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We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA). According
to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal
arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network
analysis (SNA).

1. Introduction

Since September 11 attacks, focus of criminal analysis has
been shifted to find terrorist networks, and a number of
results have been obtained [1, 2]. Although they faced many
challenges like the incompleteness, incorrectness, and incon-
sistency of information, they made use of the data mining
and did subgroup detection to discover information. Later,
they developed some visualization tools [3] to help observe
criminal networks’ structure. All of these must be owed to
the development and maturity of SNA [4–6]. SNA was born
in the 1930s, and Moreno did much foundational work for it.
After that, SNA developed fast especially in the 1960s–1970s.
Various metrics were defined, including centrality, clustering
coefficient, and density [7–10]. However, most work was still
limited on static criminal network analysis. On the other
hand, a new study shows that DNA is on its way [11, 12].
DNA is an extension and evolution of SNA. It is a study
combined with multiagent or multimode, full of uncertainty.
Meanwhile, it introduces the domain of time into it, which
makes it much more complex than SNA. In fact, our research
on DNA is just staying in the beginning, and many problems
are waiting to be done. For example, one should predict the
traits of networks precisely and develop more techniques
to visualize the outline of the whole sequence of dynamic
networks. To sum up, it should be studied further.

Since the research to find the suspects and predict the
crime time is still based on analyzing frequency and content
of communications between suspects, which can be easily
concealed and disguised by real criminals, we start from
another direction, by observing a sequence of criminal net-
works of different time andmaking use of hierarch clustering
to analyze the structure changes of criminal networks.

Suppose that we have got a database of message traffic
records of all the criminal suspects. Of course, the time that
the message is sent will be marked. Furthermore, we suppose
that semantic network analysis has been finished and all the
messages about crime and suspects have been extracted from
the original database. So we can skip preparation part and
directly focus our attention on researching the structure of
criminal networks.

As our first contribution, we introduce DNA to construct
a sequence of criminal networks. For the second contribu-
tion, we modify the definition of centrality and partition
method based on hierarchy clustering to make it serve
our model better. As our third contribution, we suggest a
method, time series analysis. By this way, we can predict
the possible crime time of every suspects. Finally, through
analyzing the structural changes of networks, we propose four
different processes to help determine the best arresting time;
meanwhile, we design an arresting priority list based on the
degree of importance of the suspects.
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2. Establishing Dynamic Criminal Networks

Denote the time interval by Δ𝑡 and divide the database of
E-mail traffic into different parts according to their sending
time. We regard the sending time of the earliest E-mail as the
initial time; all the E-mails with sending time from 0 to Δ𝑡

will be used to construct the first dynamic criminal networks
𝑁(0), followed by next networks of 𝑁(Δ𝑡),𝑁(2Δ𝑡),𝑁(3Δ𝑡),
and so on. The network 𝑁(𝑖Δ𝑡) is constructed by the data
between time 𝑖 × Δ𝑡 and (𝑖 + 1) × Δ𝑡, which is unrelated to
the data of other time.

Now, we get a sequence of criminal networks. For each
network 𝑁(𝑖Δ𝑡), the nodes of the network represent the
criminals who send messages during the time between 𝑖 ×

Δ𝑡 and (𝑖 + 1) × Δ𝑡, and the edges represent the exchange
between 𝑖 and 𝑗.Theweight of the edge is the times ofmessage
exchanges between 𝑖 and 𝑗. These networks are all weighted
undirected graphs.

In order to describe the network 𝑁(𝑖Δ𝑡), we first build
up a relation distance matrix 𝑀𝑑(𝑖Δ𝑡) and relation strength
matrix 𝑀𝑟(𝑖Δ𝑡).

Here are some notations that we will use as follows:

𝑥: the index of member nodes;
𝑎𝑖𝑥: relation strength. It represents the weight on the
link between nodes 𝑖 and 𝑥;
𝑑𝑖𝑥: relation distance. It is defined as the reciprocal of
𝑎𝑖𝑥

𝑑𝑖𝑥 =
{

{

{

1

𝑎𝑖𝑥

, 𝑎𝑖𝑥 ̸= 0

∞, 𝑎𝑖𝑥 = 0.

(1)

𝑛: the total number of nodes;
𝑙𝑖𝑥: the length of the shortest path between nodes 𝑖 and
𝑥. The shortest path is calculated based on the Floyd
algorithm.

Then, we get the relation distance matrix 𝑀𝑑(𝑖Δ𝑡):

[
[

[

𝑙11 ⋅ ⋅ ⋅ 𝑙1𝑛
...

. . .
...

𝑙𝑛1 ⋅ ⋅ ⋅ 𝑙𝑛𝑛

]
]

]

(2)

and relation strength matrix 𝑀𝑟(𝑖Δ𝑡):

[
[

[

𝑎11 ⋅ ⋅ ⋅ 𝑎1𝑛
...

. . .
...

𝑎𝑛1 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]
]

]

. (3)

These two matrixes contain nearly all the information of
the messages traffic of time between 𝑖 × Δ𝑡 and (𝑖 + 1) × Δ𝑡,
which is our basis of the following analysis and forecast.

3. Designing Modified Centrality Standard

According to Freeman’s research, there are three popular
centrality measures—degree centrality (𝐶𝑑(𝑥)), betweenness

centrality (𝐶𝑏(𝑥)), and closeness centrality (𝐶𝑐(𝑥)). They
are helpful in analyzing the criminal network. These three
measures are used to measure the relational strength of a
network. What is more, they can be used to identify key
members who play important roles in a network. But it omits
the frequency of transmitting messages, which is crucial to
reflect the relation strength between different nodes, so we
modify the above definitions and give a new definition of
centrality measures as follows.

Degree centrality is defined as follows:

𝐶


𝑑
(𝑥) =

𝑛

∑

𝑖=1

𝑎𝑖𝑥, (4)

where 𝑛 is the total number of nodes in a network and 𝑎𝑖𝑥 has
been defined in the previous section, which denotes a variable
indicating the weighted number of messages between nodes
𝑥 and 𝑖 (an edge from node 𝑥 to node 𝑖 or from node 𝑖 to node
𝑥 can either be counted as a link).

Betweenness centrality is defined as follows:

𝐶


𝑏
(𝑥) =

𝑛

∑

𝑥

𝑛

∑

𝑗

𝑔𝑖𝑗 (𝑥) , (5)

where 𝑔𝑖𝑗(𝑥) equals 1 if the shortest path from the node 𝑖 to
the node 𝑗 passes through the node 𝑥; otherwise, 𝑔𝑖𝑗(𝑥) is 0.

Closeness centrality is defined as follows:

𝐶


𝑐
(𝑥) =

𝑛

∑

𝑖=1

𝑙𝑖𝑥, (6)

where 𝑙𝑖𝑥 is the length of the shortest path connecting nodes
𝑖 and 𝑥. The shortest path is calculated based on the Floyd
algorithm.

The centralities above describe different characters of
nodes in a network.

(i) Degree centrality shows the number of nodes’ con-
nections, which also reflects connectivity of nodes in a
network.Nodeswithmore connections can be viewed
as more important like a leader [13] in a network.

(ii) Betweenness centrality shows the number of shortest
paths passing by certain node. It also reveals the
dependency of a node from other nodes. Obviously,
if a node is dependent on other nodes quite much,
the node must be very important for the smooth
communication, like a gatekeeper [13].

(iii) Closeness centrality actually measures how far away
one node is from other nodes. Apparently, small
closeness value of a node reflects its high importance.

4. Clustering Analysis

Given a criminal network 𝑁(𝑖Δ𝑡), for the purpose of explor-
ing the organization and structure of criminals, it is necessary
to analyze its clustering or partition. And in the later part,
we will find that the change of networks’ structure will
reveal much more information than expected. Now, the most
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popular method includes hierarchy clustering [14, 15] and
blockmodeling. However, always some approaches need us
to determine the number of the clusters beforehand, others
directly merge different clusters into one whole cluster with
strict structure. Inversely, the criminal activities in the real
world have become more and more complex and huge, so
it is nearly impossible for few leaders to govern the whole
organization; thus, emergence of criminal subnetworks is
inevitable. Besides, the structure, partition, and even number
of these subclusters are unknown before investigation. In this
way, effectiveness of hierarchy clustering and blockmodeling
may fail.

Here we design an optimal function to avoid the above
problems as the following:

Max𝐸 (𝑁 (𝑖Δ𝑡) , 𝑚, 𝑃 (𝑚)) =
∏
𝑚

𝑖=1
(𝛼𝐶𝑖)

∏
𝑛

𝑖=1
𝐶


𝑑
(𝑖)

. (7)

Here, 𝛼 is an experimental parameter, which varies from
0 to ∞ and determines the average size of subnetworks.
The bigger the value of 𝛼 is, the more of sub-networks will
generate, but the average size of sub-networks will be smaller.
And the value of 𝛼 cannot be determined theoretically; it is
the result of fitting according to actual cases. 𝑚 represents
the number of subclusters. 𝑃(𝑚) represents all the possible
partitions of 𝑚 clusters. 𝐶𝑖 represents the 𝑖th subnetwork’s
sum of inner edges’ weight after the 𝑚 and 𝑃(𝑚) are
determined.

This optimal function is based on the density of each
subnetwork. If the partition (𝑚, 𝑃(𝑚)) is determined, then
the density is defined as below:

𝐷𝑖 =
𝛼𝐶𝑖

∏
𝑘(𝑖)

𝑖=1
𝐶


𝑑
(𝑖)

, (8)

𝐾(𝑖) represents the number of nodes of the subnetwork.
From the definition of density, we can find that density

increases when the ratio of the inner interaction of subnet-
work dominates the whole interaction of the members of
the subnetworks, which reveals the information that these
members are intensively connected. And we multiply all the
subnetworks’ densities to get the optimal function:

𝐸 (𝑁 (𝑖Δ𝑡) , 𝑚, 𝑃 (𝑚)) =
∏
𝑚

𝑖=1
(𝛼𝐶𝑖)

∏
𝑛

𝑖=1
𝐶


𝑑
(𝑖)

=

𝑚

∏

𝑖=1

𝐷𝑖. (9)

It reflects the overall tight degree of all the subnetworks. The
bigger the value of the optimal function 𝐸(𝑁(𝑖Δ𝑡), 𝑚, 𝑃(𝑚))

is, the more intensive each subnetwork’s inner structure is,
and the maxima of the optimal function determines the best
clustering method of the network 𝑁(𝑖Δ𝑡).

Below is the pseudocode of an algorithm which is
designed to find the optimal value of 𝐸(𝑁(𝑖Δ𝑡), 𝑚, 𝑃(𝑚)) and
the best partition 𝑃(𝑚) as follows as:

input 𝑁(𝑡)

set 𝐸 = ∞, 𝑃 = 0

for 𝑖 from 1 to 𝑛

do the traversal of all possible 𝑖 partitions
findmax𝐸(𝑁(𝑡), 𝑃(𝑖)) and 𝑃(𝑖)

if 𝐸(𝑁(𝑡), 𝑃(𝑖)) < 𝐸 𝐸 ← 𝐸(𝑁(𝑡), 𝑃(𝑖)) 𝑃 ← 𝑃(𝑖)

end if
end for

Remark 1. To find the maxima value of the optimal function,
we must calculate the values of all possible partitions, which
needs 𝑂(2

𝑛
)-space. As the p-cliques do the similar way to

how our optimal function runs, we can use the method of
p-cliques first as a filtration to choose adequate candidates of
possible partitions. After that, we just need to verify which
candidate is best by calculating their optimal functions, which
will reduce the calculated scale drastically.

Remark 2. This clustering method is based on the designed
optimal function; it can determine actual number and struc-
ture of subnetworks beforehand perfectly in theory. And the
precondition is that 𝛼 can be gotten precisely through fitting
previous known criminal networks. From this way, it is an
empirical function.

5. Analyzing Changes of Networks and
Forecasting Future Structure

As usual, the communications between two people are rarely
affected by others, and we regard the arbitrary edge’s weight
as being independent on other edges. So, we extract all edges’
weights, respectively, from the sequence of networks and
compose them of some new series:

𝑊𝑖𝑗 (0) ,𝑊𝑖𝑗 (1Δ𝑡) ,𝑊𝑖𝑗 (2Δ𝑡) ,𝑊𝑖𝑗 (3Δ𝑡) ,𝑊𝑖𝑗 (4Δ𝑡) , . . .

1 ≪ 𝑖 ≪ 𝑛, 𝑖 ≪ 𝑗 ≪ 𝑛.

(10)

𝑊𝑖𝑗(𝑘Δ𝑡) represents the times of communication between 𝑖

and 𝑗 at time from 𝑘Δ𝑡 to (𝑘 + 1)Δ𝑡. It also equals the 𝑎𝑖𝑥 in
networks 𝑁(𝑘Δ𝑡).

We regard communication as an event, and 𝑊𝑖𝑗(𝑘Δ𝑡) is
the sum of times the events occurring in a specific time. So,
every sequence composes of a time series, and we suggest the
methodology in time series analysis [16] to forecast the value
𝑊𝑖𝑗(𝑘Δ𝑡) of the future.

Beforehand, as different events adjust to different meth-
ods, we categorize the criminal event into two kinds.

(1) Crimes which is so serious that wemust prevent them
from happening in advance: terrorist attacks like 9/11,
premeditated kidnaps and homicides, and so forth.

(2) Crimes which have less direct damage and can be
monitored for a long term in order to obtain crucial
evidence or destroy and arrest the criminal gangs
entirely: drag trafficking organization, a group of
traitors who steal corporation’s accounts and cash,
and so forth.

For the first case, it usually goes through a relatively short
interval of time from the formation of criminal motive to
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implementation; therefore, it lacks obvious regularity and
shows a drastic trend from preparation to operation. So, we
choose the ARIMA model to predict the communication
behavior of every two people in the near future.

As to the second case, according toHe’s investigation [17],
the long-term crimes have a certain degree of periodicity and
meet the stationarity.We choose the ARMAmodel to predict
long-term crime law.

This part is not the emphasis of what we discuss, and we
just give the brief steps of predicting method [18].

(1) Analyzing stationarity and operating white-noise
sequence.

(2) Computing the values of ACF and PCF of the given
data.

(3) Identification of ARMA model or ARIMA model.

(4) Estimating the unknown parameters in the model.

(5) Making forecast and examining the effectiveness. If it
fails, choose other modes.

(6) Model optimization.

(7) Utilizing the model to forecast the future trend.

Now, we can get the expected networks 𝑁(𝑇) at any
future time permitted by conditions, so do the relation
strengthmatrix, modified centrality, and clustering at time𝑇.
Synthesizing with the above series of networks constructed
by known data, we get a new series of criminal networks:

{𝑁 (0) ,𝑁 (1Δ𝑡) ,𝑁 (2Δ𝑡) ,𝑁 (3Δ𝑡) , . . . , 𝑁 (𝑛Δ𝑡) ,

𝑁 ((𝑛 + 1) Δ𝑡) ,𝑁 ((𝑛 + 2) Δ𝑡) , . . . , 𝑁 (𝑚Δ𝑡)} .

(11)

When 𝑛 ≪ 𝑖 ≪ 𝑚, the network of 𝑁(𝑖Δ𝑡) is constructed
according to prediction.

Similar series of relation strength matrixes, each edge’s
modified centralities, and clustering networks can be gotten
in the similar way.

We call these series the expected sequence.

6. Designing Arresting Strategy

Although criminal gangs will avoid varying their frequency
of communication dramatically to avoid the sight of police,
we can still determine the possible committing time of crime
and the key guys according to the changes of communication
clustering structure and modified centrality.

We simulate the criminals’ communication process and
visualize the known and predicted clustering results of the
networks. By experiments, the changing trends of some
structure and criminal members deserve our attention.

6.1. Merging of Two or More Subnetworks. First of all, we
define that if the subnetwork of a network 𝑁(𝑖Δ𝑡) retains
more than 50% nodes of arbitrary subnetwork of the previous
network 𝑁((𝑖 − 1)Δ𝑡), then we say that the two subnetworks
represent the same subgangs.

As shown in Figure 1, several subnetworks merge into
one bigger subnetwork, which contains most nodes of these
original subnetworks; we call this integration process. Accord-
ing to simulation, once this process happens, usually a new
criminal plan will be implemented in the short term, so the
best arresting time will be right before the structure of the
new subnetwork stabilizes when all themembers are involved
and ready.

In this way, we can prevent the crimes from happening, as
well, more members involved can be arrested, and more raw
evidence can be obtained.

Inversely, when one big subnetwork break up into several
smaller subnetworks, we call this division process. It usually
means that one crime has just been implemented and mem-
bers begin evacuating and hiding themselves. Considering
this circumstance, we must catch them immediately after we
find this process.The later we operate, the fewer criminals we
can arrest and the less evidence we can get.

6.2. Generation of New Subnetworks. As shown in Figure 2,
sometimes one derivation of one subnetwork does not come
alongwith the disappearances of original subnetworks. It only
occupies a small part of nodes of other subnetworks. We
call it the derivation process. For the same reason, once this
process happens, a new group of criminals begin to gather
and plan a new crime, so we must prevent them before the
new subnetwork is finally formed.

It also has its reverse process that is called extinction
process: one subnetworks disappears with no emergence of
new subnetworks. We cope it with the same way of division
process.

Remark 3. Structure, differing from the microscopic behav-
ior like several times of communications between limited
individuals, is a macroscopic behavior of the whole criminal
networks. So structure’s change exposes more deeply the
essence of the organized criminal behavior, which is beyond
the control of criminals themselves. As once the structure
is disguised, the following criminal networks’ behavior will
be distorted inevitably. It is easily to understand. Every
member of the criminal gangs, even the leaders, only contacts
limitedmembers and information, which, in oneway, ensures
security by a certain degree of isolation; in another, is caused
by distrust between different subgangs. So no one in the gangs
can know and determine the whole criminal network. But
we can detect and research the whole network by monitoring
their communications.

Remark 4. Here, we just list and analyze four simplest possi-
ble processes. Other more complex processes like derivation
of two or three bigger subnetworks and division into three-
tier subnetworks or four-tier subnetworks, although can be
realized in theorem, are too complicated for actual criminal
activities. So, we omit the further discussion. Certainly, other
possible processes are worthy to find in the future study.

6.3. Determination of Core Members. In the process of
capturing, usually it is hard to catch all the members, as
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(a) (b)

(c) (d)

(e)

Figure 1: It is a visualization of change of networks’ structure in a predicted sequence from 𝑖Δ𝑡 to (𝑖 + 4)Δ𝑡, which shows a simple integration
process. Different partitions are distinguished by different colors of nodes.

each capturing will invite others’ alertness. Therefore, it is
an urgent work to find the core members and catch them
firstly. Here, we make use of the expected sequences of
modified centrality’s of every node who is involved in the
newly emerging subnetwork during the integration process
or derivation process. Through investigating their changing
trend, we are hopefully to find those key guys.

(a) If some nodes whose degree centrality shows an
increasing trend and reaches the peak among others’
in the expected sequences, then according to the
above conclusion, they are more possible to be the

leaders of this subnetworks. We should catch them
firstly.

(b) If some nodes whose betweenness centrality shows
an increasing trend and reaches the peak among
others’ in the expected sequences, then these guys
are likely to be the gatekeepers, who make sure the
smooth of communication. Catching them will invite
others’ alertness immediately. So, we should watch
them closely and arrest them lastly.

(c) As to other members, we use the method of TOPSIS
[19] to determine their importance.
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(a) (b)

(c) (d)

(e)

Figure 2: It is a visualization of change of networks’ structure in a predicted sequence from 𝑖Δ𝑡 to (𝑖 + 4)Δ𝑡, which shows a simple derivation
process. Different partitions are distinguished by different colors of nodes.

Beforehand, we define some new notations.

𝐴𝑥: the vector contains the three centrality measures.

𝐴
𝐶: the ideal value of 𝐴𝑥 represents the one that is

sure to be conspirator.

𝐴
𝑁: the ideal value of𝐴𝑥 represents the one is sure to

be nonconspirator.

𝐷𝐶(𝑥): the euclid distance defined represents the
relevancy between a suspicious person and the ideal
conspiratorial value 𝐴

𝐶.

𝐷𝑁(𝑥): the Euclid distance defined represents the
relevancy between a suspicious person and the ideal
nonconspiratorial value 𝐴

𝑁.

According to the above analysis, we define a vector of
trituple which contains threemeasures of the form as follows:

𝐴𝑥 = (
𝐶


𝑑
(𝑥)

max𝑥𝐶𝑑 (𝑥)
,

𝐶


𝑏
(𝑥)

max𝑥𝐶𝑏 (𝑥)
,

𝐶


𝑐
(𝑥)

max𝑥𝐶𝑐 (𝑥)
) . (12)

For the convenience of description, 𝐴𝑥 is called measure
vector. It can also be represented in another form as below:

𝐴𝑥 = (𝐴𝑥1, 𝐴𝑥2, 𝐴𝑥3) , (13)

where 𝐴𝑥𝑖 (𝑖 = 1, 2, 3) stands for element 𝑖 in the vector 𝐴𝑥.
Three elements are all divided by the maximum value of the
values from data of all people we are concerned about. The
aim of the division is to make sure that 0 ≤ 𝐴𝑥𝑖 ≤ 1 (𝑖 =

1, 2, 3). According to the definition of three centralities, it
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Figure 3

is obvious that 𝐴𝑥 will get its optimal value when degree
(𝐴𝑥1) and betweenness (𝐴𝑥2) get to their largest value 1, while
closeness (𝐴𝑥3) gets to its smallest value 0.

Therefore, the ideal model of a personwho ismost crucial
among the criminal gangs will have his own measure vector
𝐴𝑥 as (1, 1, 0), while the ideal model of a person who plays
marginal role will have his ownmeasure vector𝐴𝑥 as (0, 0, 1).
These two ideal vectors will be defined as 𝐴𝐶 and 𝐴

𝑁:

𝐴
𝐶

= (𝐴
𝐶

1
, 𝐴
𝐶

2
, 𝐴
𝐶

3
) = (1, 1, 0) ,

𝐴
𝑁

= (𝐴
𝑁

1
, 𝐴
𝑁

2
, 𝐴
𝑁

3
) = (0, 0, 1) .

(14)

What we need to do is to calculate the 𝐴𝑥 value of every
node. The measure vector 𝐴𝑥 can be used to calculate the
“distance” among the nodes. Based on the idea of ranking
method from TOPSIS algorithm, we call the “distance” as
suspect distance, which is defined as below:

𝐷𝐶 (𝑥) = √(𝐴𝑥1 − 𝐴
𝐶

1
)
2
+ (𝐴𝑥2 − 𝐴

𝐶

2
)
2
+ (𝐴𝑥3 − 𝐴

𝐶

3
)
2
.

(15)

This distance is the key to determine the priority list of
who are more crucial. A further distance apparently indicates
a lower possibility of being a key member. On the other side,
if the𝐷𝑐(𝑥) of the arbitrary node 𝑥 is quite close to 0, then the
one represented by the node 𝑥must be quite possible a leader
or somebody.

Similarly, we can define the Euclid distance of 𝐴𝑥 from
the node𝑥 to the ideal𝐴𝑁 as𝐷𝑁(𝑥), which is called innocence
distance. The definition is

𝐷𝑁 (𝑥) = √(𝐴𝑥1 − 𝐴
𝑁

1
)
2
+ (𝐴𝑥2 − 𝐴

𝑁

2
)
2
+ (𝐴𝑥3 − 𝐴

𝑁

3
)
2
.

(16)

The suspicious members in the subnetworks will be
arranged into an initial priority list. The order of the list is
arranged according to the value of𝐷𝐶(𝑥). Node with smaller
𝐷𝐶(𝑥)will be ranked higher in the priority list since𝐷𝐶(𝑥) is
the distance from the node to an ideal “conspirator” node. It
is also worth mentioning that node with smaller𝐷𝐶(𝑥) value
is also with larger 𝐷𝑁(𝑥) value, and this demonstrates the
correction of our method. Finally, we can determine to catch
which one comes first according to this priority list.

7. An Illustrative Example

Here, we use the data from ICM 2012 problems [20]. First, we
use theARMAmodel offered by programpackage of software
R to forecast the crime networks in the future (see Figure 3).

The first three crime networks are drawn by the given
data; the forth one is the result of ARMAmodel. The indexes
of nodes from 1 to 82 represent 82 potential crimes, and the
edges between two nodes indicate the two people have been
that communicating.

Then, we use the method from clustering analysis and
software Pajek to give the result of partition of known crime
networks at Δ𝑡, 2 ∗ Δ𝑡, and 3 ∗ Δ𝑡.

As we have got the partition of known crime networks
and the prediction of future crime networks, now, we can
combine them with time series analysis and clustering analy-
sis to forecast the partition of crime networks at 4 ∗ Δ𝑡.

Similarly, we give the 3D picture of Figure 5.
Observing Figures 4 and 6, we can find that the partition

of green part has a growing trend with a decreasing accel-
eration. In Figure 6, the partition of green part has become
constant gradually.

According to the implication from Figures 4 and 6,
there is a high possibility that the criminals represented by
green nodes were planning a new crime and would come to
maturity at 4 ∗ Δ𝑡, which merits the high attention of the
police.

8. Conclusion

To choose different perspectives to analyze problems, it will
usually obtain some new feelings. In order to close the
essence of the criminal network, we abandon the common
SNA and frequency analysis or density analysis in DNA, and
instead, we observe the overall structure’s change of networks.
Although it is hard to analyze quantitatively, we can visualize
this process and observe it directly. In this way, we exemplify
our superiority to touch overall networks’ image, which is
hard for criminals to disguise.
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Figure 4: Left column is the exact result of partition of crime networks at Δ𝑡, 2 ∗ Δ𝑡, and 3 ∗ Δ𝑡; right column shows the visualization results
of partition in 3D space. The nodes with the same color mean that they belong to the same partition.
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Figure 5: The future partition of crime networks at 4 ∗ Δ𝑡.
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Figure 6: 3D picture of last table.
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