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A Cournot-Bertrand mixed duopoly game model with limited information about the market and opponent is considered, where
the market has linear demand and two firms have the same fixed marginal cost. The principles of decision-making are bounded
rational. One firm chooses output and the other chooses price as decision variable, with the assumption that there is a certain degree
of differentiation between the products offered by firms to avoid the whole market being occupied by the one that applies a lower
price. The existence of Nash equilibrium point and its local stability of the game are investigated. The complex dynamics, such as
bifurcation scenarios and route to chaos, are displayed using parameter basin plots by numerical experiment. The influences of the
parameters on the system performance are discussed from the perspective of economics.

1. Introduction

An oligopoly is a market structure between monopoly and
perfect competition, in which the market is completely con-
trolled by only a few number of firms producing the same
or homogeneous productions [1, 2]. If there are two firms, it
is called a duopoly while if there are three competitors, it is
known as a triopoly.

Cournot oligopoly [3] and Bertrand oligopoly [4] are the
two most notable models in oligopoly theory. In the Cournot
model, firms control their production level, which influences
the market price, while in the Bertrand model, firms choose
the price of a unit of product to affect the market demand.

A large amount of the literature deals with Cournot or
Bertrand competition in oligopolistic market [1, 2, 5–7], but
there are only a considerably lower number of works devoted
to Cournot-Bertrand competition, which are characterized
by the fact that the market can be subdivided into two groups
of firms, the first of which optimally adjusts prices and the
other one optimally adjusts their output to ensure maximum
profit [8].

Cournot-Bertrand model exists in realistic economy. For
instance, in duopoly market, one firm competes in a dom-
inant position, and it chooses output as decision variable
while the other one is in disadvantage, and it chooses price
as decision variable in order to gain more market share. As
we have known so far, Bylka and Komar [9] and Singh and
Vives [10] are the first authors to analyze duopolies, where one
firm competes on quantities and the other on prices. Häckner
[11], Zanchettin [12], and Arya et al. [13] pointed that in
some cases Cournot-Bertrand competition may be optimal.
Recently, C. H. Tremblay and V. J. Tremblay [14] analyzed the
role of product differentiation for the static properties of the
Nash equilibrium of a Cournot-Bertrand duopoly. Naimzada
and Tramontana [8] considered a Cournot-Bertrand duopoly
model, which is characterized by linear difference equations.
They also analyzed the role of best response dynamics and
of the adaptive adjustment mechanism for the stability of the
equilibrium.

In this paper, we set up a Cournot-Bertrand duopoly
model, assuming that two firms choose output and price as
decision variable, respectively, and they all have bounded
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rational expectations.The gaming system can be described by
nonlinear difference equations, which modifies and extends
the results of Naimzada and Tramontana [8], which con-
sidered the firms with static expectations and described by
linear difference equations. The research will lead to a good
guidance for the enterprise decision-makers to do the best
decision-making.

The paper is organized as follows the Cournot-Bertrand
game model with bounded rational expectations is described
in Section 2. In Section 3, the existence and stability of equi-
librium points are studied. Dynamical behaviors under some
change of control parameters of the game are investigated by
numerical simulations in Section 4. Finally, a conclusion is
drawn in Section 5.

2. The Cournot-Bertrand Game Model with
Bounded Rational Expectations

Weconsider amarket served by two firms and firm 𝑖 produces
good 𝑥

𝑖
, 𝑖 = 1, 2. There is a certain degree of differentiation

between the products 𝑥
1
and 𝑥

2
. Firm 1 competes in output

𝑞
1
as in a Cournot duopoly, while firm 2 fixes its price 𝑝

2
like

in the Bertrand case. Suppose that firms make their strategic
choices simultaneously and each firm knows the production
and the price of each other firm.

The inverse demand functions of products of variety 1
and 2 come from the maximization by the representative
consumer of the following utility function:

𝑈(𝑞
1
, 𝑞
2
) = 𝑞
1
+ 𝑞
2
−
1

2
(𝑞
2

1
+ 2𝑑𝑞

1
𝑞
2
+ 𝑞
2

2
) (1)

subject to the budget constraint 𝑝
1
𝑞
1
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2
𝑞
2
+𝑦 = 𝑀 and are

given by the following equations (the detailed proof see [15]):

𝑝
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𝑝
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(2)

where the parameter 𝑑 ∈ (0, 1) denotes the index of product
differentiation or product substitution.The degree of product
differentiation will increase as 𝑑 → 0. Products 𝑥

1
and 𝑥

2

are homogeneous when 𝑑 = 1, and each firm is a monopolist
when𝑑 = 0, while a negative𝑑 ∈ (−1, 0) implies that products
are complements. Assume that the two firms have the same
marginal cost 𝑐 > 0, and the cost function has the linear form:

𝐶
𝑖
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𝑖 (𝑡) , 𝑖 = 1, 2. (3)

We can write the demand system in the two strategic vari-
ables, 𝑞

1
(𝑡) and 𝑝

2
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The profit functions of firm 1 and 2 are in the form:
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We assume that the two firms do not have a complete
knowledge of the market and the other player, and they
build decisions on the basis of the expected marginal profit.
If the marginal profit is positive (negative), they increases
(decreases) their production or price in the next period; that
is, they are bounded rational players [5, 15, 16]. Then the
Cournot-Bertrandmixed dynamical system can be described
by the nonlinear difference equations:
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where 𝛼 > 0 and 𝛽 > 0 represent the two players’ adjustment
speed in each relation, respectively.

3. Equilibrium Points and Local Stability

The system (6) has four equilibrium points:
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where 𝑞∗
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are the boundary

equilibrium points, and 𝐸
∗ is the unique Nash equilibrium

point provided that 𝑞∗
1
> 0 and 𝑝∗

2
> 0, that requires 𝑐 < 1.

Otherwise, there will be one firm out of the market.
In order to investigate the local stability of the equilibrium

points, let 𝐽 be the Jacobian matrix of system (6) correspond-
ing to the state variables (𝑞

1
, 𝑝
2
), then
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where 𝐽
11
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22
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2
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). The stability of equilibrium points

will be determined by the nature of the equilibrium eigen-
values of the Jacobian matrix evaluated at the corresponding
equilibrium points.

Proposition 1. The boundary equilibria 𝐸
0
, 𝐸
1
, and 𝐸

2
of sys-

tem (6) are unstable equilibrium points when 𝑐 < 1.
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Proof. For equilibrium 𝐸
0
, the Jacobian matrix of system (6)
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When 𝑐 < 1, evidently 𝜆
1
> 1. So, the equilibrium point 𝐸

1
is

unstable. Similarly we can prove that 𝐸
2
is also unstable.

From an economic point of viewwe aremore interested to
the study of the local stability properties of the Nash equilib-
rium point 𝐸∗, whose properties have been deeply analyzed
in [14].

The Jacobian matrix evaluated at the Nash equilibrium
point 𝐸∗ is as follows
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The trace and determinant of 𝐽(𝐸∗) are denoted as Tr(𝐽(𝐸∗))
and Det(𝐽(𝐸∗)), respectively. With respect to the point 𝐸

0
,

𝐸
1
, and 𝐸

2
, now it is more difficult to explicitly calculate the

eigenvalues, but it is still possible to evaluate the stability of
the Nash equilibrium point by using the following stability
conditions, known as Jury’s conditions [17]:

(i) 𝐴 := 1 + Tr (𝐽 (𝐸∗)) + Det (𝐽 (𝐸∗)) > 0,

(ii) 𝐵 := 1 − Tr (𝐽 (𝐸∗)) + Det (𝐽 (𝐸∗)) > 0,

(iii) 𝐶 := 1 − Det (𝐽 (𝐸∗)) > 0.

(14)

The above inequalities define a region in which the Nash
equilibrium point 𝐸∗ is local stable. Also, we can learn more
about the stability region via numerical simulations. In order
to study the complex dynamics of system (6), it is convenient
to take the parameters values as follows:

𝑐 = 0.1, 𝑑 = 0.2. (15)

Figure 1 shows in the (𝛼, 𝛽) parameters plane the stability and
instability regions. From the figure, we can find that too high
speed of adjustment will make the Nash equilibrium point𝐸∗
lose stability. We also find that the adjustment speed of price
is more sensitive than the speed of output, and when about
𝛼 > 2.5, the Nash equilibrium point will lose stability, while
about 𝛽 > 2.0 the Nash equilibrium point will do that.

4. The Effects of Parameters on
System Stability

The parameter basin plots (also called 2D bifurcation dia-
grams) are a more powerful tool in the numerical analysis of
nonlinear dynamics than the 1D bifurcation diagrams [18],
which assigns different colors in a 2D parameter space to
stable cycles of different periods. In this section, the parame-
ter basin plots will be used to analyze the effects of players’
adjustment speed and index of product differentiation on
system stability. We set 𝑐 = 0.1 and the initial values are
chosen as (𝑞

1
(0), 𝑝
2
(0)) = (0.2, 0.1).

4.1. The Effects of Players’ Adjustment Speed on System Stabil-
ity. Figure 2 presents the parameter basin with respect to the
parameters (𝛼, 𝛽) when 𝑑 = 0.1 and assigns different colors
to stable steady states (dark blue); stable cycles of periods 2
(light blue), 4 (purple), and 8 (green) (the first four cycles in
a period-doubling bifurcation route to chaos) and periods 3
(red), 5 (orange), and 7 (pink) (low order stable cycles of odd
period); chaos (yellow); divergence (white) (whichmeans one
of the players will be out of the market in economics).

We can find that when the parameters (𝛼, 𝛽) pass through
the borders as the black arrows 𝐴 and 𝐶, system (6) loses
its stability through flip bifurcation (called period-doubling
bifurcation in continuous system), as shown in Figures 3 and
4. But when the parameters cross the borders as the arrow
𝐵, the system’s dynamic behavior is more complicated, and
it first enters into chaos through Neimark-Sacker bifurcation
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Figure 1: The stability and instability region.
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Figure 2: The parameter basin for 𝑑 = 0.1.

(called Hopf bifurcation in continuous system) [19–21], sec-
ond enters period 2, and then evolves into chaos through flip
bifurcation separately, as shown in Figure 5. We also notice
that in the yellow region (chaos) there is red line and orange
points (odd cycle); that is, there is intermittent odd cycle in
the chaos as shown in Figure 3 to Figure 5. It is well known
that, for 1D continuousmaps, a cycle with odd period implies
chaotic dynamical behavior (the so-called topological chaos)
according to the famous “period 3 implies chaos” result of Li
and Yorke [22].

From the perspective of economics, the firms’ adjustment
speed 𝛼 and 𝛽 should be in a certain range; otherwise,
the system will come forth the cycle fluctuation, and then
into chaos, which means irregular, sensitive to initial values,
unpredictable and bad for the economy.We also find that the
adjustable range of 𝛼 is larger than that of 𝛽, whichmeans the

0

0.1

0.2

0.3

0.4

0.5

1.5 2 2.5 3 3.5
𝛼

𝑞1

Figure 3: Bifurcation diagram for 𝛽 = 1 and 𝛼 varies from 1.5 to 3.5.
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Figure 4: Bifurcation diagram for 𝛼 = 1 and 𝛽 varies from 1.5 to 2.8.
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Figure 5: Bifurcation diagram for 𝛼 = 2.3 and 𝛽 varies from 1.8 to
2.8.
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Figure 7: The parameter basin for 𝑑 = 0.5.

adjustment of price is more sensitive than that of output, and
price war is easier to get market into chaos.

4.2. The Effects of the Index of Product Differentiation on
System Stability. In order to find the influences of the index
of product differentiation 𝑑 on the system stability, Figures 6,
7, 8, and 9 give the parameter basins for 𝑑 = 0.3, 0.5, 0.7, and
0.9 separately.

From the comparison we can see the dark blue area
becomes bigger and the yellow area becomes smaller with the
increasing of the index of product differentiation𝑑; that is, the
degree of product differentiation is smaller, and the adjustable
range of parameters 𝛼 and𝛽 tomake the system remain stable
will become bigger, which means more competition between
the two firms’ products.
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Figure 8: The parameter basin for 𝑑 = 0.7.
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Figure 9: The parameter basin for 𝑑 = 0.9.

5. Conclusions

In this paper, we propose a Cournot-Bertrand mixed game
model, supposing that the firms do not have the complete
information of themarket and opponent, and theymake their
decisions according to their ownmarginal profit.Thedemand
and cost function is assumed to be linear and the model
can be described by difference equations. The boundary
equilibrium is always unstable and the existence and local
stability of the Nash equilibrium are analyzed. Moreover, we
analyze the effects of the parameters (adjustment speed and
the index of product differentiation) on the system stability,
and different bifurcations and routes to chaos are analyzed
using parameter basin plots. The Cournot-Bertrand game
models under different marketing environment need to be
considered, and it will be an interesting topic for future study.
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