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We consider a parallel machine scheduling problem with random processing/setup times and adjustable production rates. The
objective functions to be minimized consist of two parts; the first part is related with the due date performance (i.e., the tardiness
of the jobs), while the second part is related with the setting of machine speeds. Therefore, the decision variables include both
the production schedule (sequences of jobs) and the production rate of each machine. The optimization process, however, is
significantly complicated by the stochastic factors in the manufacturing system. To address the difficulty, a simulation-based three-
stage optimization framework is presented in this paper for high-quality robust solutions to the integrated scheduling problem.The
first stage (crude optimization) is featured by the ordinal optimization theory, the second stage (finer optimization) is implemented
with a metaheuristic called differential evolution, and the third stage (fine-tuning) is characterized by a perturbation-based local
search. Finally, computational experiments are conducted to verify the effectiveness of the proposed approach. Sensitivity analysis
and practical implications are also discussed.

1. Introduction

The parallel machine scheduling problem has long been an
importantmodel for operations research because of its strong
relevance with various industries, such as semiconductor
manufacturing [1], automobile gear manufacturing [2], and
train dispatching [3]. In the theoretical research, makespan
(i.e., the completion time of the last job) is themost frequently
adopted objective function [4]. However, this criterion alone
does not provide a comprehensive characterization for the
manufacturing costs in real-world situations. In this paper, we
will focus on the minimization of operational cost and tardi-
ness cost in a stochastic parallel machine production system.
The former is mainly the running cost of the machines for
daily operations, and the latter is brought about by the jobs
that are finished later than the previously set due dates.

The operational cost, which is further categorized into
fixed cost and variable cost, can be minimized by proper
settings of the production rate (i.e., operating speed) of each

machine. The production rate would produce opposite influ-
ences on the variable cost and the fixed cost. Setting the
machine speed at a high level is beneficial for reducing
the variable cost because the production time is shortened.
However, achieving the high speed incurs considerable fixed
costs at the same time (e.g., additional machine tools must be
purchased). Therefore, an optimization approach is needed
to determine the optimal values of the production rates for
minimizing the operational cost.

The tardiness cost, which is usually represented by a
penalty payment to the customer or a worsened service
reputation, could be minimized by scheduling the jobs in
a wise manner. Efficient schedules directly help to increase
the on-time delivery ratio and reduce the waiting/queueing
time in the production system [5]. In recent years, tardiness
minimization has become a more important objective than
makespan for many firms adopting the make-to-order strat-
egy. Under the parallel machine environment, the objective
functions that reflect tardiness cost include total tardiness
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[6], total weighted tardiness [7], maximum lateness [8], and
number of tardy jobs [9].

In the literature, the optimization of operational settings
(including production rates) is usually performed separately
of production scheduling. Actually, there exist strong interac-
tions between the two decisions. For example, if the operating
speed of a machine is set notably high, it is beneficial to
allocate more jobs to the machine in order to fully utilize its
processing capacity. On the other hand, if a large number of
jobs have been assigned to a certain machine, it is necessary
to maintain a high production rate for this machine in
order to reduce the possibility of severe tardiness. Therefore,
production scheduling and the selection of machine speeds
should better be considered as an integrated optimization
problem. A solution to this problem should include both
the optimizedmachine speeds and the optimized production
schedule thatworkswell under this setting ofmachine speeds.

In real-world manufacturing systems, uncertainties are
inevitable (due to, e.g., absentworkers andmaterial shortage).
But the effect of random events has not been sufficiently
considered inmost existing research. For example, a common
assumption in scheduling is that the processing time of
each job is exactly known in advance, which, of course,
is inconsistent with reality. If the random factors such as
processing time variations are considered, we should rely on
discrete-event simulation [10] to evaluate the performance
of the manufacturing system. So, in this paper, we adopt a
simulation-based optimization framework to find satisfac-
tory settings of the production rates together with a satis-
factory production schedule. The objective is to minimize
the total manufacturing cost: sum of operational cost and
tardiness cost.

The rest of the paper is organized as follows. Section 2
makes an introductory review on some topics closely related
with our research. Section 3 depicts the production environ-
ment and formulates the integrated optimization problem.
Section 4 describes the proposed approach for solving the
stochastic optimization problem, which includes three stages
with gradually increasing accuracy. Section 5 presents the
main computational results and comparisons. Finally, Sec-
tion 6 concludes the paper.

2. Related Research Background

2.1. Uniform Parallel Machine Scheduling. In the parallel
machine scheduling problem, we consider 𝑛 jobs that are
waiting for processing. Each job consists of only a single
operation which can be processed on any one of the
𝑚 machines 𝑀

1
, . . . ,𝑀

𝑚
. As a conventional constraint in

scheduling models, each machine can process at most one
job at a time, and each job may be processed by at most one
machine at a time.

There are three types of parallel machines [11].

(i) Identical Parallel Machines (P). The processing time
𝑝
𝑘

𝑗
of job 𝑗 onmachine 𝑘 is identical for eachmachine;

that is, 𝑝𝑘
𝑗
= 𝑝
𝑗
.

(ii) Uniform Parallel Machines (Q). The processing time
𝑝
𝑘

𝑗
of job 𝑗 on machine 𝑘 is 𝑝𝑘

𝑗
= 𝑝
𝑗
/𝑞
𝑘
, where 𝑞

𝑘
is

the operating speed of machine 𝑘.
(iii) Unrelated Parallel Machines (R). The processing time

𝑝
𝑘

𝑗
of job 𝑗 on machine 𝑘 is 𝑝𝑘

𝑗
= 𝑝
𝑗
/𝑞
𝑘,𝑗
, where 𝑞

𝑘,𝑗
is

the job-dependent speed of machine 𝑘.
If preemption of operations is not allowed, scheduling

uniform parallel machines with the makespan (i.e., maxi-
mum completion time) criterion (described as 𝑄| |𝐶max) is a
stronglyNP-hard problem. According to the reduction rela-
tions between objective functions [11], scheduling uniform
parallel machines under due date-based criteria (e.g., total
tardiness) is also stronglyNP-hard. Therefore, metaheuris-
tics have been widely used for solving these problems.

2.2. Simulation Optimization and Ordinal Optimization. The
simulation optimization problem is generally defined as fol-
lows: find a solution (x) which minimizes the given objective
function 𝐽(x), that is,

min
x∈X

𝐽 (x) , (1)

whereX represents the search space for the decision variable
x. The key assumption in simulation optimization is that 𝐽(x)
is not available as an analytical expression; so, simulation is
the only way to obtain an evaluation of x. Moreover, since
applicable simulation algorithms must have a satisfactory
time performance (which means that the simulation should
be as fast as possible), some details must have been omitted
when designing the simulation model, and thus simulation
can only provide a noisy estimation of 𝐽(x), which is usually
denoted as �̂�(x).

However, two difficulties naturally exist in the implemen-
tation of simulation optimization: (1) the search space (X)
is often huge, containing zillions of choices for the decision
variables; (2) simulation is subject to random errors, which
means, a large number of simulation replications have to
be adopted in order to guarantee a reliable evaluation for
x. These issues suggest that simulation optimization can be
extremely costly in terms of computational burden.

For existing methods and applications of simulation
optimization, interested readers may refer to [12–20]. Here,
wewill focus on the ordinal optimization (OO)methodology,
which was first proposed by Ho et al. at Harvard [21].

OO attempts to settle the previous difficulties by empha-
sizing two important ideas: (1) order is much more robust
against noise than value; (2) aiming at the single best solution
is computationally expensive, and thus it is wiser to focus on
the “good enough.” The major contribution of OO is that it
quantifies these ideas and thus provides accurate guidance for
our optimization practice.

2.3. The Differential Evolution Algorithm. The differential
evolution (DE) algorithm, which was first proposed in the
mid-1990s [22], is a relatively new evolutionary optimizer.
Characterized by a novel mutation operator, the algorithm
has been found to be a powerful tool for continuous func-
tion optimization. Due to its easy implementation, quick
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convergence, and robustness, the DE algorithm is becoming
increasingly popular in recent years.

Because of its continuous feature, the traditional DE
algorithm cannot be directly applied to scheduling problems
with inherent discrete nature. Indeed, in canonical DE,
each solution is represented by a vector of floating-point
numbers. But for scheduling problems, each solution is a
permutation of integers. To address this issue, two kinds
of approaches can be found in the literature. In the first
category, a transformation scheme is established to convert
permutations into real numbers and vice versa [23]. In the
second category, the mutation and crossover operators in DE
are modified to discrete versions which suit the permutation
representation [24]. We would adopt the former strategy,
where we only need to modify the encoding and decoding
procedures without changing the implementation of DE
itself.The clear advantage is that the searchmechanism of DE
is well preserved.

Despite the success on deterministic flow shop scheduling
problems, the application of DE to simulation-based opti-
mization has rarely been reported. To our knowledge, this is
the first attempt in which DE is applied to an integrated oper-
ational optimization and production scheduling problem.

3. Problem Definition

3.1. System Configuration. In the production system, there
are 𝑛 jobs waiting to be processed by 𝑚 uniform parallel
machines. The basic processing time of job 𝑖 is denoted by
𝑝
𝑖
(𝑖 = 1, . . . , 𝑛), and the basic setup time arising when job

𝑗 is processed immediately after job 𝑖 is denoted by 𝑠
𝑖𝑗
(we

assume that 𝑠
𝑖𝑗
> 0 if 𝑗 ̸= 𝑖, and 𝑠

𝑖𝑗
= 0 if 𝑗 = 𝑖). To optimize the

manufacturing performance, two decisions have to be made.

(i) Production Rate Optimization. For each machine 𝑘,
the speed value (denoted by 𝛼

𝑘
) has to be determined.

In other words, {𝛼
𝑘

: 𝑘 = 1, . . . , 𝑚} belong to the
decision variables in the optimization problem. The
relationship between these variables and the manu-
facturing cost will be introduced in the following.

(ii) Production Scheduling. The job assignment policy
(i.e., which jobs are to be processed by each of the
machines) should be determined. In addition, the
processing order of the jobs assigned to eachmachine
should also be specified.

The production rate is related with the controllable
processing times and the controllable setup times. Indeed, if
the speed of machine 𝑘 is set as 𝛼

𝑘
, then the actual processing

time of job 𝑖 onmachine 𝑘 (denoted as𝑝𝑘
𝑖
) has amean value of

𝑝
𝑖
/𝛼
𝑘
(i.e., E(𝑝𝑘

𝑖
) = 𝑝
𝑖
/𝛼
𝑘
), and the actual setup time between

two consecutive jobs 𝑖 and 𝑗 on machine 𝑘 (denoted as 𝑠
𝑘

𝑖𝑗
)

has a mean of 𝑠
𝑖𝑗
/𝛼
𝑘
(i.e., E(𝑠𝑘

𝑖𝑗
) = 𝑠
𝑖𝑗
/𝛼
𝑘
). In most cases, the

production process involves human participation (e.g., gath-
ering materials and adjusting CNC machine status); so, the
estimate of processing/setup lengths may not be completely
precise. For this reason, we assume that the processing times

and setup times are random variables following a certain
distribution.

3.2. Cost Evaluation. In order to evaluate the cost correspon-
ding to a given solution (i.e., x = {𝛼

𝑘
, JPO
𝑘
: 𝑘 = 1, . . . , 𝑚},

where JPO
𝑘
denotes the processing order of the jobs assigned

to machine 𝑘), simulation is used to obtain the necessary
production information (e.g., the starting time and comple-
tion time of each job).Then, the realized total manufacturing
cost can be calculated by adding the operational cost and the
tardiness cost.

The tardiness cost is simply defined as

TC =

𝑛

∑

𝑖=1

𝑤
𝑖
(𝐶
𝑖
− 𝑑
𝑖
)
+

, (2)

where𝑤
𝑖
is the unit tardiness cost for job 𝑖 (which reflects the

relative importance of the job), and 𝐶
𝑖
and 𝑑

𝑖
, respectively,

denote the completion time and the due date of job 𝑖. 𝑇
𝑖
=

(𝐶
𝑖
− 𝑑
𝑖
)
+
= max{𝐶

𝑖
− 𝑑
𝑖
, 0} defines the tardiness of job 𝑖.

Now, we focus on the operational cost, which is further
divided into fixed cost and variable cost, as done in conven-
tional financial research.

Wewill first discuss the fixed cost related with the settings
of the production rates {𝛼

𝑘
}.Thefixed cost of setting the speed

at 𝛼
𝑘
for machine 𝑘 is defined as

FOC
𝑘
(𝛼
𝑘
) = 𝑎
𝑘
⋅ 𝛼
2

𝑘
, (3)

where 𝑎
𝑘
is a constant coefficient related with machine 𝑘.

The square on 𝛼
𝑘
suggests that this type of fixed cost grows

increasingly fast with𝛼
𝑘
. In practice, when themachine speed

is set notably higher above its normal mode, the energy
consumption rises rapidly, and meanwhile, the expenses on
status monitoring and preventative maintenance also add to
the running cost. So, the previous equation form is defined to
reflect such an actual situation.

Based on the previous description, the fixed operational
cost can be evaluated as

FOC =

𝑚

∑

𝑘=1

FOC
𝑘
(𝛼
𝑘
) . (4)

Once we have obtained the complete production infor-
mation via simulation, we can calculate the variable opera-
tional cost, which is related with the operating time length of
each machine. In particular, the variable operational cost can
be categorized into two types according to the workingmode:
production cost (VOC

𝑝
) and setup cost (VOC

𝑠
). These costs

are simply defined as follows:

VOC
𝑝
=

𝑚

∑

𝑘=1

𝐾
𝑝
⋅ TPT

𝑘
,

VOC
𝑠
=

𝑚

∑

𝑘=1

𝐾
𝑠
⋅ TST
𝑘
,

(5)

where TPT
𝑘
and TST

𝑘
, respectively, represent the total

production time and total setup time of machine 𝑘 based
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on the actual performances; 𝐾
𝑝
and 𝐾

𝑠
are cost coefficients

(positively correlated with 𝛼
𝑘
) known in advance. Thus, the

variable operational cost is given by VOC = VOC
𝑝
+ VOC

𝑠
.

Finally, the total manufacturing cost can be defined as

TMC = (FOC + VOC) + TC, (6)

which is exactly the objective function to beminimized in our
model.

It should be noted that, due to the systematic randomness,
different simulation runs will yield distinct realizations of
TMC. As a convention in the practice of simulation opti-
mization, we take the average value of TMC obtained from a
large number of simulation replications as an estimate for the
expectation of TMC. Specifically, if RTMC

𝑢
(x) denotes the

realizedmanufacturing cost in the𝑢th simulation for solution
x, the objective function can be stated as

min E (TMC (x)) ≈ 1

𝑈

𝑈

∑

𝑢=1

RTMC
𝑢
(x) , (7)

where𝑈 is an appropriate number of simulation replications.

4. The Three-Stage Optimization Algorithm

Since the optimization of production rates and production
scheduling aremutually interrelated, we develop a three-stage
solution framework as follows.

(1) The first stage focuses on the production rates. The
aim is to find a set of “good enough” values for the
machine speeds. At this stage, it is unnecessary to
overemphasize the accuracy of optimization; so, a fast
and crude optimization algorithm will do the job.

(2) The second stage focuses on the production schedule.
The aim is to find a schedule that works fine (achieves
a low total cost) under the production rates set in
the previous stage. Since the objective function is
sensitive to job assignment and job sequencing, a finer
optimization algorithm is required for this stage.

(3) The third stage focuses on the production rates again.
Since the optimal machine speeds are also dependent
on the production schedule, the aim of this stage is to
fine-tune the machine speeds so as to achieve an ideal
coordination between the two sets of decisions.

Based on the previous alternations, the entire optimiza-
tion algorithm is expected to find high-quality solutions to
the studied stochastic optimization problem. The details of
the algorithm are given in the following subsections.

4.1. Stage 1: Coarse-Granular Optimization of 𝛼
𝑘
. In this stage,

we try to find a set of satisfactory values for {𝛼
𝑘
: 𝑘 = 1, . . . , 𝑚}

using the ordinal optimization (OO) methodology.
Before going into the detailed algorithm description, we

show a simple property of the optimal setting of 𝛼
𝑘
.

Theorem1. For any twomachines 𝑘
1
and 𝑘
2
, if the correspond-

ing fixed cost coefficients satisfy 𝑎
𝑘
1

> 𝑎
𝑘
2

, then in the optimal
solution we must have 𝛼

𝑘
1

≤ 𝛼
𝑘
2

.

Proof. The proof is by contradiction. Suppose that 𝑎
𝑘
1

>

𝑎
𝑘
2

and a certain solution has indicated 𝛼
𝑘
1

> 𝛼
𝑘
2

; then,
this solution can be improved by exchanging the production
rates together with the processed job sequences of the two
machines. After such an exchange is performed, the variable
cost and the tardiness cost will remain the same because the
production schedule is actually not changed. However, the
fixed cost will be reduced since 𝑎

𝑘
1

𝛼
2

𝑘
1

+ 𝑎
𝑘
2

𝛼
2

𝑘
2

> 𝑎
𝑘
1

𝛼
2

𝑘
2

+

𝑎
𝑘
2

𝛼
2

𝑘
1

.

4.1.1. Basics of Ordinal Optimization. We list the main pro-
cedure of OO as follows. Meanwhile, we would suggest
interested readers to turn to [25] for more theories and
proofs. Suppose that we want to find 𝑘 solutions that belong
to the top-𝑔 (normally 𝑘 < 𝑔). Then, OO consists of the
following steps.

Step 1. Uniformly and randomly select 𝑁 solutions from X
(this set of initial solutions is denoted by 𝐼).

Step 2. Use a crude and computationally fast model for
the studied problem to estimate the performance of the 𝑁

solutions in 𝐼.

Step 3. Pick the observed top 𝑠 solutions of 𝐼 (as estimated by
the crude model) to form the selected subset 𝑆.

Step 4. Evaluate all the 𝑠 solutions in 𝑆 using the exact
simulation model, and then output the top 𝑘 (1 ≤ 𝑘 < 𝑠)
solutions.

As an example, let 𝑔 = 50 and 𝑘 = 1. If we take𝑁 = 1000

in Step 1 and the crude model in Step 2 has a moderate noise
level, then OO theory ensures that the top solution in 𝑆 (with
𝑠 ≈ 30) is among the actual top 50 of the 𝑁 solutions with
probability no less than 0.95. In practice, 𝑠 is determined as a
function of 𝑔 and 𝑘; that is, 𝑠 = 𝑍(𝑔, 𝑘;𝑁, noise level), where
noise level reflects the degree of accuracy of the crude model.
Since 𝐽crude model = 𝐽exact simulation model+noise, the noise level
can be measured by the standard deviation of noise, that is,
√Var(noise). Intuitively, if the crude model is significantly
inaccurate, then 𝑠 should be set larger.

For our problem, the solution in this stage is represented
by 𝑚 real values {𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑚
}. To facilitate the implemen-

tation of OO, these values are all discretized evenly into 10
levels between [𝛼min, 𝛼max) (normally we have 𝛼min = 1,
while the speed limit 𝛼max is determined by specific machine
conditions). If we assume that 𝛼max = 2 in this paper, then
𝛼
𝑘
∈ {1.0, 1.1, 1.2, . . . , 1.9}. Such a discretization reflects the

coarse-granular nature of the optimization process in Stage 1.
In addition, the conclusion of Theorem 1 helps to exclude a
large number of nonoptimal solutions. So, the size of search
space is at most 10𝑚.

In the implementation of OO, the crude model (used in
Step 2) has to be designed specifically for a concrete problem.
Although generic crude models (like the artificial neural
network-based model presented in [26]) may be useful for
some problems, No Free Lunch Theorems [27] suggest that
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incorporation of problem-specific information is the only
way to promote the efficiency of optimization algorithms.
So, here, we will devise a specialized crude model which
can provide a quick and rough evaluation of the candidate
solutions for the discussed parallel-machine problem.

4.1.2. The Crude Model Used by OO. Exact simulation is
clearly very time consuming because a large number of
replications (samplings of the stochastic processing/setup
times) are needed to obtain a stable result. In order to apply
OO, we devise a crude (quick-and-dirty) model for objective
evaluation, which by definition is not so accurate as the
exact simulation model but requires considerably shorter
computational time.

The crude model presented here is deterministic rather
than stochastic, whichmeans that it needs to be run only once
to obtain an approximate objective value. The crude model
consists of 3 major steps, which will be detailed next.

Step 1. Schedule all the 𝑛 jobs on an imaginarymachine (with
speed 𝛼 = 1). At each iteration, select the job that requires
the shortest basic setup time to be the next job. This will lead
to a production sequence including alternations of the 𝑛 jobs
and (𝑛 − 1) setups. The length of the entire sequence (i.e.,
summation of all the basic processing times and the basic
setup times involved) is denoted as 𝐿.

Step 2. Split the production sequence into 𝑚 subsequences
such that the length of each subsequence is nearly equal to 𝐿×

(𝛼
𝑘
/∑
𝑚

𝑘=1
𝛼
𝑘
) (𝑘 = 1, . . . , 𝑚).The 𝑘th subsequence constitutes

the production schedule for machine 𝑘.

Step 3. Approximate the tardiness cost, fixed cost, and vari-
able cost. In this step, the total production time of machine 𝑘
is calculated as (1/𝛼

𝑘
) × ∑

𝑛
𝑘

𝑗=1
𝑝
[𝑗|𝑘]

, where 𝑛
𝑘
is the number

of jobs assigned to machine 𝑘 (i.e., the 𝑘th subsequence)
and 𝑝

[𝑗|𝑘]
is the basic processing time of the 𝑗th job in this

subsequence. The total setup time of machine 𝑘 is calculated
as (1/𝛼

𝑘
) × ∑

𝑛
𝑘
−1

𝑗=1
𝑠
[𝑗|𝑘][𝑗+1|𝑘]

, where 𝑠
[𝑗|𝑘][𝑗+1|𝑘]

is the basic
setup time between the 𝑗th job and the (𝑗 + 1)th job in the
subsequence related with machine 𝑘.

When splitting the original sequence (Step 2), the order
of each component (production period or setup period)
should be kept unchanged. Meanwhile, since each output
subsequence is actually thought of as the production schedule
for a particular machine, “setup” should not appear at the
end of any subsequence. In other words, some setups will be
discarded during the splitting step. However, this will hardly
influence the subsequent calculations because the total length
of discarded setups is normally trivial compared with the
complete length (𝐿).

The desired length of each subsequence is deduced as
follows. First, as this is a parallel machine manufacturing
system, we hope the actual completion time of each machine
is aligned (which is certainly the ideal situation) so that the
makespan is minimized (no time resource is wasted). Then,
if we use 𝑙

𝑘
to denote the length of the 𝑘th subsequence

1

2 3 45

45

0 7 8 13 15 21 24 31 33 35

Sp
lit

𝑀1

𝑀2

1

2 3

Figure 1: Splitting of the original job sequence in the cases 𝛼
1
= 1.0

and 𝛼
2
= 1.5.

(i.e., the summation of all job lengths and setup lengths in
this subsequence), the actual completion time of machine
𝑘 (denoted by 𝐶

𝑘
) is 𝑙
𝑘
/𝛼
𝑘
. The completion time alignment

condition requires, for all 𝑘 ̸= 𝑘
, 𝐶
𝑘

= 𝐶
𝑘
 ; that is, 𝑙

𝑘
/𝛼
𝑘

=

𝑙
𝑘
/𝛼
𝑘
 . Solving the equation yields 𝑙∗

𝑘
= 𝛼
𝑘
𝐿/∑
𝑚

𝑘=1
𝛼
𝑘
.

A concrete example of the splitting process is shown in
Figure 1, where the shaded areas represent setup periods. In
this example, we assume that there are two machines with
𝛼
1

= 1.0 and 𝛼
2

= 1.5. Thus, the splitting point should be
placed at 𝑙∗

1
= (1/(1+1.5))×35 = 14. By adopting the nearest

feasible splitting policy, the five jobs are allocated to the two
machines such that machine 1 should process jobs 2, 3 and
machine 2 should process jobs 1, 5, 4.

4.2. Stage 2: Optimization of the Production Schedule. In
this stage, we use a simulation-based differential evolution
algorithm for finding a satisfactory production schedule.The
production rates are fixed at the best values output by the first
stage.

4.2.1. Basics of Differential Evolution. Like other evolutionary
algorithms, DE is a population-based global optimizer. In
DE, each individual in the population is represented by a
𝐷-dimensional real vector x

𝑖
= (𝑥

𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝐷
), 𝑖 =

1, . . . , SN, where SN is the population size. In each iteration,
DE employs themutation and crossover operators to generate
new candidate solutions, and then it applies a one-to-one
selection policy to determine whether the offspring or the
parent can survive to the next generation. This process is
repeated until a preset termination criterion is met. The DE
algorithm can be described as follows.

Step 1 (Initialization). Randomly generate a population of SN
solutions, {x

1
, . . . , xSN}.

Step 2 (Mutation). For 𝑖 = 1, . . . , SN, generate a mutant
solution v

𝑖
as follows:

v
𝑖
= xbest + 𝐹 × (x

𝑟
1

− x
𝑟
2

) , (8)
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where xbest denotes the best solution in the current popula-
tion; 𝑟

1
and 𝑟
2
are randomly selected from {1, . . . , SN} such

that 𝑟
1

̸= 𝑟
2

̸= 𝑖; 𝐹 > 0 is a weighting factor.

Step 3 (Crossover). For 𝑖 = 1, . . . , SN, generate a trial solution
u
𝑖
as follows:

𝑢
𝑖,𝑗

= {

V
𝑖,𝑗
, if 𝜉j ≤ CRor 𝑗 = 𝑟

𝑗
,

𝑥
𝑖,𝑗
, otherwise, (𝑗 = 1, . . . , 𝐷) , (9)

where 𝑟
𝑗
is an index randomly selected from {1, . . . , 𝐷} to

guarantee that at least one dimension of the trial solution u
𝑖

differs from its parent x
𝑖
; 𝜉
𝑗
is a random number generated

from the uniform distribution U[0, 1]; CR ∈ [0, 1] is the
crossover parameter.

Step 4 (Selection). If u
𝑖
is better than x

𝑖
, let x
𝑖
= u
𝑖
.

Step 5. If the termination condition is not satisfied, go back
to Step 2.

According to the algorithm description, DE has three
important parameters, that is, SN, 𝐹, and CR. In order
to ensure a good performance of DE, the setting of these
parameters should be reasonably adjusted based on specific
optimization problems.

4.2.2. Encoding and Decoding. The encoding of a solution in
this stage is composed of 𝑛 real numbers; so, a solution can
be roughly expressed as x = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
].

The encoding scheme is based on the random key
representation and the smallest position value (SPV) rule. In
the decoding process, the 𝑛 real numbers 𝑥

1
, . . . , 𝑥

𝑛
(0 < 𝑥

𝑖
<

𝑚) will be transformed to a production schedule by the SPV
rule. In particular, the integer part of 𝑥

𝑖
indicates themachine

allocation for job 𝑖, while the decimal part of 𝑥
𝑖
determines

the relative position of the job in the production sequence.
The decoding process is exemplified in Table 1 with

a problem containing 9 jobs. The decoded information is
shown in the last row, where (𝑘, 𝜋) indicates that job 𝑖 should
be processed by machine 𝑘 at the 𝜋th position. In fact, the
index of the machine that should process job 𝑖 is simply
𝑘 = ⌈𝑥

𝑖
⌉. Hence, job 2 (𝑥

2
= 0.99) and job 4 (𝑥

4
= 0.72)

are assigned to machine 1 according to this solution. When
several jobs are assigned to the same machine, their relative
orders are resolved by sorting the decimal parts. For instance,
job 1 (𝑥

1
= 1.80), job 5 (𝑥

5
= 1.45), and job 9 (𝑥

9
= 1.90)

should all be processed by machine 2. Furthermore, because
𝑥
5

< 𝑥
1

< 𝑥
9
, the processing order on machine 2 should

be (5, 1, 9). Finally, the production schedule decoded from
this solution can be expressed as 𝜎 = (M

1
: 4, 2; M

2
:

5, 1, 9; M
3
: 3, 6, 7, 8).

4.2.3. Evaluation andComparison of Solutions. Recall that the
objective function is E(TMC), and in this stage, the FOC has
been fixed with the setting of production rates. So, we only
care about TC and VOC.

In order to evaluate a schedule 𝜎, we need to implement 𝜎
under different realizations of the random processing/setup

times. When 𝜎 has been evaluated for a sufficient number
of times (𝑈), its objective value can be approximated by (7),
which is consistent with the idea of Monte Carlo simulation.
However, this definitely increases the computational burden,
especially when used in an optimization framework where
frequent solution evaluations are needed. If we allow only
one realization of the random processing/setup times, then
a rational choice is to use the mean (expected) value of each
processing/setup time. We can show the following property;
that is, such an estimate is a lower bound of the true objective
value.

Theorem 2. Let 𝜎 denote a feasible schedule of the stochastic
parallel machine scheduling problem. The following inequality
must hold:

E (TMC
𝜎
) ≥ TMC

𝜎
, (10)

where TMC
𝜎
(random variable) is the total manufacturing cost

corresponding to the schedule, and TMC
𝜎
(constant value) is

the total manufacturing cost in the case where each random
processing/setup time takes the value of its expectation.

Proof. In the proof, we will use “𝑋” to denote the realized
value of the random variable𝑋when all the processing/setup
times are fixed at their mean values.

Under the given schedule 𝜎, we have E(TPT
𝑘
) =

E(∑𝑛𝑘
𝑗=1

𝑝
𝑘

[𝑗|𝑘]
) = ∑

𝑛
𝑘

𝑗=1
E(𝑝𝑘
[𝑗|𝑘]

) = TPT
𝑘
(where 𝑝

𝑘

[𝑗|𝑘]
denotes

the actual processing time of the 𝑗th job on machine 𝑘), and
E(TST

𝑘
) = E(∑𝑛𝑘−1

𝑗=1
𝑠
𝑘

[𝑗|𝑘][𝑗+1|𝑘]
) = ∑

𝑛
𝑘
−1

𝑗=1
E(𝑠𝑘
[𝑗|𝑘][𝑗+1|𝑘]

) = TST
𝑘

(where 𝑠
𝑘

[𝑗|𝑘][𝑗+1|𝑘]
denotes the actual setup time between the

𝑗th and the (𝑗 + 1)th job on machine 𝑘). Thus, it follows that
E(VOC

𝜎
) = VOC

𝜎
.

Under the given schedule 𝜎, we denote the starting time
of job 𝑖 by 𝑡

𝑖
and the completion time of job 𝑖 by𝐶

𝑖
. As defined

earlier, 𝑡
𝑖
(resp., 𝐶

𝑖
) is used to denote the starting time (resp.,

completion time) of job 𝑖 when each processing/setup time
is replaced by its expected value. First, we will prove that, for
any job 𝑖, E(𝑡

𝑖
) ≥ 𝑡
𝑖
.

For the first job on each machine, we have E(𝑡
𝑖
) = 𝑡

𝑖

(because 𝑡
𝑖

= 0 a.s.). Then, the proof procedure can be
continued for the subsequent jobs on each machine. Suppose
that we have already proved E(𝑡

𝑖
) ≥ 𝑡
𝑖
for each job before job 𝑗

on machine 𝑘, and without loss of generality, we assume that
job 𝑗 immediately follows job 𝑖 on machine 𝑘; then,

E (𝑡
𝑗
) = E (𝐶

𝑖
+ 𝑠
𝑘

𝑖𝑗
)

= E (𝑡
𝑖
+ 𝑝
𝑘

𝑖
+ 𝑠
𝑘

𝑖𝑗
)

≥ 𝑡
𝑖
+ E (𝑝

𝑘

𝑖
) + E (𝑠

𝑘

𝑖𝑗
)

= 𝑡
𝑗
.

(11)

Therefore, the reasoning applies to each job in the schedule.
Having proved E(𝑡

𝑖
) ≥ 𝑡

𝑖
, we can now move to TC in

the objective function. Recall that 𝑇
𝑖

= (𝐶
𝑖
− 𝑑
𝑖
)
+ (with

𝑥
+
= max{𝑥, 0}) denotes the tardiness of job 𝑖 and 𝑇

𝑖
denotes
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Table 1: Illustration of the decoding process in DE.

𝑖 1 2 3 4 5 6 7 8 9

𝑥
𝑖

1.80 0.99 2.01 0.72 1.45 2.25 2.30 2.80 1.90

(𝑘, 𝜋) (2, 2) (1, 2) (3, 1) (1, 1) (2, 1) (3, 2) (3, 3) (3, 4) (2, 3)

the tardiness in the case where each randomprocessing/setup
time takes its expected value. Meanwhile, suppose that 𝑘

𝑖

represents the machine which processes job 𝑖. Then,

E (TC
𝜎
) = E(

𝑛

∑

𝑖=1

𝑤
𝑖
𝑇
𝑖
) =

𝑛

∑

𝑖=1

𝑤
𝑖
E [(𝐶
𝑖
− 𝑑
𝑖
)
+

]

≥

𝑛

∑

𝑖=1

𝑤
𝑖
[E (𝐶
𝑖
− 𝑑
𝑖
)]
+

=

𝑛

∑

𝑖=1

𝑤
𝑖
[E (𝑡
𝑖
+ 𝑝
𝑘
𝑖

𝑖
) − 𝑑
𝑖
]

+

≥

𝑛

∑

𝑖=1

𝑤
𝑖
[𝑡
𝑖
+ E (𝑝

𝑘
𝑖

𝑖
) − 𝑑
𝑖
]

+

=

𝑛

∑

𝑖=1

𝑤
𝑖
(𝐶
𝑖
− 𝑑
𝑖
)

+

=

𝑛

∑

𝑖=1

𝑤
𝑖
𝑇
𝑖
= TC
𝜎
.

(12)

This completes the proof of E(TC
𝜎
) ≥ TC

𝜎
.

Now that E(VOC
𝜎
) = VOC

𝜎
and E(TC

𝜎
) ≥ TC

𝜎
, we have

shown that E(TMC
𝜎
) ≥ TMC

𝜎
.

The DE algorithm requires to compare two solutions in
the Selection step. When facing a deterministic optimization
problem, we can directly compare the exact objective values
of two solutions to tell their quality difference. But in the
stochastic case, the comparison of solutions may not be so
straightforward because we can only obtain approximated
(noisy) objective values from simulation. In this study, we
will utilize the following two mechanisms for comparison
purposes.

(A) Prescreening. Because TMC
𝜎
is a lower bound for

E(TMC
𝜎
) (Theorem 2), we can arrive at the following con-

clusion which is useful for the prescreening of candidate
solutions.

Corollary 3. For two candidate solutions x
1
(the equivalent

schedule is denoted by 𝜎
1
) and x

2
(the equivalent schedule is

denoted by𝜎
2
), if TMC

𝜎
2

≥ 𝐸(TMC
𝜎
1

), then x
2
must be inferior

to x
1
and thus can be discarded.

When applying this property, the value of E(TMC
𝜎
1

) is
certainly not known exactly, and thus the Monte Carlo ap-
proximation based on 𝑈 simulation replications is used
instead.

(B)Hypothesis Test. If the candidate solutions have passed
the pre-screening, then hypothesis test is used to compare the
quality of two solutions.

Suppose that we have implemented 𝑈 simulation repli-
cations for solution x

𝑖
whose true objective value is

𝑓(x
𝑖
) = E(TMC

𝜎
𝑖

) (𝑖 = 1, 2). Then, the sample mean and
sample variance can be calculated by

𝑓
𝑖
=

1

𝑈

𝑈

∑

𝑗=1

𝑓
(𝑗)

𝑖
,

𝑠
2

𝑖
=

1

𝑈 − 1

𝑈

∑

𝑗=1

(𝑓
(𝑗)

𝑖
− 𝑓
𝑖
)

2

,

(13)

where 𝑓
(𝑗)

𝑖
is the objective value obtained in the 𝑗-th simula-

tion replication for solution x
𝑖
.

Let the null hypothesis 𝐻
0
be “𝑓(x

1
) = 𝑓(x

2
)”, and thus

the alternative hypothesis𝐻
1
is “𝑓(x

1
) ̸= 𝑓(x

2
)”. According to

the statistical theory, the critical region of𝐻
0
is






𝑓
1
− 𝑓
2






≥ 𝑍 = 𝑧

𝜖/2

√
(𝑠
2

1
+ 𝑠
2

2
)

𝑈

,
(14)

where 𝑧
𝜖/2

is the value such that the area to its right under the
standard normal curve is exactly 𝜖/2. Therefore, if 𝑓

1
− 𝑓
2
≥

𝑍, x
2
is statistically better than x

1
; if 𝑓
1
− 𝑓
2

≤ −𝑍, x
1
is

statistically better than x
2
. Otherwise, if |𝑓

1
− 𝑓
2
| < 𝑍 (i.e.,

the null hypothesis holds), it is concluded that there exists no
statistical difference between x

1
and x
2
(in this case, DE may

preserve either solution at random).

4.3. Stage 3: Fine-Tuning of 𝛼
𝑘
. Up till now, the production

schedule (sequence of jobs on each machine) has been fixed
by the second stage. It is found that fine-tuning the produc-
tion rates {𝛼

𝑘
} could further improve the solution quality to

a noticeable extent (note that these variables are only roughly
optimized on a grid basis in Stage 1). So, here, we propose a
local search procedure based on systematic perturbations for
fine-tuning {𝛼

𝑘
}. The directions of successive perturbations

are not completely random but determined partly according
to the knowledge gained from previous attempts.

Below are the detailed steps of the local search algorithm,
which involves a parameter learning process similar to that
of artificial neural networks for guiding the search direction.
In the local search process, the optimal computing budget
allocation (OCBA) technique [28] is used to identify the
best solution among a set of randomly sampled solutions.
Before applying OCBA, the allowed number of simulation
replications is given. Then, OCBA can be used to allocate
the limited computational resource to the solutions incre-
mentally so that the probability of recognizing the truly best
solution is maximized.

Step 1. Initialize the iteration index: ℎ = 1. Let 𝛼(ℎ) = 𝛼
∗

which is output by Stage 1 (now we express the production
rates {𝛼

𝑘
: 𝑘 = 1, . . . , 𝑚} as a vector 𝛼).
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Step 2. Randomly sample 𝑁
𝑠
solutions from the neighbor-

hood of 𝛼(ℎ). To produce the 𝑖th sample, first generate a
random vector r (each component 𝑟

𝑘
is generated from the

uniform distributionU[−1, 1]), and then let 𝛼(ℎ)
𝑖

= 𝛼
(ℎ)

+r ⋅𝛿.

Step 3. Use OCBA to allocate a total of𝑈
𝑠
simulation replica-

tions to the set of temporary solutions {𝛼(ℎ)
1

,𝛼
(ℎ)

2
, . . . ,𝛼

(ℎ)

𝑁
𝑠

} so
that the best one among them can be identified and denoted
as 𝛼(ℎ+1).

Step 4. If 𝛼(ℎ+1) has the best objective value (as reported by
the OCBA) found so far, then set 𝛼∗ = 𝛼(ℎ+1).

Step 5. If ℎ = ℎmax, go to Step 9. Otherwise, let ℎ ← ℎ + 1.

Step 6. If the best-so-far objective value has just been
improved, then reinforcement is executed by letting 𝛼(ℎ) ←
𝛼
(ℎ)

+ 𝜆 ⋅ (𝛼
(ℎ)

− 𝛼
(ℎ−1)

).

Step 7. If 𝛼∗ has not been updated during the most recent 𝑄
iterations, then backtracking is executed by letting 𝛼(ℎ) = 𝛼∗.

Step 8. Go back to Step 2.

Step 9. Output the optimization result, that is, 𝛼∗ and the
corresponding objective value.

The parameters of the local search module include ℎmax
(the total iteration number), 𝜆 (the reinforcement factor), 𝑄
(the allowed number of iterations without any improvement),
and 𝛿 ∈ (0, 1) (the amplitude of random perturbation). In
addition, 𝑁

𝑠
controls the extensiveness of random sampling,

and 𝑈
𝑠
controls the computational burden devoted to simu-

lation (the detailed procedure of OCBA can be found in [28]
and thus is omitted here). In the procedure, Step 6 applies a
reinforcement strategywhen the previous perturbation direc-
tion is beneficial for improving the estimated objective value.
Step 7 is a backtracking policy which restores the solution to
the best-so-far value when the latest 𝑄 perturbations do not
result in any improvement. In Steps 2 and 6, the perturbed or
reinforced new 𝛼(ℎ) should be kept positive.

5. The Computational Experiments

To test the effectiveness of the proposed three-stage algorithm
(abbreviated as TSA later), computational experiments are
conducted on a number of randomly generated test instances.
In each instance, the processing/setup times (bounded to be
positive) are assumed to follow one of the three types of
distributions: normal distribution, uniform distribution, and
exponential distribution. In all cases, the basic processing
times (𝑝

𝑖
) are generated from the uniform distribution

U(1, 100), while the basic setup times (𝑠
𝑖𝑗
) are generated

from the uniform distribution U(1, 10). In the case of
normal distributions, that is, 𝑝𝑘

𝑖
∼ N(𝑝

𝑖
/𝛼
𝑘
, 𝜎
2

𝑖
) and 𝑠

𝑘

𝑖𝑗
∼

N(𝑠
𝑖𝑗
/𝛼
𝑘
, 𝜎
2

𝑖𝑗
), the standard deviation is controlled by 𝜎

𝑖
=

𝜃 × 𝑝
𝑖
and 𝜎

𝑖𝑗
= 𝜃 × 𝑠

𝑖𝑗
(𝜃 ∈ {0.1, 0.2, 0.3} describes the

level of variability). In the case of uniform distributions, that

is, 𝑝𝑘
𝑖

∼ U(𝑝
𝑖
/𝛼
𝑘
− 𝜔
𝑖
, 𝑝
𝑖
/𝛼
𝑘
+ 𝜔
𝑖
) and 𝑠

𝑘

𝑖𝑗
∼ U(𝑠

𝑖𝑗
/𝛼
𝑘
−

𝜔
𝑖𝑗
, 𝑠
𝑖𝑗
/𝛼
𝑘
+ 𝜔
𝑖𝑗
), the width parameter is given by 𝜔

𝑖
= 𝜃 × 𝑝

𝑖

and 𝜔
𝑖𝑗

= 𝜃 × 𝑠
𝑖𝑗
. In the case of exponential distributions,

that is, 𝑝𝑘
𝑖
∼ Exp(𝜆𝑘

𝑖
) and 𝑠

𝑘

𝑖𝑗
∼ Exp(𝜆𝑘

𝑖𝑗
), the only parameter

is given by 𝜆
𝑘

𝑖
= 𝛼
𝑘
/𝑝
𝑖
and 𝜆

𝑘

𝑖𝑗
= 𝛼
𝑘
/𝑠
𝑖𝑗
. The due dates are

obtained by a series of simulations which apply dispatching
rules (such as SPT and EDD [29]) to each machine with
speed 𝛼

𝑘
= 1.5, and the due date of each job is finally set

as its average completion time. This method can generate
reasonably tight due dates. Meanwhile, the weight of each
job is an integer generated from the uniform distribution
U(1, 5). As for the machine-related parameters, the fixed
cost coefficient 𝑎

𝑘
takes an integer value from the uniform

distribution U(1, 10), and the variable cost coefficients are
directly given as 𝐾

𝑝
= 0.01(5 + 𝛼

𝑘
) and 𝐾

𝑠
= 0.01(2 + 𝛼

𝑘
).

The following computational experiments are conductedwith
Visual C++ 2010 on an Intel Core i5-750/3GBRAM/Windows
7 desktop computer.

5.1. Parameter Settings. Since the three optimization stages
are executed in a serial manner, the parameters for each stage
can be studied independently of one another.

The parameters for Stage 1 include 𝑔, 𝑘, 𝑁, and 𝑠, which
are required by the ordinal optimization procedure. For our
problem, we empirically set 𝑔 = 20 and 𝑘 = 1 (which means
that we want to find one solution that belongs to the top
20), 𝑁 = 1000 (which means that 1000 solutions satisfying
Theorem 1 will be randomly picked at first). On such a basis,
the value for 𝑠 can be estimated by the regression equation
given in [25]: 𝑠 = 45 (which means that we have to select
the best 45 solutions from the 1000 according to the crude
model, and subsequently each of them will undergo an exact
evaluation). Finally, we define the average TMC obtained
from 100 simulation replications as the “exact” evaluation for
a considered solution; that is, we set 𝑈 = 100.

When experimenting with the parameters of Stage 2 and
Stage 3, we adopt an instance with 100 jobs and 10 machines
under normally distributed processing/setup times and 𝜃 =

0.2.
The parameters for Stage 2 include SN, 𝐹, and CR, which

have full control on the searching behavior of DE. The
termination criterion is an exogenously given computational
time limit: 30 seconds (otherwise, the generation number
and population size would be “the larger the better”). We
apply a design of experiments (DOE) approach to determine
satisfactory values for each parameter. In the full factorial
design, we are considering 3 parameters, each with 3 value
levels, thus leading to 3

3
= 27 combinations. The DE is run

10 times, respectively, under each parameter combination,
and the main effects plot based on mean objective values is
shown as in Figure 2 (output by theMinitab software). From
the results, we see that SN should take an intermediate value
(either too large or too small will impair the searching per-
formance). If SN is too large, much computational time will
be consumed on the evaluation of solutions, which reduces
the potential number of generations when the computational
time is restricted. If SN is too small, the decreased solution
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Main effects plot for the objective value
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Figure 2: The impact of Stage 2 parameters.

diversity will limit the effectiveness of the mutation and
crossover operation,which results in deterioration of solution
quality in spite of more generations. Generally, setting SN =

50 is reasonable and recommended for most situations. With
respect to 𝐹 and CR, the results indicate that a larger value
is more desirable under the given experimental condition.
Since these two parameters control the intensity of mutation
and crossover, assigning a reasonably large value is beneficial
for enhancing the exploration ability of DE.Therefore, we set
𝐹 = 0.8 and CR = 0.9 in the following experiments.

The parameters for Stage 3 include 𝛿, 𝜆, 𝑄, ℎmax, 𝑁𝑠, and
𝑈
𝑠
. If we still consider three possible levels for each parameter,

full factorial design (including 3
6

= 729 combinations)
is almost unaffordable in this case. Therefore, we resort to
the Taguchi design method [30] with the orthogonal array
𝐿
27
(3
6
), whichmeans that only 27 scenarios have to be tested.

The local search procedure is run 10 times under each of the
orthogonal combinations, and themain effects plot formeans
is shown in Figure 3 (output by the Minitab software). As the
figure suggests, the most suitable values for these parameters
are 𝛿 = 0.05, 𝜆 = 0.6, 𝑄 = 20, ℎmax = 100, 𝑁

𝑠
= 15, and

𝑈
𝑠

= 100. In particular, the desirable setting of 𝛿 (relative
amplitude of local perturbations) tends to be small, because
over-large perturbations will make the solution leap around
the search range, and it is impossible to fine-tune the solution.
The reinforcement step size (𝜆), however, would better be set
relatively large, which suggests that reinforcement is a proper
strategy for optimizing the production rates.The influence of
𝑄 (time to give up and start afresh) shows that it is unwise
to backtrack too early or too late, and the searching process

should have amoderate degree of tolerance for nonimproving
trials.The impact of𝑁

𝑠
indicates the importance of making a

sufficient number of samplings around each visited solution.
The best selection of 𝑈

𝑠
reflects the effectiveness of OCBA,

which can reliably identify the promising solutions with a
relatively small number of simulation replications and thus
makes it possible to keep 𝑈

𝑠
low for saving computational

time.

5.2. The Main Computational Results. Now, we will use the
proposed three-stage algorithm (TSA) to solve different-sized
problem instances. The results are compared with the hybrid
meta-heuristic algorithm PSO-SA [31], which uses simulated
annealing (SA) as a local optimizer for particle swarm
optimization (PSO). PSO-SA also relies on hypothesis test to
compare the quality of stochastic solutions, which makes it
comparable to our approach. Although PSO-SA was initially
proposed for stochastic flow shop scheduling, the algorithm
does not explicitly utilize the information about machine
environments. In fact, PSO-SA can be used for almost any
stochastic combinatorial optimization problem. Therefore,
PSO-SA can provide a baseline for comparisonwith our algo-
rithm. The implemented PSO-SA for comparison optimizes
the production rates and the production schedule at the same
time (by adopting an integrated encoding scheme the first𝑚
digits express machine speeds and the last 𝑛 digits express
job sequences). The parameters of the PSO-SA have been
calibrated for the discussed problem and finally set as follows:
the swarm size 𝑃

𝑠
= 40, the inertia weight 𝜔 = 0.6, the

cognitive and social coefficients 𝑐
1
= 𝑐
2
= 2, the flying speed
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Figure 3: The impact of Stage 3 parameters.

limitations Vmin = −1.0, Vmax = 1.0, the initial temperature
𝑇
0
= 3.0, and the annealing rate 𝜂 = 0.95.
In order to make the comparison meaningful, the com-

putational time of PSO-SA is made equal to that of TSA.
Specifically, in each trial, we run TSA first (DE is allowed to
evolve 500 generations) and record its computational time as
CT, and then we run PSO-SA under the time limit of CT
(which controls the realized number of iterations for PSO-
SA).

Tables 2, 3, and 4 display the optimization results for all
the test instances, which involve 10 different sizes (denoted
by (𝑛,𝑚)), 3 distribution patterns (normal, uniform, and
exponential), and 3 variability levels (𝜃 ∈ {0.1, 0.2, 0.3}).
Each algorithm is run for 10 independent times on each
instance. In order to reduce random errors, 5 instances have
been generated for each considered scenario, that is, each
combination of size, distribution, and variability except for
exponential distributionwhose variance is not independently
controllable. For each instance, the best, mean, and worst
objective values (under “exact” evaluation) obtained by each
algorithm from the 10 runs are, respectively, converted into
relative numbers by taking the best objective value achieved
by TSA as reference (the conversion is simply “the current
value/the best objective value from TSA”). Finally, these
values are averaged over the 5 instances of each scenario and
listed in the tables.

Based on the presented results, we can conclude that TSA
is more effective than the comparative method. The relative
improvement of TSA over PSO-SA is greater when the
variability level (𝜃) is higher. This suggests that a multistage

optimization framework is more stable than a single-pass
search method in the case of considerable uncertainty. The
proposed algorithm implements the optimization process
with a stepwise refinement policy (from crude optimization
to systematic search and then to fine-tuning) so that the
stochastic factors in the problem can be fully considered
and gradually utilized to adjust the search direction. In
addition, TSA outperforms PSO-SA to a greater extent
when solving larger-scale instances. The potential search
space grows exponentially fast with the increase of job and
machine numbers. The advantage of TSA when faced with
large solution space is that it utilizes the specific problem
information (like the properties described by Theorem 1 and
Corollary 3), which promotes the efficiency of evaluating
and comparing solutions. By contrast, PSO-SA performs
the search process in a quite generic way without special
care about the structural property of the studied problem.
Therefore, the superiority of TSA can also be explained from
the perspective of the No Free Lunch Theorem (according
to the No Free Lunch Theorem (NFLT) [27], all algorithms
have identical performance when averaged across all possible
problems; the NFLT implies that methods must incorporate
problem-specific information to improve performance on a
subset of problems).

To provide more information, we record the computa-
tional time consumed by TSA when solving the instances
with normally distributed processing/setup times and 𝜃 =

0.2. The time distribution among the three stages is also
shown as percentage values in Figure 4. As the results show,
the percentage of time consumed by Stage 1 decreases as
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Table 2: The computational results under normal distributions.

Size (𝑛,𝑚) TSA PSO-SA
Best Mean Worst Best Mean Worst

𝜃 = 0.1

100, 10 1.000 1.049 1.093 1.013 1.044 1.086
200, 10 1.000 1.022 1.089 1.010 1.034 1.089
300, 10 1.000 1.013 1.086 1.016 1.045 1.084
300, 15 1.000 1.012 1.039 1.008 1.014 1.045
400, 10 1.000 1.024 1.083 1.007 1.022 1.038
400, 20 1.000 1.024 1.054 1.010 1.032 1.069
500, 10 1.000 1.022 1.045 1.011 1.029 1.072
500, 20 1.000 1.026 1.079 1.012 1.048 1.098
600, 15 1.000 1.014 1.059 1.028 1.036 1.087
600, 20 1.000 1.023 1.037 1.021 1.039 1.078
Avg. 1.000 1.023 1.066 1.014 1.034 1.075

𝜃 = 0.2

100, 10 1.000 1.010 1.097 1.019 1.073 1.103
200, 10 1.000 1.015 1.043 1.017 1.040 1.112
300, 10 1.000 1.007 1.034 1.009 1.050 1.130
300, 15 1.000 1.005 1.010 1.017 1.035 1.066
400, 10 1.000 1.023 1.038 1.039 1.044 1.087
400, 20 1.000 1.034 1.050 1.034 1.051 1.072
500, 10 1.000 1.016 1.035 1.033 1.057 1.088
500, 20 1.000 1.014 1.065 1.021 1.049 1.116
600, 15 1.000 1.027 1.056 1.037 1.074 1.089
600, 20 1.000 1.031 1.084 1.038 1.055 1.111
Avg. 1.000 1.018 1.051 1.026 1.053 1.097

𝜃 = 0.3

100, 10 1.000 1.016 1.082 1.007 1.055 1.106
200, 10 1.000 1.026 1.053 1.017 1.066 1.102
300, 10 1.000 1.044 1.069 1.006 1.048 1.087
300, 15 1.000 1.009 1.038 1.035 1.057 1.098
400, 10 1.000 1.018 1.063 1.034 1.078 1.127
400, 20 1.000 1.017 1.022 1.024 1.048 1.086
500, 10 1.000 1.025 1.047 1.049 1.086 1.133
500, 20 1.000 1.016 1.069 1.011 1.078 1.091
600, 15 1.000 1.013 1.072 1.048 1.058 1.127
600, 20 1.000 1.031 1.072 1.015 1.068 1.122
Avg. 1.000 1.022 1.059 1.025 1.064 1.108

the problem size grows, which reflects the relative efficiency
of the proposed crudemodel for OO. By contrast, Stage 2 and
Stage 3would require notablymore computational time as the
problem size increases.

5.3. Sensitivity Analysis for Cost Coefficients. The operational
cost is directly affected by the following input parameters:
the variable cost coefficients 𝐾

𝑝
and 𝐾

𝑠
(these reflect the

operating cost to support the workings of the factory for
a unit time, for example, the unit-time fuel cost, water
and electricity fees, and the hourly wage rate), and the
fixed cost coefficient related with each machine 𝑎

𝑘
(these are

related with the cost to support the normal operation of
machines for a period of time, for example, the investment
on automatic status monitoring and early warning systems).
These parameters are fixed at constant values in the short
term (so, they have been treated as inputs for our problem),
but theymay be changed in the long run as the firm gradually
increases the investment on the production equipment and
manufacturing technology. For example, when new energy-
saving technology is introduced into the production line, the
variable cost coefficients 𝐾

𝑝
and 𝐾

𝑠
(which measure the cost

incurred when a machine is working in production or setup
mode for one hour) will be reduced to some extent. However,
the introduction of new technology needs money; so, the
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Table 3: The computational results under uniform distributions.

Size (𝑛,𝑚) TSA PSO-SA
Best Mean Worst Best Mean Worst

𝜃 = 0.1

100, 10 1.000 1.012 1.086 1.014 1.052 1.120
200, 10 1.000 1.021 1.067 1.003 1.044 1.075
300, 10 1.000 1.012 1.087 1.010 1.033 1.069
300, 15 1.000 1.025 1.046 1.003 1.039 1.068
400, 10 1.000 1.059 1.089 0.994 1.043 1.073
400, 20 1.000 1.009 1.048 1.006 1.024 1.059
500, 10 1.000 1.034 1.069 1.000 1.038 1.106
500, 20 1.000 1.057 1.064 1.011 1.062 1.104
600, 15 1.000 1.039 1.063 1.018 1.038 1.054
600, 20 1.000 1.035 1.081 1.023 1.039 1.084
Avg. 1.000 1.030 1.070 1.008 1.041 1.081

𝜃 = 0.2

100, 10 1.000 1.040 1.147 1.064 1.096 1.145
200, 10 1.000 1.027 1.051 1.016 1.053 1.135
300, 10 1.000 1.037 1.102 1.037 1.082 1.129
300, 15 1.000 1.037 1.051 1.013 1.068 1.098
400, 10 1.000 1.044 1.109 1.051 1.082 1.118
400, 20 1.000 1.048 1.080 1.026 1.076 1.113
500, 10 1.000 1.063 1.092 1.033 1.081 1.139
500, 20 1.000 1.033 1.095 1.052 1.076 1.153
600, 15 1.000 1.057 1.105 1.039 1.100 1.129
600, 20 1.000 1.042 1.106 1.085 1.105 1.135
Avg. 1.000 1.043 1.094 1.042 1.082 1.129

𝜃 = 0.3

100, 10 1.000 1.030 1.095 1.029 1.050 1.137
200, 10 1.000 1.038 1.062 1.036 1.083 1.154
300, 10 1.000 1.068 1.105 1.017 1.073 1.135
300, 15 1.000 1.013 1.095 1.061 1.087 1.119
400, 10 1.000 1.068 1.103 1.037 1.092 1.147
400, 20 1.000 1.028 1.070 1.017 1.081 1.126
500, 10 1.000 1.022 1.070 1.046 1.077 1.174
500, 20 1.000 1.066 1.107 1.065 1.107 1.125
600, 15 1.000 1.067 1.093 1.078 1.097 1.156
600, 20 1.000 1.055 1.106 1.070 1.090 1.167
Avg. 1.000 1.046 1.091 1.046 1.084 1.144

question is how much investment is rational and economical
for the firm to improve these long-term variables? Sensitivity
analysis can provide an answer for such questions.

As an example of sensitivity analysis, we will focus on
the impact of 𝐾

𝑝
on the setting of 𝛼

𝑘
. The (400, 10) instance

under normally distributed processing/setup times and 𝜃 =

0.2 is used in this experiment. The value of 𝐾
𝑝
varies from

0.01(1 + 𝛼
𝑘
) to 0.01(10 + 𝛼

𝑘
) (10 levels), and under each value

of 𝐾
𝑝
, we run the proposed TSA for 10 independent times to

get 10 optimized solutions (in the process of switching𝐾
𝑝
, all

the other input parameters are kept at their original values).
For each solution 𝑖 that is output by the 𝑖-th execution of TSA,
we calculate the average value of 𝛼 among all machines as
𝛼
𝑖
= (1/𝑚)∑

𝑚

𝑘=1
𝛼
𝑘
, and we record the corresponding total

cost as TMC
𝑖
. Finally, we calculate the averaged 𝛼 in the 10

final solutions as 𝛼(𝐾
𝑝
) = (1/10)∑

10

𝑖=1
𝛼
𝑖
and the averaged

total cost as TMC(𝐾
𝑝
) = (1/10)∑

10

𝑖=1
TMC
𝑖
. The results are

displayed in Figure 5.
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Table 4: The computational results under exponential distributions.

Size (𝑛,𝑚) TSA PSO-SA
Best Mean Worst Best Mean Worst

100, 10 1.000 1.051 1.093 1.001 1.071 1.119
200, 10 1.000 1.024 1.087 1.021 1.054 1.128
300, 10 1.000 1.037 1.076 0.995 1.054 1.088
300, 15 1.000 1.018 1.047 1.036 1.072 1.091
400, 10 1.000 1.050 1.078 1.016 1.051 1.076
400, 20 1.000 1.042 1.051 1.050 1.063 1.086
500, 10 1.000 1.042 1.056 1.061 1.078 1.089
500, 20 1.000 1.033 1.091 1.031 1.048 1.091
600, 15 1.000 1.048 1.095 1.017 1.069 1.085
600, 20 1.000 1.057 1.061 1.048 1.055 1.091
Avg. 1.000 1.040 1.074 1.028 1.062 1.094

Table 5: The impact of the functional form of FOC
𝑘
.

Power on 𝛼
𝑘

1 2 3 4
Optimized 𝛼 1.82 1.75 1.66 1.47

According to Figure 5(a), there is a clear rising trend in
the total cost as the cost coefficient 𝐾

𝑝
increases. This is no

surprise because 𝐾
𝑝
is an indicator of cost per unit time.

Moreover, the slope of the regression line is 319.95, which
suggests that reducing the value of 𝐾

𝑝
by one unit will result

in a saving of 319.95 units (on average) in the total cost.
Therefore, the firm should be willing to invest at most 319.95
for reducing the cost coefficient𝐾

𝑝
by one (e.g., by promoting

the energy efficiency of the production lines).
By observing the impact of𝐾

𝑝
on the optimized produc-

tion rate 𝛼 (Figure 5(b)), we can obtain similar information.
For example, if the value of𝐾

𝑝
has been decreased by one, the

optimal setting of 𝛼 for each machine should be decreased
by 0.1093 (on average). The underlying reason is that when
the unit-time production cost decreases, the production pace
does not need to be hurried to the original extent, and
meanwhile, reducing 𝛼 reasonably can help cutting down the
fixed operational cost.

Finally, we examine the impact of the functional form
used to describe the fixed operational cost. Recall that
currently the fixed operational cost is defined as FOC

𝑘
(𝛼
𝑘
) =

𝑎
𝑘
⋅ 𝛼
2

𝑘
, and that the square on 𝛼

𝑘
is used to simulate the

accelerated increase of the cost with the production rate.Now,
we vary the power of 𝛼

𝑘
from 1 to 4 and run the optimization

procedure in each case. The averaged 𝛼 values (calculated as
earlier) for the same instance are shown in Table 5. From
the results, we see that as the power increases, the optimal
settings for the production rates exhibit a downward trend. In
practice, the detailed functional form for the fixed cost should
be specified according to the historical production data.

6. Conclusions

In this paper, we consider a stochastic uniform parallel
machine production system with the aim of minimizing total
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Figure 4: The computational time of TSA.

manufacturing cost. The production rates of the machines
are adjustable; so, they are treated as decision variables to
be optimized together with the detailed production schedule.
In accordance with the principle of simulation optimization,



14 Discrete Dynamics in Nature and Society

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

𝐾𝑝 = 0.01(level + 𝛼𝑘)

O
pt

im
iz

ed
𝑇
𝑀
𝐶

= 319.95𝐾𝑝 + 3636.1TMC∗

(a) Impact of𝐾𝑝 on TMC∗

O
pt

im
iz

ed
𝛼

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

𝛼 = 0.1093𝐾𝑝 + 1.1646

𝐾𝑝 = 0.01(level + 𝛼𝑘)

(b) Impact of𝐾𝑝 on 𝛼

Figure 5: Sensitivity analysis based on 𝐾
𝑝
.

we propose a three-stage solution framework based on
stepwise refinement for solving the stochastic optimization
problem. The proposed algorithm is verified by its superior
performance compared with another metaheuristic designed
for stochastic optimization. Also, the procedure for sensitivity
analysis is discussed. The future research may extend the
main ideas presented here to more complicated and realistic
production environments like flow shops and job shops.
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