
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 235012, 7 pages
http://dx.doi.org/10.1155/2013/235012

Research Article
Strong and Weak Convergence for Asymptotically Almost
Negatively Associated Random Variables

Aiting Shen and Ranchao Wu

School of Mathematical Science, Anhui University, Hefei 230039, China

Correspondence should be addressed to Aiting Shen; empress201010@126.com

Received 10 December 2012; Accepted 16 January 2013

Academic Editor: Binggen Zhang

Copyright © 2013 A. Shen and R. Wu.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The strong law of large numbers for sequences of asymptotically almost negatively associated (AANA, in short) random variables
is obtained, which generalizes and improves the corresponding one of Bai and Cheng (2000) for independent and identically
distributed random variables to the case of AANA random variables. In addition, the Feller-type weak law of large number for
sequences of AANA random variables is obtained, which generalizes the corresponding one of Feller (1946) for independent and
identically distributed random variables.

1. Introduction

Many useful linear statistics based on a random sample are
weighted sums of independent and identically distributed
random variables. Examples include least-squares estimators,
nonparametric regression function estimators, and jackknife
estimates,. In this respect, studies of strong laws for these
weighted sums have demonstrated significant progress in
probability theory with applications in mathematical statis-
tics.

Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables and let

{𝑎
𝑛𝑖
, 1 ≤ 𝑖 ≤ 𝑛, 𝑛 ≥ 1} be an array of constants. A common

expression for these linear statistics is 𝑇
𝑛
= ∑
𝑛

𝑖=1
𝑎
𝑛𝑖
𝑋
𝑖
. Some

recent results on the strong law for linear statistics 𝑇
𝑛
can be

found in Cuzick [1], Bai et al. [2], Bai and Cheng [3], Cai [4],
Wu [5], Sung [6], Zhou et al. [7], and Wang et al. [8]. Our
emphasis in this paper is focused on the result of Bai and
Cheng [3]. They gave the following theorem.

Theorem A. Suppose that 1 < 𝛼, 𝛽 < ∞, 1 ≤ 𝑝 < 2,
and 1/𝑝 = 1/𝛼 + 1/𝛽. Let {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} be a sequence

of independent and identically distributed random variables
satisfying 𝐸𝑋 = 0, and let {𝑎

𝑛𝑘
, 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ≥ 1} be an array

of real constants such that

lim sup
𝑛→∞

(
1

𝑛

𝑛

∑
𝑘=1

𝑎𝑛𝑘

𝛼

)

1/𝛼

< ∞. (1)

If 𝐸|𝑋|𝛽 < ∞, then

lim
𝑛→∞

𝑛
−1/𝑝

𝑛

∑
𝑘=1

𝑎
𝑛𝑘
𝑋
𝑘
= 0 a.s. (2)

We point out that the independence assumption is not
plausible in many statistical applications. So it is of interest
to extend the concept of independence to the case of depen-
dence. One of these dependence structures is asymptotically
almost negatively associated, which was introduced by Chan-
dra and Ghosal [9] as follows.

Definition 1. A sequence {𝑋
𝑛
, 𝑛 ≥ 1} of random variables is

called asymptotically almost negatively associated (AANA, in
short) if there exists a nonnegative sequence 𝑢(𝑛) → 0 as
𝑛 → ∞ such that

Cov (𝑓 (𝑋
𝑛
) , 𝑔 (𝑋

𝑛+1
, 𝑋
𝑛+2
, . . . , 𝑋

𝑛+𝑘
))

≤ 𝑢 (𝑛) [Var (𝑓 (𝑋
𝑛
))Var (𝑔 (𝑋

𝑛+1
, 𝑋
𝑛+2
, . . . , 𝑋

𝑛+𝑘
))]
1/2

,

(3)

for all 𝑛, 𝑘 ≥ 1 and for all coordinatewise nondecreasing
continuous functions 𝑓 and 𝑔 whenever the variances exist.

It is easily seen that the family of AANA sequence
contains negatively associated (NA, in short) sequences (with
𝑢(𝑛) = 0, 𝑛 ≥ 1) and some more sequences of random
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variables which are not much deviated from being negatively
associated. An example of an AANA sequence which is not
NA was constructed by Chandra and Ghosal [9]. Hence,
extending the limit properties of independent or NA random
variables to the case of AANA random variables is highly
desirable in the theory and application.

Since the concept of AANA sequence was introduced
by Chandra and Ghosal [9], many applications have been
found. See, for example, Chandra and Ghosal [9] derived
the Kolmogorov type inequality and the strong law of large
numbers of Marcinkiewicz-Zygmund; Chandra and Ghosal
[10] obtained the almost sure convergence of weighted
averages; Wang et al. [11] established the law of the iterated
logarithm for product sums; Ko et al. [12] studied the Hájek-
Rényi type inequality; Yuan and An [13] established some
Rosenthal type inequalities for maximum partial sums of
AANA sequence; Wang et al. [14] obtained some strong
growth rate and the integrability of supremum for the partial
sums of AANA random variables; Wang et al. [15, 16] studied
complete convergence for arrays of rowwise AANA random
variables and weighted sums of arrays of rowwise AANA
random variables, respectively; Hu et al. [17] studied the
strong convergence properties for AANA sequence; Yang
et al. [18] investigated the complete convergence, complete
moment convergence, and the existence of the moment of
supermum of normed partial sums for the moving average
process for AANA sequence, and so forth.

The main purpose of this paper is to study the strong
convergence for AANA random variables, which generalizes
and improves the result of Theorem A. In addition, we
will give the Feller-type weak law of large number for
sequences of AANA random variables, which generalizes
the corresponding one of Feller [19] for independent and
identically distributed random variables.

Throughout this paper, let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence

of AANA random variables with the mixing coefficients
{𝑢(𝑛), 𝑛 ≥ 1}. 𝑆

𝑛
= ∑
𝑛

𝑖=1
𝑋
𝑖
. For 𝑠 > 1, let 𝑡 ≐ 𝑠/(𝑠 − 1)

be the dual number of 𝑠. The symbol 𝐶 denotes a positive
constant which may be different in various places. Let 𝐼(𝐴)
be the indicator function of the set 𝐴. 𝑎

𝑛
= 𝑂(𝑏

𝑛
) stands for

𝑎
𝑛
≤ 𝐶𝑏
𝑛
.

Thedefinition of stochastic dominationwill be used in the
paper as follows.

Definition 2. A sequence {𝑋
𝑛
, 𝑛 ≥ 1} of random variables is

said to be stochastically dominated by a random variable𝑋 if
there exists a positive constant 𝐶 such that

𝑃 (
𝑋𝑛

 > 𝑥) ≤ 𝐶𝑃 (|𝑋| > 𝑥) , (4)

for all 𝑥 ≥ 0 and 𝑛 ≥ 1.

Our main results are as follows.

Theorem 3. Suppose that 0 < 𝛼, 𝛽 < ∞, 0 < 𝑝 < 2,
and 1/𝑝 = 1/𝛼 + 1/𝛽. Let {𝑋

𝑛
, 𝑛 ≥ 1} be a sequence of

AANA random variables, which is stochastically dominated by
a random variable𝑋 and 𝐸𝑋

𝑛
= 0, if 𝛽 > 1. Suppose that there

exists a positive integer 𝑘 such that ∑∞
𝑛=1

𝑢
1/(1−𝑠)

(𝑛) < ∞ for

some 𝑠 ∈ (3⋅2𝑘−1, 4 ⋅2𝑘−1] and 𝑠 > 1/(min{1/2, 1/𝛼, 1/𝛽, 1/𝑝−
1/2}). Let {𝑎

𝑛𝑖
, 𝑖 ≥ 1, 𝑛 ≥ 1} be an array of real constants

satisfying

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝛼

= 𝑂 (𝑛) . (5)

If 𝐸|𝑋|𝛽 < ∞, then

lim
𝑛→∞

𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



= 0 𝑎.𝑠. (6)

Remark 4. Theorem 3 generalizes and improves Theorem
A of Bai and Cheng [3] for independent and identically
distributed random variables to the case of AANA random
variables, sinceTheorem 3 removes the identically distributed
condition and expands the ranges 𝛼, 𝛽, and 𝑝, respectively.

At last, we will present the Feller-type weak law of
large number for sequences of AANA random variables,
which generalizes the corresponding one of Feller [19] for
independent and identically distributed random variables.

Theorem 5. Let 𝛼 > 1/2 and {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be a sequence

of identically distributed AANA random variables with the
mixing coefficients {𝑢(𝑛), 𝑛 ≥ 1} satisfying ∑∞

𝑛=1
𝑢
2

(𝑛) < ∞.
If

lim
𝑛→∞

𝑛𝑃 (|𝑋| > 𝑛
𝛼

) = 0, (7)

then

𝑆
𝑛

𝑛𝛼
− 𝑛
1−𝛼

𝐸𝑋𝐼 (|𝑋| ≤ 𝑛
𝛼

)
𝑃

→ 0. (8)

2. Preparations

To prove the main results of the paper, we need the following
lemmas.The first two lemmas were provided by Yuan and An
[13].

Lemma 6 (cf. see [13, Lemma 2.1]). Let {𝑋
𝑛
, 𝑛 ≥ 1} be a

sequence of AANA random variables with mixing coefficients
{𝑢(𝑛), 𝑛 ≥ 1}, 𝑓

1
, 𝑓
2
, . . . be all nondecreasing (or all nonin-

creasing) continuous functions, then {𝑓
𝑛
(𝑋
𝑛
), 𝑛 ≥ 1} is still a

sequence of AANA random variables with mixing coefficients
{𝑢(𝑛), 𝑛 ≥ 1}.

Lemma 7 (cf. see [13, Theorem 2.1]). Let 𝑝 > 1 and {𝑋
𝑛
, 𝑛 ≥

1} be a sequence of zero mean random variables with mixing
coefficients {𝑢(𝑛), 𝑛 ≥ 1}.

If∑∞
𝑛=1

𝑢
2

(𝑛) < ∞, then there exists a positive constant 𝐶
𝑝

depending only on 𝑝 such that for all 𝑛 ≥ 1 and 1 < 𝑝 ≤ 2,

𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑋
𝑖



𝑝

) ≤ 𝐶
𝑝

𝑛

∑
𝑖=1

𝐸
𝑋𝑖

𝑝

. (9)
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If ∑∞
𝑛=1

𝑢
1/(𝑝−1)

(𝑛) < ∞ for some 𝑝 ∈ (3 ⋅ 2
𝑘−1

, 4 ⋅ 2
𝑘−1

],
where integer number k ≥ 1, then there exists a positive
constant 𝐷

𝑝
depending only on p such that for all 𝑛 ≥ 1,

𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑋
𝑖



p

) ≤ 𝐷
𝑝

{

{

{

𝑛

∑
𝑖=1

𝐸
𝑋𝑖

𝑝

+ (

𝑛

∑
𝑖=1

𝐸𝑋
2

𝑖
)

𝑝/2

}

}

}

.

(10)

The last one is a fundamental property for stochastic
domination.The proof is standard, so the details are omitted.

Lemma 8. Let {𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables,

which is stochastically dominated by a random variable 𝑋.
Then for any 𝛼 > 0 and 𝑏 > 0,

𝐸
𝑋𝑛


𝛼

𝐼 (
𝑋𝑛

 ≤ 𝑏)

≤ 𝐶
1
[𝐸|𝑋|

𝛼

𝐼 (|𝑋| ≤ 𝑏) + 𝑏
𝛼

𝑃 (|𝑋| > 𝑏)] ,

𝐸
𝑋𝑛


𝛼

𝐼 (
𝑋𝑛

 > 𝑏) ≤ 𝐶2𝐸|𝑋|
𝛼

𝐼 (|𝑋| > 𝑏) ,

(11)

where 𝐶
1
and 𝐶

2
are positive constants.

3. Proofs of the Main Results

Proof of Theorem 3. Without loss of generality, we assume
that 𝑎

𝑛𝑖
≥ 0 (otherwise, we use 𝑎+

𝑛𝑖
and 𝑎−
𝑛𝑖
instead of 𝑎

𝑛𝑖
, and

note that 𝑎
𝑛𝑖
= 𝑎
+

𝑛𝑖
− 𝑎
−

𝑛𝑖
). Denote for 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 ≥ 1 that

𝑌
𝑖
= − 𝑛

1/𝛽

𝐼 (𝑋
𝑖
< −𝑛
1/𝛽

)

+ 𝑋
𝑖
𝐼 (
𝑋𝑖
 ≤ 𝑛
1/𝛽

) + 𝑛
1/𝛽

𝐼 (𝑋
𝑖
> 𝑛
1/𝛽

) ,

𝑍
𝑖
= (𝑋
𝑖
+ 𝑛
1/𝛽

) 𝐼 (𝑋
𝑖
< −𝑛
1/𝛽

) + (𝑋
𝑖
− 𝑛
1/𝛽

) 𝐼 (𝑋
𝑖
> 𝑛
1/𝛽

) .

(12)

Hence,𝑋
𝑖
= 𝑌
𝑖
+ 𝑍
𝑖
, which implies that

𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑋
𝑖



≤ 𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑍
𝑖



+ 𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑌
𝑖



≤ 𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑍
𝑖



+ 𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝐸𝑌
𝑖



+ 𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
(𝑌
𝑖
− 𝐸𝑌
𝑖
)



≐ 𝐻 + 𝐼 + 𝐽.

(13)

To prove (6), it suffices to show that𝐻 → 0 a.s., 𝐼 → 0 and
𝐽 → 0 a.s. as 𝑛 → ∞.

Firstly, we will show that𝐻 → 0 a.s.
For any 0 < 𝛾 ≤ 𝛼, it follows from (5) and Hölder’s

inequality that

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝛾

≤ (

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝛼

)

𝛾/𝛼

× (

𝑛

∑
𝑖=1

1)

1−𝛾/𝛼

≤ 𝐶𝑛, (14)

for any 0 < 𝛼 ≤ 𝛾, it follows from (5) again that

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝛾

≤ (

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝛼

)

𝛾/𝛼

≤ 𝐶𝑛
𝛾/𝛼

. (15)

Combining (14) and (15), we have

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝛾

≤ 𝐶𝑛
max(1,𝛾/𝛼)

. (16)

The condition 𝐸|𝑋|𝛽 < ∞ yields that

∞

∑
𝑛=1

𝑃 (𝑍
𝑛
̸= 0) =

∞

∑
𝑛=1

𝑃 (
𝑋𝑛

 > 𝑛
1/𝛽

)

≤ 𝐶

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑛
1/𝛽

) ≤ 𝐶𝐸|𝑋|
𝛽

< ∞,

(17)

which implies that 𝑃(𝑍
𝑛
̸= 0, i.o.) = 0 by Borel-Cantelli

lemma. Thus, we have by (5) that

𝐻 ≐ 𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝑍
𝑖



≤ 𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖𝑍𝑖


≤ 𝐶𝑛
−1/𝑝

(max
1≤𝑖≤𝑛

𝑎𝑛𝑖

𝛼

)
1/𝛼 𝑛

∑
𝑖=1

𝑍𝑖


≤ 𝐶𝑛
−1/𝑝

(

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝛼

)

1/𝛼
𝑛

∑
𝑖=1

𝑍𝑖


≤ 𝐶𝑛
−1/𝛽

𝑛

∑
𝑖=1

𝑍𝑖
 → 0 a.s., as 𝑛 → ∞.

(18)

Secondly, we will prove that

𝐼 ≐ 𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
𝐸𝑌
𝑖



→ 0, as 𝑛 → ∞. (19)
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If 0 < 𝛽 ≤ 1, then we have by Lemma 8 and (16) that

𝐼 ≤ 𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖𝐸𝑌𝑖


≤ 𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖
 [𝐸

𝑋𝑖
 𝐼 (

𝑋𝑖
 ≤ 𝑛
1/𝛽

)

+ 𝑛
1/𝛽

𝑃 (
𝑋𝑖
 > 𝑛
1/𝛽

)]

≤ 𝐶𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖
 [𝐸 |𝑋| 𝐼 (|𝑋| ≤ 𝑛

1/𝛽

)

+ 𝑛
1/𝛽

𝑃 (|𝑋| > 𝑛
1/𝛽

)]

≤ 𝐶𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖
 [𝑛
(1−𝛽)/𝛽

𝐸|𝑋|
𝛽

𝐼 (|𝑋| ≤ 𝑛
1/𝛽

)

+ 𝑛
1/𝛽−1

𝐸|𝑋|
𝛽

𝐼 (|𝑋| > 𝑛
1/𝛽

)]

= 𝐶𝑛
−1/𝛼−1

𝐸|𝑋|
𝛽

𝑛

∑
𝑖=1

𝑎𝑛𝑖


≤ 𝐶𝑛
−1/𝛼−1+max(1,1/𝛼)

→ 0, as 𝑛 → ∞.

(20)

If 𝛽 > 1, then we have by 𝐸𝑋
𝑛
= 0, Lemma 8 and (16) that

𝐼 ≤ 𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖𝐸𝑌𝑖


≤ 𝐶𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖


× [𝐸
𝑋𝑖
 𝐼 (

𝑋𝑖
 > 𝑛
1/𝛽

) + 𝑛
1/𝛽

𝑃 (
𝑋𝑖
 > 𝑛
1/𝛽

)]

≤ 𝐶𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖
 𝐸 |𝑋| 𝐼 (|𝑋| > 𝑛

1/𝛽

)

≤ 𝐶𝑛
−1/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖
 𝑛
1/𝛽−1

𝐸|𝑋|
𝛽

𝐼 (|𝑋| > 𝑛
1/𝛽

)

≤ 𝐶𝑛
−1/𝛼−1+max(1,1/𝛼)

→ 0, as 𝑛 → ∞.

(21)

Hence, (19) follows from (20) and (21) immediately.
To prove (6), it suffices to show that

𝐻 ≐ 𝑛
−1/𝑝max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
(𝑌
𝑖
− 𝐸𝑌
𝑖
)



→ 0 a.s., as 𝑛 → ∞.

(22)

By Borel-Cantelli Lemma, we only need to show that for any
𝜀 > 0,

∞

∑
𝑛=1

𝑃(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
(𝑌
𝑖
− 𝐸𝑌
𝑖
)



> 𝜀𝑛
1/𝑝

) < ∞. (23)

For fixed 𝑛 ≥ 1, it is easily seen that {𝑎
𝑛𝑖
(𝑌
𝑖
− 𝐸𝑌
𝑖
), 1 ≤

𝑖 ≤ 𝑛} are still AANA random variables by Lemma 6. Taking

𝑠 > 1/min{1/2, 1/𝛼, 1/𝛽, 1/𝑝−1/2} > 2, we have byMarkov’s
inequality and Lemma 7 that

∞

∑
𝑛=1

𝑃(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
(𝑌
𝑖
− 𝐸𝑌
𝑖
)



> 𝜀𝑛
1/𝑝

)

≤ 𝐶

∞

∑
𝑛=1

𝑛
−𝑠/𝑝

𝐸(max
1≤𝑗≤𝑛



𝑗

∑
𝑖=1

𝑎
𝑛𝑖
(𝑌
𝑖
− 𝐸𝑌
𝑖
)



𝑠

)

≤ 𝐶

∞

∑
𝑛=1

𝑛
−𝑠/𝑝

𝑛

∑
𝑖=1

𝐸
𝑎𝑛𝑖 (𝑌𝑖 − 𝐸𝑌𝑖)


𝑠

+ 𝐶

∞

∑
𝑛=1

𝑛
−𝑠/𝑝

(

𝑛

∑
𝑖=1

𝐸
𝑎𝑛𝑖 (𝑌𝑖 − 𝐸𝑌𝑖)


2

)

𝑠/2

≐ 𝐽
1
+ 𝐽
2
.

(24)

For 𝐽
1
, we have by 𝐶

𝑟
inequality, Jensen’s inequality, (15), and

Lemma 8 that

𝐽
1
≤ 𝐶

∞

∑
𝑛=1

𝑛
−𝑠/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝑠

𝐸
𝑌𝑖

𝑠

≤ 𝐶

∞

∑
𝑛=1

𝑛
−𝑠/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝑠

× [𝐸
𝑋𝑖

𝑠

𝐼 (
𝑋𝑖
 ≤ 𝑛
1/𝛽

) + 𝑛
𝑠/𝛽

𝑃 (
𝑋𝑖
 > 𝑛
1/𝛽

)]

≤ 𝐶

∞

∑
𝑛=1

𝑛
−𝑠/𝑝

𝑛

∑
𝑖=1

𝑎𝑛𝑖

𝑠

× [𝐸|𝑋|
𝑠

𝐼 (|𝑋| ≤ 𝑛
1/𝛽

) + 𝑛
𝑠/𝛽

𝑃 (|𝑋| > 𝑛
1/𝛽

)]

≤ 𝐶

∞

∑
𝑛=1

𝑛
−𝑠/𝛽

𝐸|𝑋|
𝑠

𝐼 (|𝑋| ≤ 𝑛
1/𝛽

) + 𝐶

∞

∑
𝑛=1

𝑃 (|𝑋| > 𝑛
1/𝛽

)

≤ 𝐶

∞

∑
𝑛=1

𝑛
−𝑠/𝛽

𝑛

∑
𝑖=1

𝐸|𝑋|
𝑠

𝐼

× ((𝑖 − 1)
1/𝛽

< |𝑋| ≤ 𝑖
1/𝛽

) + 𝐶𝐸|𝑋|
𝛽

≤ 𝐶

∞

∑
𝑖=1

𝐸|𝑋|
𝑠

𝐼 ((𝑖 − 1)
1/𝛽

< |𝑋| ≤ 𝑖
1/𝛽

)

×

∞

∑
𝑛=𝑖

𝑛
−𝑠/𝛽

+ 𝐶𝐸|𝑋|
𝛽

≤ 𝐶

∞

∑
𝑖=1

𝑖
(𝑠−𝛽)/𝛽

𝐸|𝑋|
𝛽

𝐼

× ((𝑖 − 1)
1/𝛽

< |𝑋| ≤ 𝑖
1/𝛽

) 𝑖
−𝑠/𝛽+1

+ 𝐶𝐸|𝑋|
𝛽

≤ 𝐶𝐸|𝑋|
𝛽

< ∞.

(25)
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Next, we will prove that 𝐽
2
< ∞. By 𝐶

𝑟
inequality, Jensen’s

inequality and Lemma 8 again, we can see that

𝑛

∑
𝑖=1

𝐸
𝑎𝑛𝑖 (𝑌𝑖 − 𝐸𝑌𝑖)


2

≤

𝑛

∑
𝑖=1

𝑎
2

𝑛𝑖
𝐸𝑌
2

𝑖

≤ 𝐶

𝑛

∑
𝑖=1

𝑎
2

𝑛𝑖
[𝐸𝑋
2

𝑖
𝐼 (
𝑋𝑖
 ≤ 𝑛
1/𝛽

) + 𝑛
2/𝛽

𝑃 (
𝑋𝑖
 > 𝑛
1/𝛽

)]

≤ 𝐶

𝑛

∑
𝑖=1

𝑎
2

𝑛𝑖
[𝐸𝑋
2

𝐼 (|𝑋| ≤ 𝑛
1/𝛽

) + 𝑛
2/𝛽

𝑃 (|𝑋| > 𝑛
1/𝛽

)]

≤ 𝐶𝑛
max(1,2/𝛼)

× [𝐸𝑋
2

𝐼 (|𝑋| ≤ 𝑛
1/𝛽

) + 𝑛
2/𝛽

𝑃 (|𝑋| > 𝑛
1/𝛽

)] .

(26)

It follows byMarkov’s inequality and the fact 𝐸|𝑋|𝛽 < ∞ that

𝐸𝑋
2

𝐼 (|𝑋| ≤ 𝑛
1/𝛽

) + 𝑛
2/𝛽

𝑃 (|𝑋| > 𝑛
1/𝛽

)

≤

{{{

{{{

{

𝑛
(2−𝛽)/𝛽

𝐸|𝑋|
𝛽

𝐼 (|𝑋| ≤ 𝑛
1/𝛽

)

+ 𝑛
−1+2/𝛽

𝐸|𝑋|
𝛽

(|𝑋| > 𝑛
1/𝛽

) , 𝛽 < 2

𝐸𝑋
2

𝐼 (|𝑋| ≤ 𝑛
1/𝛽

) + 𝐸𝑋
2

, 𝛽 ≥ 2,

≤ {
𝐶𝑛
−1+2/𝛽

𝐸|𝑋|
𝛽

, 𝛽 < 2,

𝐶𝐸𝑋
2

, 𝛽 ≥ 2.

(27)

If we denote 𝛿 = max{−1 + 2/𝑝, 2/𝛽, 2/𝛼, 1}, then we can get
by (26) and (27) that

𝑛

∑
𝑖=1

𝐸
𝑎𝑛𝑖 (𝑌𝑖 − 𝐸𝑌𝑖)


2

≤ 𝐶𝑛
𝛿

. (28)

It is easily seen that

(−
1

𝑝
+
𝛿

2
) 𝑠 = max{−1

2
, −
1

𝛼
, −
1

𝛽
, −
1

𝑝
+
1

2
} 𝑠

= −min{1
2
,
1

𝛼
,
1

𝛽
,
1

𝑝
−
1

2
} 𝑠 < −1.

(29)

Hence, we have by (28) and (29) that

𝐽
2
≤ 𝐶

∞

∑
𝑛=1

𝑛
(−1/𝑝+𝛿/2)𝑠

< ∞, (30)

which together with 𝐽
1
< ∞ yields (23). This completes the

proof of the theorem.

Proof of Theorem 5. Denote for 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 ≥ 1 that

𝑌
𝑛𝑖
= − 𝑛

𝛼

𝐼 (𝑋
𝑖
< −𝑛
𝛼

) + 𝑋
𝑖
𝐼

× (
𝑋𝑖
 ≤ 𝑛
𝛼

) + 𝑛
𝛼

𝐼 (𝑋
𝑖
> 𝑛
𝛼

)
(31)

and 𝑇
𝑛
= ∑
𝑛

𝑖=1
𝑌
𝑛𝑖
. By the assumption (7), we have for any

𝜀 > 0 that

𝑃(


𝑆
𝑛

𝑛𝛼
−
𝑇
𝑛

𝑛𝛼


> 𝜀) ≤ 𝑃 (𝑆

𝑛
̸= 𝑇
𝑛
)

≤ 𝑃(

𝑛

⋃
𝑖=1

(𝑋
𝑖
̸= 𝑌
𝑛𝑖
))

≤

𝑛

∑
𝑖=1

𝑃 (
𝑋𝑖
 > 𝑛
𝛼

)

= 𝑛𝑃 (|𝑋| > 𝑛
𝛼

) → 0, 𝑛 → ∞,

(32)

which implies that

𝑆
𝑛

𝑛𝛼
−
𝑇
𝑛

𝑛𝛼
𝑃

→ 0. (33)

Hence, in order to prove (8), we only need to show that

𝑇
𝑛

𝑛𝛼
−
𝐸𝑇
𝑛

𝑛𝛼
𝑃

→ 0. (34)

By (7) again and Toeplitz’s lemma, we can get that

∑
𝑛

𝑘=1
𝑘
2𝛼−2

⋅ 𝑘𝑃 (|𝑋| > 𝑘
𝛼

)

∑
𝑛

𝑘=1
𝑘2𝛼−2

→ 0, 𝑛 → ∞. (35)

Note that

𝑛

∑
𝑘=1

𝑘
2𝛼−2

≪ 𝑛
2𝛼−1

, for 𝛼 > 1
2
. (36)

Combing (35) and (36), we have

𝑛
−2𝛼+1

𝑛

∑
𝑘=1

𝑘
2𝛼−1

𝑃 (|𝑋| > 𝑘
𝛼

) → 0, 𝑛 → ∞. (37)
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By Lemma 7 (taking 𝑝 = 2), (7), and (37), we can get that

𝑃 (
𝑇𝑛 − 𝐸𝑇𝑛

 > 𝜀𝑛
𝛼

)

≤ 𝐶𝑛
−2𝛼

𝐸
𝑇𝑛 − 𝐸𝑇𝑛


2

≤ 𝐶𝑛
−2𝛼

𝑛

∑
𝑖=1

𝐸𝑌
2

𝑛𝑖

≤ 𝐶𝑛
−2𝛼+1

[𝐸𝑋
2

𝐼 (|𝑋| ≤ 𝑛
𝛼

) + 𝑛
2𝛼

𝑃 (|𝑋| > 𝑛
𝛼

)]

= 𝐶𝑛
−2𝛼+1

𝐸𝑋
2

𝐼

× (|𝑋| ≤ 𝑛
𝛼

) + 𝐶𝑛𝑃 (|𝑋| > 𝑛
𝛼

)

= 𝐶𝑛
−2𝛼+1

𝑛

∑
𝑘=1

𝐸𝑋
2

𝐼

× ((𝑘 − 1)
𝛼

|𝑋| ≤ 𝑘
𝛼

) + 𝐶𝑛𝑃 (|𝑋| > 𝑛
𝛼

)

≤ 𝐶𝑛
−2𝛼+1

𝑛

∑
𝑘=1

𝑘
2𝛼

× [𝑃 (|𝑋| > (𝑘 − 1)
𝛼

) − 𝑃 (|𝑋| > 𝑘
𝛼

)]

+ 𝐶𝑛𝑃 (|𝑋| > 𝑛
𝛼

)

= 𝐶𝑛
−2𝛼+1

[

𝑛−1

∑
𝑘=1

((𝑘 + 1)
2𝛼

− 𝑘
2𝛼

) 𝑃 (|𝑋| > 𝑘
𝛼

)

+ 𝑃 (|𝑋| > 0) − 𝑛
2𝛼

𝑃 (|𝑋| > 𝑛
𝛼

)]

+ 𝐶𝑛𝑃 (|𝑋| > 𝑛
𝛼

)

≤ 𝐶𝑛
−2𝛼+1

[

𝑛

∑
𝑘=1

𝑘
2𝛼−1

𝑃 (|𝑋| > 𝑘
𝛼

) + 1]

+ 𝐶𝑛𝑃 (|𝑋| > 𝑛
𝛼

) → 0, 𝑛 → ∞.

(38)

This completes the proof of the theorem.

Acknowledgments

The authors are most grateful to the Editor Binggen Zhang
and anonymous referee for the careful reading of the paper
and valuable suggestions which helped in improving an
earlier version of this paper. This work was supported
by the National Natural Science Foundation of China
(11201001, 11171001, and 11126176), the Specialized Research
Fund for theDoctoral Program ofHigher Education of China
(20093401120001), the Natural Science Foundation of Anhui
Province (11040606M12, 1208085QA03), the Natural Science
Foundation of Anhui Education Bureau (KJ2010A035), the
211 project of Anhui University, the Academic Innovation
Team of Anhui University (KJTD001B), and the Students
Science Research Training Program of Anhui University
(KYXL2012007).

References

[1] J. Cuzick, “A strong law for weighted sums of i.i.d. random
variables,” Journal of Theoretical Probability, vol. 8, no. 3, pp.
625–641, 1995.

[2] Z. Bai, P. E. Cheng, and C.-H. Zhang, “An extension of the
Hardy-Littlewood strong law,” Statistica Sinica, vol. 7, no. 4, pp.
923–928, 1997.

[3] Z. Bai and P. Cheng, “Marcinkiewicz strong laws for linear
statistics,” Statistics & Probability Letters, vol. 46, no. 2, pp. 105–
112, 2000.

[4] G.-H. Cai, “Marcinkiewicz strong laws for linear statistics of
𝜌
∗-mixing sequences of random variables,” Anais da Academia

Brasileira de Ciências, vol. 78, no. 4, pp. 615–621, 2006.
[5] Q.Wu, “A strong limit theorem for weighted sums of sequences

of negatively dependent random variables,” Journal of Inequali-
ties and Applications, vol. 2010, Article ID 383805, 8 pages, 2010.

[6] S. H. Sung, “On the strong convergence for weighted sums of
random variables,” Statistical Papers, vol. 52, no. 2, pp. 447–454,
2011.

[7] X.-C. Zhou, C.-C. Tan, and J.-G. Lin, “On the strong laws
for weighted sums of 𝜌∗-mixing random variables,” Journal
of Inequalities and Applications, vol. 2011, Article ID 157816, 8
pages, 2011.

[8] X. Wang, X. Li, W. Yang, and S. Hu, “On complete convergence
for arrays of rowwise weakly dependent random variables,”
Applied Mathematics Letters, vol. 25, no. 11, pp. 1916–1920, 2012.

[9] T. K. Chandra and S. Ghosal, “Extensions of the strong law of
large numbers of Marcinkiewicz and Zygmund for dependent
variables,” Acta Mathematica Hungarica, vol. 71, no. 4, pp. 327–
336, 1996.

[10] T. K. Chandra and S. Ghosal, “The strong law of large numbers
for weighted averages under dependence assumptions,” Journal
of Theoretical Probability, vol. 9, no. 3, pp. 797–809, 1996.

[11] Y. Wang, J. Yan, F. Cheng, and C. Su, “The strong law of large
numbers and the law of the iterated logarithm for product sums
of NA and AANA random variables,” Southeast Asian Bulletin
of Mathematics, vol. 27, no. 2, pp. 369–384, 2003.

[12] M.-H. Ko, T.-S. Kim, and Z. Lin, “The Hájeck-Rènyi inequality
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