𝑛
)

𝑓 (𝑤
𝑛
)

) + 𝐿(

𝑓 (𝑧
𝑛
)

𝑓 (𝑤
𝑛
)

)] ,

(17)

where 𝑤
𝑛

= 𝑥
𝑛
+ 𝛽𝑓(𝑥

𝑛
) and 𝐺(𝑓(𝑦

𝑛
)/𝑓(𝑥

𝑛
)), 𝐻(𝑓(𝑦

𝑛
)/

𝑓(𝑤
𝑛
)), 𝐿(𝑓(𝑧

𝑛
)/𝑓(𝑤

𝑛
)) are three weight functions that sat-

isfy the following:

𝐺 (0) = 1 − 𝐻 (0) − 𝐿 (0) , (18)

𝐺


(0) = 𝐺


(0) = 𝐺


(0) = 0,






𝐺
(4)

(0)






< ∞,

𝐻


(0) = 0, 𝐻


(0) = 2 + 2𝛽𝑓 [𝑥
𝑛
, 𝑤
𝑛
] ,

𝐻


(0) = 6𝛽𝑓 [𝑥
𝑛
, 𝑤
𝑛
] (2 + 𝛽𝑓 [𝑥

𝑛
, 𝑤
𝑛
]) ,






𝐻
(4)

(0)






< ∞,

𝐿


(0) = 1,

(19)

to read the following error equation:

𝑒
𝑛+1

=

1

24𝑐
7

1

(1 + 𝛽𝑐
1
) 𝑐
2

2
(− (2 + 𝛽𝑐

1
) 𝑐
2

2
+ 𝑐
1
(1 + 𝛽𝑐

1
) 𝑐
3
)

× (72𝑐
1
(1 + 𝛽𝑐

1
)
2

𝑐
2
𝑐
3
− 24𝑐
2

1
(1 + 𝛽𝑐

1
)
2

𝑐
4

+ 𝑐
3

2
( − 24 (1 + 𝛽𝑐

1
) (3 + 𝛽𝑐

1
(5 + 𝛽𝑐

1
))

+(1 + 𝛽𝑐
1
)
4

𝐺
(4)

(0) + 𝐻
(4)

(0))) 𝑒
8

𝑛

+ 𝑂 (𝑒
9

𝑛
) .

(20)

3. Numerical Reports

Theobjective of this section is to provide a robust comparison
between the presented schemes and some of the already
knownmethods in the literature. For numerical reports here,
we have used the second-order Newton’s method (NM), the
quadratical scheme of Steffensen (SM), our proposed optimal
fourth-order technique (3) with 𝛽 = 1 denoted by PM4, the
optimal derivative-free eighth-order uni-parametric family
of iterative methods given by Kung and Traub in [7] (KT1)
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(a) (b)

(c) (d)

Figure 2: Fractal behavior for the rational function associated to the Steffensen’smethodwith𝛽 = 0.01 (a), Jain’smethod (b), (3) with𝛽 = 0.01

(c) and (3) with 𝛽 = 0.0001 (d) for 𝑓 : 𝑧 → 𝑧
2

+ 1. Shading according to the number of iterations.

with 𝛽 = 1, and our presented novel derivative-free eighth-
order family (12) with 𝛾 = 0 and 𝛽 = 1 denoted by PM8. Due
to similarity of (3) and (8), we just give the numerical reports
of (3). The considered nonlinear test functions, their zeros,
and the initial guesses in the neighborhood of the simple
zeros are furnished in Table 1.

The results are summarized in Table 2 after three full
iterations. As they show, novel schemes are comparable with
all of the famous methods. All numerical instances were per-
formed using 700 digits floating point arithmetic. We have
computed the root of each test function for the initial guess
𝑥
0
. As can be seen, the obtained results in Table 2 are in har-

mony with the analytical procedure given in Section 2.
The proposed optimal fourth-order modification of Jain’s

method performs well in contrast to the classical one-step
method. We should remark that, in light of computational
complexity, our constructed derivative-free family (12) is
more economic, due to its optimal order with only four func-
tion evaluations per full cycle.

In light of the classical efficiency index for the without
memory methods which have compared in Table 2, we have

NM and SM that possess 1.414; (3) reaches 1.587, while (KT1)
and (12) reach 1.682.

An important aspect in the study of iterative processes
is the choice of a good initial approximation. Moreover, it
is known that the set of all starting points from which an
iterative process converges to a solution of the equation can
be shown by means of the attraction basins.

Thus, we have considered the initial approximations close
enough to the sought zeros in numerical examples to reach
the convergence. A clear hybrid algorithm written in Mathe-
matica [11] has recently been given in [12] to provide robust
initial guesses for all the real zeros of nonlinear functions in
an interval. Thus, the convergence of such iterative methods
could be guaranteed by following such hybrid algorithms for
providing robust initial approximations.

In what follows, we give an application of the new scheme
in Chemistry [13].

Application. An exothermic first-order, irreversible reaction,
𝐴 → 𝐵, is carried out in an adiabatic reactor. Upon combin-
ing the kinetic and energy-balance equations, the following
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(a) (b)

(c) (d)

Figure 3: Fractal behavior for the rational function associated to the Steffensen’smethodwith𝛽 = 0.01 (a), Jain’smethod (b), (3) with𝛽 = 0.01

(c) and (3) with 𝛽 = 0.0001 (d) for 𝑓 : 𝑧 → 𝑧
3

+ 1. Shading according to the number of iterations.

Table 1: The test functions considered in this study.

Test functions Zeros Initial guesses
𝑓
1
(𝑥) = 3𝑥 + sin (𝑥) − 𝑒

𝑥

𝛼
1
≈ 0.360421702960324 𝑥

0
= 0.5

𝑓
2
(𝑥) = sin (𝑥) − 0.5 𝛼

2
≈ 0.523598775598299 𝑥

0
= 0.3

𝑓
3
(𝑥) = 𝑥𝑒

−𝑥

− 0.1 𝛼
3
≈ 0.111832559158963 𝑥

0
= 0.2

𝑓
4
(𝑥) = 𝑥

3

− 10 𝛼
4
≈ 2.15443490031884 𝑥

0
= 1.7

𝑓
5
(𝑥) = 10𝑥𝑒

−𝑥
2

− 1 𝛼
5
≈ 1.679630610428450 𝑥

0
= 1.4

𝑓
6
(𝑥) = cos (𝑥) − 𝑥 𝛼

6
≈ 0.739085133215161 𝑥

0
= 0.3

Table 2: Results of comparisons for different methods after three iterations.

Absolute value of 𝑓 NM SM PM4 KT1 PM8




𝑓
1
(𝑥
3
)





0.6𝑒 − 9 0.1𝑒 − 4 0.1𝑒 − 43 0.4𝑒 − 325 0.4𝑒 − 328





𝑓
2
(𝑥
3
)





0.1𝑒 − 9 0.5𝑒 − 8 0.7𝑒 − 59 0.9𝑒 − 462 0.4𝑒 − 478





𝑓
3
(𝑥
3
)





0.6𝑒 − 8 0.3𝑒 − 6 0.1𝑒 − 51 0.7𝑒 − 391 0.1𝑒 − 391





𝑓
4
(𝑥
3
)





0.3𝑒 − 3 0.4 0.2𝑒 − 170 0.1𝑒 − 167 0.6𝑒 − 186





𝑓
5
(𝑥
3
)





0.7𝑒 − 5 0.1𝑒 − 1 0.1𝑒 − 38 0.1𝑒 − 75 0.3𝑒 − 216





𝑓
6
(𝑥
3
)





0.3𝑒 − 6 0.1𝑒 − 8 0.6𝑒 − 98 0.1𝑒 − 476 0.2𝑒 − 623
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(a) (b)

(c) (d)

Figure 4: Fractal behavior for the rational function associated to the Steffensen’smethodwith𝛽 = 0.01 (a), Jain’smethod (b), (3) with𝛽 = 0.01

(c) and (3) with 𝛽 = 0.0001 (d) for 𝑓 : 𝑧 → 𝑧
4

+ 1. Shading according to the number of iterations.

Clear[“Global’ ∗ ”]
(∗Assuming e = x - 𝛼 and cj = (f ∧ (j) (𝛼))/j!, for j = 1, 2, . . ., 8∗)

f[e ] := c
1
∗e + c

2
∗e ∧2 + c

3
∗e ∧3 + c

4
∗e ∧4 + c

5
∗e ∧5 + c

6
∗e ∧6 + c

7
∗e ∧7 + c

8
∗e ∧8;

(∗Assuming b = w - 𝛼
∗

)

fe = f[e]; b = e + 𝛽 fe; fw = f[b]; d = (fw - fe)/(𝛽 fe);
(∗Assuming u= y -𝛼 ∗)
u= e-Series[fe/d, {e, 0, 8}]//Simplify;
(∗Assuming v= z -𝛼∗)
fu= f[u]; v= e - ((fe 2

)/(d∗(fe - fu - (fu 2
)/fw)))//Simplify;

fv= f[v]; fyz= (fu - fv)/(u - v);
(∗Assuming e1 = Subscript[x, new] -𝛼∗)
e1 = v - (fv/(fv/(v - e)+ fyz)) ∗ (1 + (1/(1+ 𝛽 d))(fu/fe)∧2

+(2𝛽 d+ (𝛽 d)∧2)(fu/fw)∧ 3+ fv/fw+𝛾 (fv/fu)∧2)//FullSimplify

Algorithm 1: The Mathematica code for finding the asymptotic error constant inTheorem 4.

Table 3: Results of comparisons for different methods in solving 𝑓(𝑇) = 0.

Methods NM SM PM4 KT1 PM8




𝑓





7 (0.1𝑒 − 264) 8 (0.7𝑒 − 171) 4 (0.2𝑒 − 220) 3 (0.1𝑒 − 462) 3 (0.5𝑒 − 467)
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(a) (b)

(c) (d)

Figure 5: Fractal behavior for the rational function associated to the Steffensen’smethodwith𝛽 = 0.01 (a), Jain’smethod (b), (3) with𝛽 = 0.01

(c) and (3) with 𝛽 = 0.0001 (d) for 𝑓 : 𝑧 → 𝑧
5

+ 1. Shading according to the number of iterations.

Table 4: Results of chaotic comparisons for different derivative-free methods.

Method 𝑝
1
(𝑥) 𝑝

2
(𝑥) 𝑝

3
(𝑥) 𝑝

4
(𝑥) 𝑝

5
(𝑥) Average

Steffensen’s method with 𝛽 = 0.01 1 1 3 4 4 13/4
Jain’s method 3 2 4 4 4 17/4
(3) with 𝛽 = 0.01 2 2 3 4 4 15/4
(3) with 𝛽 = 0.0001 2 2 2 2 2 10/4

equation is obtained for computing the final temperature 𝑇
in K:

𝑓 (𝑇) =

1

𝑇
2
𝑒
21000/𝑇

− 1.11 × 10
11

= 0, (21)

where the temperature 𝑇 is in K. The following logarithmic
transformation improves the scaling of the problem, giving
𝑓(𝑇) = 2𝑇 ln𝑇 + 25.432796𝑇 − 21000 = 0. This nonlinear
equation has only one real root. A starting point of zero
for 𝑇 is not feasible; instead, we arbitrarily select 𝑇

0
=

400K. The results are given in Table 3, when, for example,
7(0.1𝑒 − 264) stands for 7 iterations while the absolute value

of the function would be 0.1𝑒 − 264. The true solution is
551.77382545730271467 . . ..

In the next section, we investigate the beauty of such
zero-finder iterative methods in the complex plane alongside
obtaining the fractal behavior of the schemes.

4. Finding the Basins

Thebasin of attraction for complexNewton’smethodwas first
considered and attributed by Cayley [14]. The concept of this
section is to use this graphical tool for showing the basins of
different methods. In order to view the basins of attraction
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(a) (b)

(c) (d)

Figure 6: Fractal behavior for the rational function associated to the Steffensen’smethodwith𝛽 = 0.01 (a), Jain’smethod (b), (3) with𝛽 = 0.01

(c) and (3) with 𝛽 = 0.0001 (d) for 𝑓 : 𝑧 → 𝑧
6

+ 1. Shading according to the number of iterations.

for complex functions, we make use of the efficient computer
programming package Mathematica [15] using double preci-
sion arithmetic. We take a rectangle𝐷 = [−4, 4]× [−4, 4] ∈ C

andwe assign the light to dark colors (based on the number of
iterations) for 𝑧

0
∈ 𝐷 (for each seed) according to the simple

zero at which the corresponding iterative method starting
from 𝑧

0
converges. See, for more details, [16, 17].

The Julia set will be denoted by white-like colors. In this
section, we consider the stopping criterion for convergence
to be |𝑓| < 10

−2 with a maximum of 30 iterations and with
a grid 400 × 400 points. In fact, the colors we used are based
on Figure 1.

We compare the results of Steffensen’s method with 𝛽 =

0.01, the third-order method of Jain, the quartical conver-
gent method (3) for two values 𝛽 = 0.01 and 𝛽 = 0.0001

in Figures 2, 3, 4, 5, and 6 for the polynomials 𝑝
1
(𝑧) =

𝑧
2

+ 1, 𝑝
2
(𝑧) = 𝑧

3

+ 1, 𝑝
3
(𝑧) = 𝑧

4

+ 1, 𝑝
4
(𝑧) = 𝑧

5

+

1, and 𝑝
5
(𝑧) = 𝑧

6

+ 1 wherein their simple solutions are
{0. −1.𝑖, 0. + 1𝑖}, {−1., 0.5 − 0.866025.𝑖, 0.5 − 0.866025.𝑖},

{−0.707107 − 0.707107𝑖, −0.707107 + 0.707107𝑖, 0.707107 −

0.707107𝑖, 0.707107+0.707107𝑖}, {−1., −0.309017−0.951057𝑖,
−0.309017 + 0.951057𝑖, 0.809017 − 0.587785𝑖, 0.809017 +

0.587785𝑖}, and {−0.866025−0.5𝑖, −0.866025+0.5𝑖, 0.−1.𝑖, 0.+
1.𝑖, 0.866025 − 0.5𝑖, 0.866025 + 0.5𝑖}, respectively. We do not
invite optimal eighth order methods due to their large basins
of attraction (their order is high).

As was stated in [18–20], known derivative-free schemes
do not verify a scaling theorem, so the dynamical conclusions
on a set of polynomials cannot be extended to others of the
same degree polynomials and they are only particular cases.
Indeed, comparing the behavior of the methods analyzed in
those papers with the dynamical planes obtained in this pa-
per, it is clear that the introduction of the parameter 𝛽 plays
an important role in the analysis.

Note that considering tighter conditions on our written
codes may produce pictures with much more quality than
these. In Figures 2–6, darker blue areas stand for low number
of iterations, darker blue needs more number of iterations
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to converge, and red areas mean no convergence or a huge
number of iterations is needed.

Based on Figures 2–6, we can see that the method of (3)
with 𝛽 = 0.0001 is the best method in terms of less chaotic
behavior to obtain the solutions. It also has the largest basins
for the solution and is faster than the other ones. This also
clearly shows the significance of the free nonzero parameter
𝛽. In fact, whenever 𝛽 is lower (is close to zero), the larger
basin along with less chaotic behavior could be attained.

In order to summarize these results, we have attached a
weight to the quality of the fractals obtained by each method.
The weight of 1 is for the smallest Julia set and a weight of
4 for scheme with chaotic behaviors. We then averaged those
results to come upwith the smallest value for the best method
overall and the highest for the worst.These data are presented
inTable 4.The results show that (3)with𝛽 = 0.0001 is the best
one.

5. Concluding Remarks

Many problems in scientific topics can be formulated in terms
of finding zeros of the nonlinear equations.This is the reason
why solving nonlinear equations or systems are important. In
this work, we have presented some novel schemes of fourth-
and eighth-order convergence. The fourth-order derivative-
free methods possess 1.587 as their efficiency index and the
eighth-order derivative-free methods have 1.682 as their effi-
ciency index. Per full cycle, the proposed techniques are free
from derivative calculation. We have also given the fractal
behavior of some of the derivative-free methods along some
numerical tests to clearly show the acceptable behavior of the
new scheme. We have concluded that 𝛽 has a very import-
ant effect on the convergence radius and the speed of con-
vergence for Steffensen-type methods. With memorization
of the obtained fourth- and eighth orders families could be
considered for future studies.
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