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We focus on a system of a rational 𝑚-order difference equation 𝑥
𝑛+1

= (𝑥
𝑛−𝑚+1

)/(𝐴 + 𝑦
𝑛
𝑦
𝑛−1

⋅ ⋅ ⋅ 𝑦
𝑛−𝑚+1

), 𝑦
𝑛+1

= (𝑦
𝑛−𝑚+1

)/(𝐵 +

𝑥
𝑛
𝑥
𝑛−1

⋅ ⋅ ⋅ 𝑥
𝑛−𝑚+1

), 𝑛 = 0, 1, . . ., where𝐴, 𝐵, 𝑥
0
, 𝑥
−1
, . . . , 𝑥

−𝑚+1
, 𝑦
0
, 𝑦
−1
, . . . , 𝑦

−𝑚+1
∈ (0,∞). We investigate the dynamical behavior of

positive solution for the system.

1. Introduction

In 2011, Kurbanli et al. [1] studied the behavior of positive
solutions of the system of rational difference equations

𝑥
𝑛+1

=

𝑥
𝑛−1

𝑦
𝑛
𝑥
𝑛−1

+ 1

,

𝑦
𝑛+1

=

𝑦
𝑛−1

𝑥
𝑛
𝑦
𝑛−1

+ 1

,

(1)

where the initial conditions are arbitrary nonnegative real
numbers.

In the same year, Kurbanli [2] studied the behavior of
solutions of the system of rational difference equations

𝑥
𝑛+1

=

𝑥
𝑛−1

𝑦
𝑛
𝑥
𝑛−1

− 1

,

𝑦
𝑛+1

=

𝑦
𝑛−1

𝑥
𝑛
𝑦
𝑛−1

− 1

,

𝑧
𝑛+1

=

𝑧
𝑛−1

𝑦
𝑛
𝑧
𝑛−1

− 1

,

(2)

where the initial conditions are arbitrary real numbers.
Moreover, Kurbanli [3] studied the behavior of the solutions
of the difference equation system

𝑥
𝑛+1

=

𝑥
𝑛−1

𝑦
𝑛
𝑥
𝑛−1

− 1

,

𝑦
𝑛+1

=

𝑦
𝑛−1

𝑥
𝑛
𝑦
𝑛−1

− 1

,

𝑧
𝑛+1

=

1

𝑦
𝑛
𝑧
𝑛

,

(3)

where 𝑥
0
, 𝑥
−1
, 𝑦
0
, 𝑦
−1
, 𝑧
0
, 𝑧
−1

∈ R such that 𝑦
0
𝑥
−1

̸= 1,
𝑥
0
𝑦
−1

̸= 1 and 𝑦
0
𝑧
0

̸= 1.
In [4], Liu et al. gave more results of the solution of the

system (2) including a new and simple expression of 𝑧
𝑛
and

the asymptotical behavior of the solution.
In [5], Stević showed that the system of difference equa-

tions

𝑥
𝑛+1

=

𝑎𝑥
𝑛−1

𝑏𝑦
𝑛
𝑥
𝑛−1

+ 𝑐

, 𝑦
𝑛+1

=

𝛼𝑦
𝑛−1

𝛽𝑥
𝑛
𝑦
𝑛−1

+ 𝛾

,

𝑛 = 0, 1, . . . ,

(4)

can be solved.
In 2012, Gu and Ding [6] derived two canonical state

space forms from multiple-input multiple-output systems
described by difference equations.
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The system of two nonlinear difference equations

𝑥
𝑛+1

= 𝐴 +

𝑦
𝑛

𝑥
𝑛−𝑝

, 𝑦
𝑛+1

= 𝐴 +

𝑥
𝑛

𝑦
𝑛−𝑞

,

𝑛 = 0, 1, . . . ,

(5)

was studied by Papaschinopoulos and Schinas [7], where
𝑝, 𝑞 ∈ N.

Moreover, the system of rational difference equations

𝑥
𝑛+1

=

𝑥
𝑛

𝑎 + 𝑐𝑦
𝑛

, 𝑦
𝑛+1

=

𝑦
𝑛

𝑏 + 𝑑𝑥
𝑛

,

𝑛 = 0, 1, . . . ,

(6)

was studied by Clark et al. [8, 9], where 𝑎, 𝑏, 𝑐, 𝑑 ∈ (0,∞) and
𝑥
0
, 𝑦
0
∈ [0,∞).

Liu et al. [10] studied the behavior of a system of rational
difference equations

𝑥
𝑛+1

=

𝑥
𝑛−1

𝑦
𝑛
𝑥
𝑛−1

− 1

, 𝑦
𝑛+1

=

𝑦
𝑛−1

𝑥
𝑛
𝑦
𝑛−1

− 1

,

𝑧
𝑛+1

=

1

𝑥
𝑛
𝑧
𝑛−1

, 𝑛 = 0, 1, . . . ,

(7)

where the initial conditions are nonzero real numbers.
In 2012, Zhang et al. [11] studied the solutions, stability

character, and asymptotic behavior of the system of a rational
third-order difference equation

𝑥
𝑛+1

=

𝑥
𝑛−2

𝐴 + 𝑦
𝑛
𝑦
𝑛−1

𝑦
𝑛−2

, 𝑦
𝑛+1

=

𝑦
𝑛−2

𝐵 + 𝑥
𝑛
𝑥
𝑛−1

𝑥
𝑛−2

,

𝑛 = 0, 1, . . . ,

(8)

where 𝐴, 𝐵, 𝑥
0
, 𝑥
−1
, 𝑥
−2
, 𝑦
0
, 𝑦
−1
, 𝑦
−2

∈ (0,∞).
In this paper, we studied the solutions, stability character,

and asymptotic behavior of the system of a rational 𝑚-order
difference equation

𝑥
𝑛+1

=

𝑥
𝑛−𝑚+1

𝐴 + 𝑦
𝑛
𝑦
𝑛−1

⋅ ⋅ ⋅ 𝑦
𝑛−𝑚+1

,

𝑦
𝑛+1

=

𝑦
𝑛−𝑚+1

𝐵 + 𝑥
𝑛
𝑥
𝑛−1

⋅ ⋅ ⋅ 𝑥
𝑛−𝑚+1

, 𝑛 = 0, 1, . . . ,

(9)

where 𝐴, 𝐵, 𝑥
0
, 𝑥
−1
, . . . , 𝑥

−𝑚+1
, 𝑦
0
, 𝑦
−1
, . . . , 𝑦

−𝑚+1
∈ (0,∞).

2. Preliminaries

Let 𝑚 ∈ N and let 𝑓 : 𝐼
𝑚

𝑥
× 𝐼
𝑚

𝑦
→ 𝐼
𝑥
and 𝑔 : 𝐼

𝑚

𝑥
× 𝐼
𝑚

𝑦
→ 𝐼
𝑦

be continuously differentiable functions, where 𝐼
𝑥
and 𝐼
𝑦
are

intervals in R.
For any (𝑥

0
, 𝑦
0
), (𝑥
−1
, 𝑦
−1
), . . . , (𝑥

−𝑚+1
, 𝑦
−𝑚+1

) ∈ 𝐼
𝑥
× 𝐼
𝑦
,

the system of difference equations

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑚+1

, 𝑦
𝑛
, 𝑦
𝑛−1

, . . . , 𝑦
𝑛−𝑚+1

) ,

𝑦
𝑛+1

= 𝑔 (𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑚+1

, 𝑦
𝑛
, 𝑦
𝑛−1

, . . . , 𝑦
𝑛−𝑚+1

) ,

𝑛 = 0, 1, . . . ,

(10)

has a unique solution {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=−𝑚+1
.

Definition 1. A point (𝑥, 𝑦) ∈ 𝐼
𝑥
× 𝐼
𝑦
is called an equilibrium

point of the system (10) if 𝑥 = 𝑓(𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑦, . . . , 𝑦) and
𝑦 = 𝑔(𝑥, 𝑥, 𝑥, . . . , 𝑦, 𝑦, . . . , 𝑦).

Definition 2. The linearized system of the system (10) about
the equilibrium (𝑥, 𝑦) is the system of linear difference
equations

𝑥
𝑛+1

=

𝑚−1

∑

𝑖=0

(

𝜕𝑓 (𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑦, . . . , 𝑦)

𝜕𝑥
𝑛−𝑖

𝑥
𝑛−𝑖

+

𝜕𝑓 (𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑦, . . . , 𝑦)

𝜕𝑦
𝑛−𝑖

𝑦
𝑛−𝑖

) ,

𝑦
𝑛+1

=

𝑚−1

∑

𝑖=0

(

𝜕𝑔 (𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑦, . . . , 𝑦)

𝜕𝑥
𝑛−𝑖

𝑥
𝑛−𝑖

+

𝜕𝑔 (𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑦, . . . , 𝑦)

𝜕𝑦
𝑛−𝑖

𝑦
𝑛−𝑖

) .

(11)

Definition 3. An equilibrium point (𝑥, 𝑦) of the system (10)
is said to be stable relative to 𝐼

𝑥
× 𝐼
𝑦
if for every 𝜖 > 0,

there exists 𝛿 > 0 such that for any (𝑥
0
, 𝑦
0
), (𝑥
−1
, 𝑦
−1
), . . . ,

(𝑥
−𝑚+1

, 𝑦
−𝑚+1

) ∈ 𝐼
𝑥
× 𝐼
𝑦
, with

max{
0

∑

𝑖=−𝑚+1





𝑥
𝑖
− 𝑥





,

0

∑

𝑖=−𝑚+1





𝑦
𝑖
− 𝑦





} < 𝛿. (12)

One has max{|𝑥
𝑛
− 𝑥|, |𝑦

𝑛
− 𝑦|} < 𝜖 for all 𝑛 ≥ −𝑚 + 1.

Definition 4. An equilibrium point (𝑥, 𝑦) of the system
(10) is called an attractor relative to 𝐼

𝑥
× 𝐼
𝑦

if for all
(𝑥
0
, 𝑦
0
), (𝑥
−1
, 𝑦
−1
), . . . , (𝑥

−𝑚+1
, 𝑦
−𝑚+1

) ∈ 𝐼
𝑥

× 𝐼
𝑦
, one has

lim
𝑛→∞

𝑥
𝑛
= 𝑥 and lim

𝑛→∞
𝑦
𝑛
= 𝑦.

Definition 5. An equilibrium point (𝑥, 𝑦) of the system (10) is
said to be asymptotically stable relative to 𝐼

𝑥
×𝐼
𝑦
if it is stable,

and it is also an attractor.

Definition 6. An equilibrium point (𝑥, 𝑦) of the system (10) is
said to be unstable if it is not stable.

Theorem 7 (see [12]). Let 𝑋(𝑛 + 1) = 𝐹(𝑋(𝑛)), 𝑛 = 0, 1, . . .,
be a system of difference equations and let𝑋 be the equilibrium
point of the system. If all eigenvalues of the Jacobian matrix
evaluated at 𝑋 lie inside the open unit disk, then 𝑋 is asymp-
totically stable. If one of them has a modulus greater than one,
then𝑋 is unstable.

Theorem 8 (see [13]). Let 𝑋(𝑛 + 1) = 𝐹(𝑋(𝑛)), 𝑛 = 0, 1, . . .,
be a system of difference equations and let𝑋 be the equilibrium
point of the system. Assume that the characteristic polynomial
of the system about𝑋 is 𝑎

0
𝜆
𝑛

+ 𝑎
1
𝜆
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−1

𝜆+ 𝑎
𝑛
where

𝑎
𝑖
∈ R for all 𝑖 and 𝑎

0
> 0. Then all roots of the characteristic

equation lie inside the open unit disk if and only if Δ
𝑘
> 0 for
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all positive integer 𝑘 ≤ 𝑛, where Δ
𝑘
is the principal minor of

order 𝑘 of the 𝑛 × 𝑛matrix

Δ
𝑛
= (

𝑎
1

𝑎
3

𝑎
5

⋅ ⋅ ⋅ 0

𝑎
0

𝑎
2

𝑎
4

⋅ ⋅ ⋅ 0

0 𝑎
1

𝑎
3

⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑎
𝑛

). (13)

3. Results

We note that

(i) if𝐴 < 1 and𝐵 < 1 then the system (9) has equilibrium
(0, 0) and (

𝑚

√1 − 𝐵,
𝑚

√1 − 𝐴);
(ii) if𝐴 = 1 and𝐵 < 1 then the system (9) has equilibrium

(0, 0) and (
𝑚

√1 − 𝐵, 0);
(iii) if𝐴 < 1 and𝐵 = 1 then the system (9) has equilibrium

(0, 0) and (0,
𝑚

√1 − 𝐴);
(iv) if 𝐴 > 1 and 𝐵 > 1 then (0, 0) is the unique equilib-

rium point of the system (9).

Theorem 9. Let (𝑥
𝑛
, 𝑦
𝑛
) be positive solution of the system (9).

For all nonnegative integer 𝑘, one has

0 ≤ 𝑥
𝑛
≤

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝑥
−𝑚+1

𝐴
𝑘+1

, 𝑛 = 𝑚𝑘 + 1;

𝑥
−𝑚+2

𝐴
𝑘+1

, 𝑛 = 𝑚𝑘 + 2;

...
𝑥
0

𝐴
𝑘+1

, 𝑛 = 𝑚𝑘 + 𝑚,

0 ≤ 𝑦
𝑛
≤

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑦
−𝑚+1

𝐵
𝑘+1

, 𝑛 = 𝑚𝑘 + 1;

𝑦
−𝑚+2

𝐵
𝑘+1

, 𝑛 = 𝑚𝑘 + 2;

...
𝑦
0

𝐵
𝑘+1

, 𝑛 = 𝑚𝑘 + 𝑚.

(14)

Proof. Obviously, they are true for 𝑘 = 0. Suppose that they
are true for 𝑘 = 𝑙. Then

𝑥
𝑛
=

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑥
𝑚(𝑙+1)+1

≤

𝑥
𝑚(𝑙+1)−𝑚+1

𝐴

=

1

𝐴

𝑥
𝑚𝑙+1

≤

1

𝐴

(

𝑥
−𝑚+1

𝐴
𝑙+1

) , 𝑛 = 𝑚 (𝑙 + 1) + 1;

𝑥
𝑚(𝑚+1)+2

≤

𝑥
𝑚(𝑙+1)−𝑚+2

𝐴

=

1

𝐴

𝑥
𝑚𝑙+2

≤

1

𝐴

(

𝑥
−𝑚+2

𝐴
𝑙+1

) , 𝑛 = 𝑚 (𝑙 + 1) + 2;

...

𝑥
𝑚(𝑙+1)+𝑚

≤

𝑥
𝑚(𝑙+1)

𝐴

=

1

𝐴

𝑥
𝑚𝑙+𝑚

≤

1

𝐴

(

𝑥
0

𝐴
𝑙+1

) , 𝑛 = 𝑚 (𝑙 + 1) + 𝑚,

𝑦
𝑛
=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

𝑦
𝑚(𝑙+1)+1

≤

𝑦
𝑚(𝑙+1)−𝑚+1

𝐵

=

1

𝐵

𝑦
𝑚𝑙+1

≤

1

𝐵

(

𝑦
−𝑚+1

𝐵
𝑙+1

) , 𝑛 = 𝑚 (𝑙 + 1) + 1;

𝑦
4(𝑙+1)+2

≤

𝑦
𝑚(𝑙+1)−𝑚+2

𝐵

=

1

𝐵

𝑦
𝑚𝑙+2

≤

1

𝐵

(

𝑦
−𝑚+2

𝐵
𝑙+1

) , 𝑛 = 4 (𝑚 + 1) + 2;

...

𝑦
𝑚(𝑙+1)+𝑚

≤

𝑦
𝑚(𝑙+1)

𝐵

=

1

𝐵

𝑦
𝑚𝑙+𝑚

≤

1

𝐵

(

𝑦
0

𝐵
𝑙+1

) , 𝑛 = 𝑚 (𝑙 + 1) + 𝑚.

(15)

Thus, they are true for 𝑘 = 𝑙 + 1.
By the mathematical induction, this proof is completed.

Corollary 10. Let (𝑥
𝑛
, 𝑦
𝑛
) be positive solution of the system

(9). If 𝐴 > 1 and 𝐵 > 1, then the sequence {(𝑥
𝑛
, 𝑦
𝑛
)} converges

exponentially to the equilibrium point (0, 0).

Theorem 11. Let𝐴 > 1 and 𝐵 > 1. Then the equilibrium point
(0, 0) of the system (9) is asymptotically stable.

Proof. The linearized system of the system (9) about the
equilibrium (0, 0) is

Φ
𝑛+1

= 𝐷Φ
𝑛
, (16)

where

Φ
𝑛
=

(

(

(

(

(

(

(

(

(

(

(

(

𝑥
𝑛

𝑥
𝑛−1

𝑥
𝑛−2

...
𝑥
𝑛−𝑚+1

𝑦
𝑛

𝑦
𝑛−1

𝑦
𝑛−2

...
𝑦
𝑛−𝑚+1

)

)

)

)

)

)

)

)

)

)

)

)

,
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𝐷 =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

0 0 ⋅ ⋅ ⋅ 0

1

𝐴

0 0 ⋅ ⋅ ⋅ 0 0

1 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 1 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0

... d d d d d d
...

...
...

0 0 ⋅ ⋅ ⋅ 1 0 0 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 0

1

𝐵

0 0 ⋅ ⋅ ⋅ 0 0 1 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 1 0 0 0

... d d d d d d d d
...

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 1 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(17)

The characteristic equation of the system (16) is

(𝜆
𝑚

−

1

𝐴

)(𝜆
𝑚

−

1

𝐵

) = 0. (18)

Thus, |𝜆| < 1. By Theorem 7, the equilibrium point (0, 0) is
asymptotically stable.

Theorem 12. Let 𝐴 < 1 and 𝐵 < 1. Then both the equilibrium
points (0, 0) and (

𝑚

√1 − 𝐵,
𝑚

√1 − 𝐴) of the system (9) are
unstable.

Proof. We note by the characteristic equation (18) that |𝜆| >

1 and then, by Theorem 7, the equilibrium point (0, 0) is
unstable.

Next, we consider the equilibrium point (
𝑚

√1 − 𝐵,

𝑚

√1 − 𝐴). The linearized system of the system (9) about the
equilibrium (

𝑚

√1 − 𝐵,
𝑚

√1 − 𝐴) is

Φ
𝑛+1

= 𝐺Φ
𝑛
, (19)

where

Φ
𝑛
=

(

(

(

(

(

(

(

(

(

(

(

(

𝑥
𝑛

𝑥
𝑛−1

𝑥
𝑛−2

...
𝑥
𝑛−𝑚+1

𝑦
𝑛

𝑦
𝑛−1

𝑦
𝑛−2

...
𝑦
𝑛−𝑚+1

)

)

)

)

)

)

)

)

)

)

)

)

,

𝐺 =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

0 0 ⋅ ⋅ ⋅ 0 1 𝛼 𝛼 ⋅ ⋅ ⋅ 𝛼 𝛼

1 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0

0 1 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0

... d d d d d d
...

...
...

0 0 ⋅ ⋅ ⋅ 1 0 0 0 0 0 0

𝛽 𝛽 ⋅ ⋅ ⋅ 𝛽 𝛽 0 0 0 0 1

0 0 ⋅ ⋅ ⋅ 0 0 1 0 0 0 0

0 0 ⋅ ⋅ ⋅ 0 0 0 1 0 0 0

... d d d d d d d d
...

0 0 ⋅ ⋅ ⋅ 0 0 0 0 0 1 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

,

(20)

in which

𝛼 = −

𝑚

√(1 − 𝐴)
𝑚−1

(1 − 𝐵),

𝛽 = −

𝑚

√(1 − 𝐴) (1 − 𝐵)
𝑚−1

.

(21)

The characteristic polynomial of the system (19) is

1 − 𝛼𝛽 −

𝑚

∑

𝑖=1

(𝑖𝛼𝛽𝜆
𝑖−1

) − 2𝜆
𝑚

−

𝑚−1

∑

𝑖=1

(𝑖𝛼𝛽𝜆
2𝑚−(𝑖+1)

) + 𝜆
2𝑚

.

(22)

We note the characteristic polynomial 𝑎
0
𝜆
2𝑚

+ 𝑎
1
𝜆
2𝑚−1

+

⋅ ⋅ ⋅ + 𝑎
2𝑚−1

𝜆 + 𝑎
2𝑚

that 𝑎
1

= 0. Thus, we obtain that not
all of Δ

𝑘
> 0, 𝑘 = 1, 2, . . . , 2𝑚. By Theorems 7 and 8, the

equilibrium point ( 𝑚√1 − 𝐵,
𝑚

√1 − 𝐴) is unstable.

Theorem 13. Let 𝐴, 𝐵 < 1 and Ω
1
= (0,

𝑚

√1 − 𝐵) × (
𝑚

√1 − 𝐴,

∞), Ω
2

= (
𝑚

√1 − 𝐵,∞) × (0,
𝑚

√1 − 𝐴). Assume that {(𝑥
𝑛
,

𝑦
𝑛
)}
∞

𝑛=−𝑚+1
satisfies the system (9). Then

(i) if {(𝑥
𝑛
, 𝑦
𝑛
)}
0

𝑛=−𝑚+1
⊆ Ω
1
, then {(𝑥

𝑛
, 𝑦
𝑛
)}
∞

𝑛=−𝑚+1
⊆ Ω
1
;

(ii) if {(𝑥
𝑛
, 𝑦
𝑛
)}
0

𝑛=−𝑚+1
⊆ Ω
2
, then {(𝑥

𝑛
, 𝑦
𝑛
)}
∞

𝑛=−𝑚+1
⊆ Ω
2
.

Proof. (i) Assume that {(𝑥
𝑛
, 𝑦
𝑛
)}
0

𝑛=−𝑚+1
⊆ Ω
1
. Then, for any

𝑖 ∈ {0, 1, . . . , 𝑚 − 1},

𝑥
𝑖+1

=

𝑥
𝑖−𝑚+1

𝐴 + 𝑦
𝑖
𝑦
𝑖−1

⋅ ⋅ ⋅ 𝑦
𝑖−𝑚+1

<

𝑥
𝑖−𝑚+1

𝐴 + (
𝑚

√1 − 𝐴)

𝑚
= 𝑥
𝑖−𝑚+1

,

𝑦
𝑖+1

=

𝑦
𝑖−𝑚+1

𝐵 + 𝑥
𝑖
𝑥
𝑖−1

⋅ ⋅ ⋅ 𝑥
𝑖−𝑚+1

>

𝑦
𝑖−𝑚+1

𝐵 + (
𝑚

√1 − 𝐵)

𝑚
= 𝑦
𝑖−𝑚+1

.

(23)

Then (𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑚
, 𝑦
𝑚
) ∈ Ω
1
.
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Next, we suppose that (𝑥
𝑘
, 𝑦
𝑘
), (𝑥
𝑘−1

, 𝑦
𝑘−1

), . . . , (𝑥
𝑘−𝑚+1

,

𝑦
𝑘−𝑚+1

) ∈ Ω
1
where 𝑘 is a positive integer. Then

𝑥
𝑘+1

=

𝑥
𝑘−𝑚+1

𝐴 + 𝑦
𝑘
𝑦
𝑘−1

⋅ ⋅ ⋅ 𝑦
𝑘−𝑚+1

<

𝑥
𝑘−𝑚+1

𝐴 + (
𝑚

√1 − 𝐴)

𝑚
= 𝑥
𝑘−𝑚+1

,

𝑦
𝑘+1

=

𝑦
𝑘−𝑚+1

𝐵 + 𝑥
𝑘
𝑥
𝑘−1

⋅ ⋅ ⋅ 𝑥
𝑘−𝑚+1

>

𝑦
𝑘−𝑚+1

𝐵 + (
𝑚

√1 − 𝐵)

𝑚
= 𝑦
𝑘−𝑚+1

.

(24)

Then (𝑥
𝑘+1

, 𝑦
𝑘+1

) ∈ Ω
1
.

By the mathematical induction, {(𝑥
𝑛
, 𝑦
𝑛
)}
∞

𝑛=−𝑚+1
⊆ Ω
1
.

(ii) This is similar to the proof of (i).
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difference equations,” Computers & Mathematics with Applica-
tions, vol. 43, no. 6-7, pp. 849–867, 2002.
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