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Substitution behaviors happen frequently when demands are uncertain in a production inventory system, and it has attracted
enough attention from firms. Related researches can be clearly classified into firm-driven substitution and customer-driven
substitution. However, if production inventory is stock-out when a firm updates its product, the firm may use a new generation
product to satisfy the customer’s demandof old generation product or use updated component to substitute old component to satisfy
production demand. Obviously, two cases of substitution exist simultaneously in the product-updated system when an emergent
shortage happens. In this paper, we consider a component order problem with component substitution and product substitution
simultaneously in a product-updated system, where the case of firm-driven substitution or customer-driven substitution can
be reached by setting different values for two system parameters. Firstly, we formulate the problem into a two-stage dynamic
programming. Secondly, we give the optimal decisions about assembled quantities of different types of products. Next, we prove that
the expected profit function is jointly concave in order quantities and decrease the feasible domain by determining some bounds
for decision variables. Finally, some management insights about component substitution and product substitution are investigated
by theoretical analysis method.

1. Introduction

In an uncertainty environment, substitution is an effective
way when planner incurs an emergent shortage, it can
maximize the expected profit or minimize risk. For example,
when a shortage happens for a supplier, he can choose
to fill demands with the inventory of another product to
decrease revenue loss; or for a manufacturer, once the short-
age happens in manufacturing process, he may use another
substitutable component to satisfy production demand.How-
ever, the substitution offered by the firm to hedge against
uncertainty in future sales or production also increases
management difficulty.

According to the current classification, the substitu-
tion problem mainly includes firm-driven substitution and
customer-driven substitution. The former sources from the
assortment problem has been studied adequately. Usually,

this substitution happens when a lower grade component is
stock-out, and the inventory of another updated component
is surplus, which is a one-way substitution (see, e.g., [1],
Pasternack and Drezner [2], [3–7]).

While for the latter, the firm only offers a substitution
advice, the actual substitution behavior is determined by a
large number of independently-minded and self-interested
consumers. When the shortage case happens, to retain the
original customer or decrease shortage penalty, firm may
offer a type of substitutable product to the customers.
Whether the customer accepts the substitution advice is
affected by the variants in many aspects, such as cost, selling
prices, and particular technical attributes.

Customer-driven substitution has also many researches
and is more attractive in current issues.The correlated papers
can be categorized according to two-product or multiprod-
uct, the centralized or competitive decision, and partial or
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full substitution. Our paper is related to the case with the
two product, centralized, and partial substitution (see, e.g.,
[8–11]).

Current research considered either firm-driven substi-
tution or customer-driven substitution. It is possible that
both two cases need to be considered in the same operation
environment. For example, a manufacturer produces two
products with an updated relation, replenishes the compo-
nent inventory in advance, and assembles the components
into end products according to the customer’s order. Because
manufacturer makes the replenishment decisions of compo-
nent inventories before retailer’s order arrivals, the shortage
for component inventories are inevitable. Therefore, a man-
ufacturer may fill the shortage demand using an updated
component so that firm-driven substitution happens. At the
mean time, themanufacturer also can stimulate the customer
to buy the other product himself by offering a discount price.
Certainly, the purchasing decision is made by the customer,
so customer-driven substitution happens. However, there is
no paper to consider the two cases simultaneously.

Our paper is mostly related to Hale [12]. The paper
considers the optimal decision problem in an assemble-to-
order system with only component substitution. However,
product substitution is also considered in our paper, besides
for component substitution. And we study a partial substi-
tution case, and the proportion of substitution is related to
a product substitution effort (it may represent an additional
production, shipping costs, or loss in revenue, such as giving
a price discount for a substitution action). In our problem,
there are two important parameters: substitution effort and
mark-up value. When substitution effort is zero, the problem
can be realized as a pure firm-driven substitution problem.
And when mark-up value is very high, the problem can be
realized as a pure customer-driven substitution. To the best
of our knowledge, our paper is the first paper of integrating
product substitution and component substitution.

The rest of this paper is organized as follows. Our model
is formulated in Section 2. In Section 3, we provide optimal
analysis, present the optimal policy of assembled quantities
of different types of products, and give some bounds for
ordering decisions. Some management insights are provided
in Section 4. Finally, we conclude our paper in Section 5.

2. Problem Description and Formulation

A firm facing stochastic market demands produces new
generation product and old generation product simultane-
ously. Each generation product is assembled by two types of
components, one type is a specific component and the other is
an updateable component. The specific component only can
be used to produce a certain type of product alone. However,
the updateable component of a new generation product
also can be used to produce an old generation product,
besides to produce itself. We call the updateable component
of a new generation product as substitutable component
and call the substitutable component of an old generation
product as substituted component. The cost of substitutable
component is higher than substituted component. Certainly,

it is obvious that an old generation product assembled by its
specific component and substitutable component has a higher
performance than the products by its specific component and
substituted component.We call this type of product as hybrid
product, and we assume that its selling price is higher than
a pure old generation. The price-increased value of hybrid
product is called a mark-up value, denoted by 𝑐

𝑛𝑜
. Moreover,

a new generation product has a better performance than an
old generation product and a hybrid product, so its selling
price is the highest. To stimulate a customer into accepting
substitution product, the firm will offer a substitution effort,
which may represent an additional production costs or
shipping costs, or potential loss of customer’s goodwill, or loss
in revenue (such as giving a price discount for a substitution
action), denoted by 𝐶

𝑛𝑜
. It means that the customers may

not accept product substitution if the firm does not want to
offer a satisfying effort level.Therefore, customer’s quantity of
accepting substitution product is affected by the substitution
effort. Let 𝜃(𝐶

𝑛𝑜
) denote substitution proportion of product

substitution for given substitution effort. It is obvious that a
larger 𝐶

𝑛𝑜
will result in a larger 𝜃(𝐶

𝑛𝑜
). And we assume that

𝜃(𝐶
𝑛𝑜
) = 0 for 𝐶

𝑛𝑜
= 0.

The research aim of this paper is to determine the optimal
order quantities for all components and the optimal assem-
bled quantities of different types of products in an assemble-
to-order production systemwith component substitution and
product substitution, so that the expectation of firm’s profit is
maximized.

The sequence of system events is as follows. Firstly, facing
stochastic demands, the firm orders all components. Then,
demands are realized. The firm makes decisions on the
production quantities of all type of products. If the demands
of old generation product cannot be satisfied totally, the firm
will consider satisfying the shortage demand by using the
surplus new generation product. If demands are still not be
satisfied, the firm will consider producing a hybrid product.
Finally, the firm assembles current components into end
products.

Notation Definitions. For simplifying the following descrip-
tion, we use 𝑖 and 𝑗 as the subscript of notation. Let 𝑖 = 𝑛

denote new generation product, 𝑖 = 𝑜 denote old generation
product, 𝑗 = 1 denote specific component and 𝑗 = 2 denote
substitution component. Therefore, we may denote specific
component and substitution component by the vector (𝑖, 𝑗),
for example, (𝑛, 2) denote the substitution component of new
generation product, that is, the substitutable component.

𝐶
𝑖𝑗
= order cost of per unit component 𝑗 of product

𝑖.
𝑆
𝑖𝑗
= salvage value of per unit component 𝑗of product

𝑖.
𝐷
𝑖
= demand for product 𝑖 and is a random variable.

𝑝
𝑖
= selling price of product 𝑖.

𝑐
𝑛𝑜

= mark-up value of per unit component substitu-
tion for old generation.
𝐶
𝑛𝑜

= substitution effort of per unit product substitu-
tion.
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Figure 1: Notation sketch figure.

𝜃(𝐶
𝑛𝑜
) = substitution proportion of product substitu-

tion for a given substitution effort.

𝑄
𝑖𝑗
= order quantity of component 𝑗 of product 𝑖.

𝑞
𝑛𝑛

= assembled quantity of new generation product
composed by its specific component and substitutable
component.

𝑞
𝑜𝑜

= assembled quantity of old generation product
composed by its specific component and substituted
component.

𝑞
(1)

𝑛𝑜
= product quantity for satisfying product substi-

tution.

𝑞
(2)

𝑛𝑜
= hybrid product quantity for satisfying compo-

nent substitution.

We can figure a part of notations by Figure 1.
Firstly, we give some assumptions about system parame-

ters.

Assumption 1. 𝑝
𝑛
− 𝐶
𝑛1

− 𝐶
𝑛2

− 𝐶
𝑛𝑜

> 𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝐶
𝑛2

− 𝐶
𝑜2
. It

means that the revenue of the case of product substitution is
larger than the case of component substitution.

Assumption 2. 𝐶
𝑜2

− 𝑆
𝑜2

< 𝐶
𝑛2

− 𝑆
𝑛2
. It denotes that the cost

loss of per unit surplus substitutable component is larger than
per unit surplus substituted component.

Assumption 3. 𝑐
𝑛𝑜

≤ 𝐶
𝑛2

− 𝐶
𝑜2
. It means that the mark-up

value should not be larger than the added cost for component
substitution. Generally, the firm should bear some duties for
the shortage as firm’s reason.

Assumption 4. 𝑝
𝑛
− 𝐶
𝑛𝑜

− 𝑆
𝑛1

− 𝑆
𝑛2

> 𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2

>

0. It means that the selling revenue is larger than salvages,
otherwise, the firm has no motivation to sell end products.
It also means that the firm has a larger motivation to offer
product substitution to the customer than to offer component
substitution.

Let 𝑄 = (𝑄
𝑛1
, 𝑄
𝑛2
, 𝑄
𝑜1
, 𝑄
𝑛2
) and 𝑞 = (𝑞

𝑛𝑛
, 𝑞
𝑜𝑜
, 𝑞
(1)

𝑛𝑜
, 𝑞
(2)

𝑛𝑜
),

from the sequence of system events, the optimization prob-
lem is given as follows:

max
𝑄

Π = max
𝑄

{

{

{

− ∑

𝑖=𝑛,𝑜

∑

𝑗=1,2

𝐶
𝑖𝑗
𝑄
𝑖𝑗
+ 𝐸 [𝜋 (𝑄,𝐷

𝑛
, 𝐷
𝑜
)]

}

}

}

, (1)

where

𝜋 (𝑄, 𝑑
𝑛
, 𝑑
𝑜
) = max

𝑞

{𝑝
𝑛
𝑞
𝑛𝑛

+ 𝑝
𝑜
𝑞
𝑜𝑜

+ (𝑝
𝑛
− 𝐶
𝑛𝑜
) 𝑞
(1)

𝑛𝑜

+ (𝑝
𝑜
+ 𝑐
𝑛𝑜
) 𝑞
(2)

𝑛𝑜

+ 𝑆
𝑛1

(𝑄
𝑛1

− 𝑞
𝑛𝑛

− 𝑞
(1)

𝑛𝑜
)

+ 𝑆
𝑜1

(𝑄
𝑜1

− 𝑞
𝑜𝑜

− 𝑞
(2)

𝑛𝑜
)

+ 𝑆
𝑛2

(𝑄
𝑛2

− 𝑞
𝑛𝑛

− 𝑞
(1)

𝑛𝑜
− 𝑞
(2)

𝑛𝑜
)

+𝑆
𝑜2

(𝑄
𝑜2

− 𝑞
𝑜𝑜
) }

s.t.

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑞
𝑛𝑛

≤ 𝑑
𝑛

𝑞
𝑜𝑜

+ 𝑞
(1)

𝑛𝑜
+ 𝑞
(2)

𝑛𝑜
≤ 𝑑
𝑜

𝑞
𝑛𝑛

+ 𝑞
(1)

𝑛𝑜
≤ 𝑄
𝑛1

𝑞
𝑛𝑛

+ 𝑞
(1)

𝑛𝑜
+ 𝑞
(2)

𝑛𝑜
≤ 𝑄
𝑛2

𝑞
𝑜𝑜

≤ 𝑄
𝑜2

𝑞
𝑜𝑜

+ 𝑞
(2)

𝑛𝑜
≤ 𝑄
𝑜1

𝑞
𝑛𝑛
, 𝑞
𝑜𝑜
, 𝑞
(1)

𝑛𝑜
, 𝑞
(2)

𝑛𝑜
≥ 0.

(2)

Let 𝑄∗ = (𝑄
∗

𝑛1
, 𝑄
∗

𝑛2
, 𝑄
∗

𝑜1
, 𝑄
∗

𝑜2
) denote the optimal solu-

tion in (1) and 𝑞
∗

= (𝑞
∗

𝑛𝑛
, 𝑞
∗

𝑜𝑜
, 𝑞
(1∗)

𝑛𝑜
, 𝑞
(2∗)

𝑛𝑜
) denote the optimal

solution of optimization problem in (2). In the following, we
will make optimal analyses for the optimal solutions 𝑄∗ and
𝑞
∗.

3. Optimal Analysis

The aforementioned optimization problem is a two-stage
stochastic dynamic programming. We need to solve
𝜋(𝑄,𝐷

𝑛
, 𝐷
𝑜
) in (2), firstly, then solve the optimization

problem in (1).

3.1. Optimal AssembleDecisions. Tofind the optimal solution
𝑞
∗, we need to firstly give a property about optimal orders of
several types of components.

Property 1. Theoptimal orders of several types of components
satisfy

(a) 𝑄∗
𝑛1

≤ 𝑄
∗

𝑛2
,

(b) 𝑄∗
𝑜2

≤ 𝑄
∗

𝑜1
.
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Proof. From the constraints 𝑞
𝑛𝑛

+ 𝑞
(1)

𝑛𝑜
≤ 𝑄
𝑛1

and 𝑞
𝑛𝑛

+

𝑞
(1)

𝑛𝑜
+ 𝑞
(2)

𝑛𝑜
≤ 𝑄
𝑛2
, we know that if 𝑄

∗

𝑛1
> 𝑄
∗

𝑛2
, there

must be 𝑞
∗

𝑛𝑛
+ 𝑞
(1∗)

𝑛𝑜
< 𝑄
𝑛1

for any realized demand, that is,
the specific component of new generation product must be
surplus, which means 𝑄∗

𝑛1
is not optimal. Therefore, we have

𝑄
∗

𝑛1
≤ 𝑄
∗

𝑛2
. Similar to the process, we also can prove that part

(b) holds.

Property 1 means that the optimal order quantity of sub-
stitutable component is larger than the optimal order quantity
of specific component of new generation product. However,
for old generation product, the optimal order quantity of
substituted component is less than the optimal order quantity
of specific component of new generation product. Because
the substitutable component needs to meet an additional
demand except for the original demand, and the substituted
component has an additional supply source, the property is
obvious.

Property 1 not only give the bound constraints about
the optimal order quantities of several types of components
which is meaningful for shrinking the feasible domain by
adding the constraints 𝑄

𝑛1
≤ 𝑄
𝑛2

and 𝑄
𝑜2

≤ 𝑄
𝑜1
, but

also important for analyzing the properties of optimization
model. In the following, we will give the optimal decisions of
assembled quantities.

Theorem 1. Given the order quantity vector (𝑄
𝑛1
, 𝑄
𝑛2
,

𝑄
𝑜1
, 𝑄
𝑛2
) and the realized demand (𝑑

𝑛
, 𝑑
𝑜
), the optimal assem-

bled quantities for all types of products are as follows:

𝑞
∗

𝑛𝑛
= min {𝑑

𝑛
, 𝑄
𝑛1
}

𝑞
∗

𝑜𝑜
= min {𝑑

𝑜
, 𝑄
𝑜2
}

𝑞
(1∗)

𝑛𝑜
= min {max {𝑄

𝑛1
− 𝑑
𝑛
, 0} ,

max {𝜃 (𝐶
𝑛𝑜
) (𝑑
𝑜
− 𝑄
𝑜2
) , 0}}

𝑞
(2∗)

𝑛𝑜
= min {𝑄

𝑛2
−min {𝑑

𝑛
, 𝑄
𝑛1
} ,

max {min {𝑑
𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
, 0}}

−min {max {𝑄
𝑛1

− 𝑑
𝑛
, 0} ,

𝜃 (𝐶
𝑛𝑜
)max {𝑑

𝑜
− 𝑄
𝑜2
, 0}} .

(3)

Proof. From Assumption 1, the optimal assemble rule is that
firm produces products by the component itself as possible;
and if old generation product is shortage, the firm should
firstly consider product substitution and secondly consider
component substitution. We analyze the optimal assemble
decisions for different cases.

Case 1. When 𝑑
𝑛
> min{𝑄

𝑛1
, 𝑄
𝑛2
} and 𝑑

0
≤ min{𝑄

𝑜1
, 𝑄
𝑜2
},

there are 𝑑
𝑛

> 𝑄
𝑛1

and 𝑑
0

≤ 𝑄
𝑜2

(by Property 1), that is,
the demands of new generation product can not totally be
satisfied, and there is no shortage for old generation product.
Therefore,

𝑞
𝑛𝑛

= 𝑄
𝑛1
, 𝑞

(1)

𝑛𝑜
= 0, 𝑞

𝑜𝑜
= 𝑑
𝑜
, 𝑞

(2)

𝑛𝑜
= 0. (4)

Case 2. When 𝑑
𝑛
> min{𝑄

𝑛1
, 𝑄
𝑛2
} and 𝑑

0
> min{𝑄

𝑜1
, 𝑄
𝑜2
},

there are 𝑑
𝑛

> 𝑄
𝑛1

and 𝑑
0

> 𝑄
𝑜2

(by Property 1), that is,
both demands of new and old generation product can not
totally be satisfied by the components themselves. Therefore,
there is no product substitution, butmay exist the component
substitution.The shortage quantity of substituted component
is min{𝑑

𝑜
− 𝑄
𝑜2
, 𝑄
𝑜1

− 𝑄
𝑜2
}, and the supply quantity of

substitutable component is 𝑄
𝑛2

− 𝑄
𝑛1
. We have

𝑞
𝑛𝑛

= 𝑄
𝑛1
, 𝑞

(1)

𝑛𝑜
= 0, 𝑞

𝑜𝑜
= 𝑄
𝑜2
,

𝑞
(2)

𝑛𝑜
= min {𝑄

𝑛2
− 𝑄
𝑛1
,min {𝑑

𝑜
− 𝑄
𝑜2
, 𝑄
𝑜1

− 𝑄
𝑜2
}} .

(5)

Case 3. When 𝑑
𝑛
≤ min{𝑄

𝑛1
, 𝑄
𝑛2
} and 𝑑

𝑜
≤ min{𝑄

𝑜1
, 𝑄
𝑜2
},

there are 𝑑
𝑛
≤ 𝑄
𝑛1
and 𝑑

0
≤ 𝑄
𝑜2
(by Property 1), that is, both

demands of new and old generation product can totally be
satisfied by the components themselves. Therefore, we have

𝑞
𝑛𝑛

= 𝑑
𝑛
, 𝑞

𝑜𝑜
= 𝑑
𝑜
, 𝑞

(1)

𝑛𝑜
= 0, 𝑞

(2)

𝑛𝑜
= 0. (6)

Case 4. When 𝑑
𝑛
≤ min{𝑄

𝑛1
, 𝑄
𝑛2
} and 𝑑

0
> min{𝑄

𝑜1
, 𝑄
𝑜2
},

there are 𝑑
𝑛
≤ 𝑄
𝑛1

and 𝑑
0
> 𝑄
𝑜2
(by Property 1), that is, the

demands of new generation product can totally be satisfied,
and the demands of old generation product can not totally be
satisfied by the components itself. So, we have 𝑞

𝑛𝑛
= 𝑑
𝑛
and

𝑞
𝑜𝑜

= 𝑄
𝑜2
. Product substitution needs to be considered firstly.

The maximal supply quantity of new generation product is
𝑄
𝑛1
−𝑑
𝑛
, and the demand quantity of new generation product

is 𝑑
𝑜
− 𝑄
𝑜2
. We have

𝑞
(1)

𝑛𝑜
= min {𝑄

𝑛1
− 𝑑
𝑛
, 𝑑
𝑜
− 𝑄
𝑜2
} . (7)

Component substitution also may happen. If the demand
shortage of old generation product is totally satisfied by
product substitution, then 𝑞

(2)

𝑛𝑜
= 0; otherwise, component

substitution happens. The maximal supply quantity of sub-
stitutable component is 𝑄

𝑛2
− 𝑑
𝑛
− 𝑞
(1)

𝑛𝑜
, and the shortage of

substituted component is min{𝑑
𝑜
, 𝑄
𝑜1
}−𝑄
𝑜2
−𝑞
(1)

𝑛𝑜
.Therefore,

we have

𝑞
(2)

𝑛𝑜
= min {𝑄

𝑛2
− 𝑑
𝑛
− 𝑞
(1)

𝑛𝑜
,min {𝑑

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2

− 𝑞
(1)

𝑛𝑜
}

= min {𝑄
𝑛2

− 𝑑
𝑛
,min {𝑑

𝑜
− 𝑄
𝑜2
, 𝑄
𝑜1

− 𝑄
𝑜2
}} − 𝑞

(1)

𝑛𝑜
.

(8)

In summary, we can denote the optimal assembled quan-
tities by a uniform form, that is, (3). The theorem holds.

3.2. Bounds of Order Decisions. By Theorem 1, we can rewrite
𝜋(𝑄, 𝑑

𝑛
, 𝑑
𝑜
) in (1) as follows:
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𝜋 (𝑄, 𝑑
𝑛
, 𝑑
𝑜
) = (𝑝

𝑛
− 𝑆
𝑛1

− 𝑆
𝑛2
)min {𝑑

𝑛
, 𝑄
𝑛1
}

+ (𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑜2
)min {𝑑

𝑜
, 𝑄
𝑜2
}

+ ∑

𝑗=𝑖,2

∑

𝑖=𝑛,𝑜

𝑆
𝑖𝑗
𝑄
𝑖𝑗

+ (𝑝
𝑛
− 𝐶
𝑛𝑜

− 𝑆
𝑛1

− (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1
))

×min {max {𝑄
𝑛1

− 𝑑
𝑛
, 0} ,

max {𝜃 (𝐶
𝑛𝑜
) (𝑑
𝑜
− 𝑄
𝑜2
) , 0}}

+ (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
)

×min {𝑄
𝑛2

−min {𝑑
𝑛
, 𝑄
𝑛1
} ,

max {min {𝑑
𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
, 0}} .

(9)

By (1), define

Π (𝑄) = 𝐸 [𝜋 (𝑄,𝐷
𝑛
, 𝐷
𝑜
)] − ∑

𝑖=𝑛,𝑜

∑

𝑗=1,2

𝐶
𝑖𝑗
𝑄
𝑖𝑗
. (10)

We have the following property.

Property 2. Π(𝑄) is jointly concave in the order quantity
vector (𝑄

𝑛1
, 𝑄
𝑛2
, 𝑄
𝑜1
, 𝑄
𝑛2
).

Proof. From the theory of linear programming, the value
of a linear maximization programming is concave in the
right hand sides of the constraints ([13], page 438-439).
Therefore, for the given realized demands 𝑑

𝑛
and 𝑑

𝑜
,

𝜋(𝑄, 𝑑
𝑛
, 𝑑
𝑜
) is jointly concave in the order quantity vector

(𝑄
𝑛1
, 𝑄
𝑛2
, 𝑄
𝑜1
, 𝑄
𝑛2
). Moreover,𝐸[𝜋(𝑄,𝐷

𝑛
, 𝐷
𝑜
)] is also jointly

concave in the order quantity vector (𝑄
𝑛1
, 𝑄
𝑛2
, 𝑄
𝑜1
, 𝑄
𝑛2
).

From (10), it is obvious that Π(𝑄)is concave.

Property 2 shows that the optimal solution is unique.The
following property will simplify our analysis.

Property 3. The optimal order quantity of substitutable com-
ponent is equal to the optimal order quantity of substituted
component, that is, 𝑄∗

𝑛2
= 𝑄
∗

𝑛1
.

Proof. From Property 1, we know that the optimal solutions
should satisfy 𝑄

𝑛2
≥ 𝑄
𝑛1

and 𝑄
𝑜2

≤ 𝑄
𝑜1
. We only need to

prove that the optimal solutions do not satisfy𝑄
𝑛2

> 𝑄
𝑛1

and
𝑄
𝑜2

≤ 𝑄
𝑜1
.We will prove that the system profit of decreasing

per unit substitutable component and increasing per unit
substituted component will be improved. Let

𝐻(Δ) = Π (𝑄
𝑛1
, 𝑄
𝑛2

− Δ,𝑄
𝑜1
, 𝑄
𝑜2

+ Δ) , (11)

where 𝑄
𝑛1

≤ 𝑄
𝑛2

− Δ and 𝑄
𝑜1

≥ 𝑄
𝑜2

+ Δ.
The first order condition is as follows:

𝑑𝐻 (Δ)

𝑑Δ

= (𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑜2
)Pr {𝐷

𝑜
> 𝑄
𝑜2

+ Δ} − (𝑆
𝑛2

− 𝐶
𝑛2
)

+ 𝑆
𝑜2

− 𝐶
𝑜2

+ (𝑝
𝑛
− 𝐶
𝑛𝑜

− 𝑆
𝑛1

− (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1
))

× Pr {𝐷
𝑜
> 𝑄
𝑜2

+ Δ,𝑄
𝑛1

> 𝐷
𝑛
, 𝑄
𝑛1

−𝐷
𝑛
> 𝜃 (𝐶

𝑛𝑜
) (𝐷
𝑜
− 𝑄
𝑜2

− Δ)}

− (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
)Pr {𝐷

𝑜
> 𝑄
𝑜2

+ Δ}

> (𝑆
𝑛2

− 𝑆
𝑜2

− 𝑐
𝑛𝑜
)Pr {𝐷

𝑜
> 𝑄
𝑜2

+ Δ}

− (𝑆
𝑛2

− 𝐶
𝑛2
) + 𝑆
𝑜2

− 𝐶
𝑜2

≥ (𝑆
𝑛2

− 𝑆
𝑜2

− (𝐶
𝑛2

− 𝐶
𝑜2
))Pr {𝐷

𝑜
> 𝑄
𝑜2

+ Δ}

− (𝑆
𝑛2

− 𝐶
𝑛2
) + 𝑆
𝑜2

− 𝐶
𝑜2

= (𝐶
𝑜2

− 𝑆
𝑜2

− (𝐶
𝑛2

− 𝑆
𝑛2
))

× (Pr {𝐷
𝑜
> 𝑄
𝑜2

+ Δ} − 1)

> 0.

(12)

For the aforementioned process, the first inequality in (12)
is because of (13), and the second inequality is because of
Assumption 3,

𝑝
𝑛
− 𝐶
𝑛𝑜

− 𝑆
𝑛1

− (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1
)

= 𝑝
𝑛
− 𝐶
𝑛𝑜

− 𝑆
𝑛1

− 𝑆
𝑛2

− (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
) > 0.

(13)

The theorem holds.

Therefore, we have𝐻(𝑄
𝑛2
−𝑄
𝑛1
) = Π(𝑄

𝑛1
, 𝑄
𝑛1
, 𝑄
𝑜1
, 𝑄
𝑜2
+

𝑄
𝑛2

− 𝑄
𝑛1
) > Π(𝑄

𝑛1
, 𝑄
𝑛2
, 𝑄
𝑜1
, 𝑄
𝑜2
), that is, the optimal solu-

tion ofmax{Π(𝑄
𝑛1
, 𝑄
𝑛2
, 𝑄
𝑜1
, 𝑄
𝑜2
)}must satisfy the constraint

𝑄
𝑛2

= 𝑄
𝑛1
.

By Property 3, we can rewrite Π(𝑄) as follows:

Π (𝑄) = 𝜙
𝑛
𝐸 [min {𝐷

𝑛
, 𝑄
𝑛1
}] + 𝜙

𝑜
𝐸 [min {𝐷

𝑜
, 𝑄
𝑜2
}]

+ ∑

𝑗=𝑖,2

∑

𝑖=𝑛,𝑜

(𝑆
𝑖𝑗
− 𝐶
𝑖𝑗
)𝑄
𝑖𝑗

+ 𝜙
(1)

𝑛𝑜
𝐸 [min {max {𝑄

𝑛1
− 𝐷
𝑛
, 0} ,

max {𝜃 (𝐶
𝑛𝑜
) (𝐷
𝑜
− 𝑄
𝑜2
) , 0}}]

+ 𝜙
(2)

𝑛𝑜
𝐸 [min {𝑄

𝑛1
−min {𝐷

𝑛
, 𝑄
𝑛1
} ,

max {min {𝐷
𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
, 0}}] ,

(14)

where

𝜙
𝑛
= 𝑝
𝑛
− 𝑆
𝑛1

− 𝑆
𝑛2
, 𝜙

𝑜
= 𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑜2

𝜙
(1)

𝑛𝑜
= 𝑝
𝑛
− 𝐶
𝑛𝑜

− 𝑆
𝑛1

− (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1
)

𝜙
(2)

𝑛𝑜
= 𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
.

(15)

And, moreover, the original optimization problem in (1) is
translated into an optimization problem with three decision
variables. And Π(𝑄) is concave in 𝑄.
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The first order conditions are as follows:

𝜕Π (𝑄)

𝜕𝑄
𝑛1

= 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
}

+ 𝜙
(1)

𝑛𝑜
Pr {𝑄
𝑛1

> 𝐷
𝑛
, 𝐷
𝑜
> 𝑄
𝑜2
,

𝑄
𝑛1

− 𝐷
𝑛
< 𝜃 (𝐶

𝑛𝑜
) (𝐷
𝑜
− 𝑄
𝑜2
)}

+ 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

+ 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑛
< 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
< min {𝐷

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
} ,

(16)

𝜕Π (𝑄)

𝜕𝑄
𝑜1

= 𝑆
𝑜1

− 𝐶
𝑜1

+ 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜1
, 𝐷
𝑛
≤ 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
> 𝑄
𝑜1

− 𝑄
𝑜2
} ,

(17)

𝜕Π (𝑄)

𝜕𝑄
𝑜2

= 𝜙
𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
}

− 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑛
≤ 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
> min {𝐷

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
}

+ 𝑆
𝑜2

− 𝐶
𝑜2

− 𝜃 (𝐶
𝑛𝑜
)

× 𝜙
(1)

𝑛𝑜
Pr {𝑄
𝑛1

> 𝐷
𝑛
, 𝐷
𝑜
> 𝑄
𝑜2
,

𝑄
𝑛1

− 𝐷
𝑛
> 𝜃 (𝐶

𝑛𝑜
) (𝐷
𝑜
− 𝑄
𝑜2
)} .

(18)

Obviously, it is difficult to gain the analytical solutions by the
first order conditions.Therefore, we will decrease the feasible
domain by giving some bounds about decision variables.

Theorem 2. A lower bound of𝑄∗
𝑛1

is the solution of Pr {𝐷
𝑛
≤

𝑄
𝑛1
} = (𝑝

𝑛
− 𝐶
𝑛1

− 𝐶
𝑛2
)/(𝑝
𝑛
− 𝑆
𝑛1

− 𝑆
𝑛2
).

Proof. From (13), 𝜙(1)
𝑛𝑜

> 0, and from Assumption 4, 𝜙(2)
𝑛𝑜

> 0,
we have

𝜕Π (𝑄)

𝜕𝑄
𝑛1

≥ 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
}

+ 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

= − (𝑝
𝑛
− 𝑆
𝑛1

− 𝑆
𝑛2
)Pr {𝐷

𝑛
≤ 𝑄
𝑛1
}

+ 𝑝
𝑛
− 𝐶
𝑛1

− 𝐶
𝑛2
.

(19)

From Property 2, the solution of Pr{𝐷
𝑛
≤ 𝑄
𝑛1
} = (𝑝

𝑛
− 𝐶
𝑛1

−

𝐶
𝑛2
)/(𝑝
𝑛
− 𝑆
𝑛1

− 𝑆
𝑛2
) is a lower bound of 𝑄∗

𝑛1
.

From Theorem 2, the optimal order quantity of specific
component of new generation product has a lower solution
of equaling to a news-vendor solution. And it is not affected
by product substitution or component substitution.

Theorem 3. An upper bound of 𝑄∗
𝑛1

is the solution of

Pr{𝑄
𝑛1

> 𝐷
𝑛
+ 𝐷
𝑜
} =

𝑝
𝑛
− 𝐶
𝑛1

− 𝐶
𝑛2

𝑝
𝑛
+ 𝐶
𝑛𝑜

− 𝑆
𝑛1

− 𝑆
𝑛2

. (20)

Proof. From (14),

𝜕Π (𝑄)

𝜕𝑄
𝑛1

≤ 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
} + 𝜙
(1)

𝑛𝑜

× Pr {𝑄
𝑛1

> 𝐷
𝑛
, 𝑄
𝑛1

− 𝐷
𝑛
< 𝐷
𝑜
}

+ 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

+ 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑛
< 𝑄
𝑛1
, 𝑄
𝑛1

− 𝐷
𝑛
< 𝐷
𝑜
}

= − (𝑝
𝑛
− 𝑆
𝑛1

− 𝑆
𝑛2
)Pr {𝐷

𝑛
< 𝑄
𝑛1
, 𝑄
𝑛1

≥ 𝐷
𝑛
+ 𝐷
𝑜
}

+ (𝑝
𝑛
− 𝐶
𝑛1

− 𝐶
𝑛2
)

− 𝐶
𝑛𝑜
Pr {𝐷
𝑛
< 𝑄
𝑛1
, 𝑄
𝑛1

< 𝐷
𝑛
+ 𝐷
𝑜
}

≤ − (𝑝
𝑛
+ 𝐶
𝑛𝑜

− 𝑆
𝑛1

− 𝑆
𝑛2
)Pr {𝑄

𝑛1
> 𝐷
𝑛
+ 𝐷
𝑜
}

+ 𝑝
𝑛
− 𝐶
𝑛1

− 𝐶
𝑛2
.

(21)

Therefore, from Property 2, the solution of Pr{𝑄
𝑛1

> 𝐷
𝑛
+

𝐷
𝑜
} = (𝑝

𝑛
− 𝐶
𝑛1

− 𝐶
𝑛2
)/(𝑝
𝑛
+ 𝐶
𝑛𝑜

− 𝑆
𝑛1

− 𝑆
𝑛2
) is an upper

bound of 𝑄∗
𝑛1
.

Theorem 4. An upper bound of 𝑄
∗

𝑜1
is the solution of

Pr {𝐷
𝑜
≤ 𝑄
𝑜1
} = (𝑝

𝑜
+ 𝑐
𝑛𝑜

− 𝐶
𝑜1

− 𝑆
𝑛2
)/(𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
).

Proof. From (17), we have

𝜕Π (𝑄)

𝜕𝑄
𝑜1

= 𝑆
𝑜1

− 𝐶
𝑜1

+ (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
)

× Pr {𝐷
𝑜
> 𝑄
𝑜1
, 𝑄
𝑛1

+ 𝑄
𝑜2

− 𝑄
𝑜1

> 𝐷
𝑛
}

≤ (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝐶
𝑜1

− 𝑆
𝑛2
)

− (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
)Pr {𝐷

𝑜
≤ 𝑄
𝑜1
} .

(22)

Therefore, from Property 2, the solution of Pr {𝐷
𝑜

≤

𝑄
𝑜1
} = (𝑝

𝑜
+ 𝑐
𝑛𝑜

−𝐶
𝑜1

− 𝑆
𝑛2
)/(𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
) is an upper

bound of 𝑄∗
𝑜1
.

Theorem 5. An upper bound of 𝑄
∗

𝑜2
is the solution

of Pr {𝐷
𝑜
< 𝑄
𝑜2
} = (𝑝

𝑜
− 𝐶
𝑜2

− 𝐶
𝑜1
)/(𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑜2
).

Proof. From 𝜕Π(𝑄)/𝜕𝑄
𝑜1

= 0, we have

Pr {𝐷
𝑜
> 𝑄
𝑜1
, 𝐷
𝑛
< 𝑄
𝑛1
, 𝑄
𝑛1

− 𝐷
𝑛
> 𝑄
𝑜1

− 𝑄
𝑜2
}

=

𝐶
𝑜1

− 𝑆
𝑜1

𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2

.

(23)
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Moreover, substituting the above equation into (18), we have
𝜕Π (𝑄)

𝜕𝑄
𝑜2

= 𝜙
𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
}

− 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜1
, 𝐷
𝑛
≤ 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
> 𝑄
𝑜1

− 𝑄
𝑜2
}

− 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
,

𝐷
𝑜
≤ 𝑄
𝑜1
, 𝐷
𝑛
≤ 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
> 𝐷
𝑜
− 𝑄
𝑜2
}

+ 𝑆
𝑜2

− 𝐶
𝑜2

− 𝜃 (𝐶
𝑛𝑜
) 𝜙
(1)

𝑛𝑜

× Pr {𝑄
𝑛1

> 𝐷
𝑛
, 𝐷
𝑜
> 𝑄
𝑜2
,

𝑄
𝑛1

− 𝐷
𝑛
> 𝜃 (𝐶

𝑛𝑜
) (𝐷
𝑜
− 𝑄
𝑜2
)}

≤ − (𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑜2
)Pr {𝐷

𝑜
≤ 𝑄
𝑜2
}

+ 𝑝
𝑜
− 𝐶
𝑜2

− 𝐶
𝑜1
.

(24)

Therefore, the solution of Pr{𝐷
𝑜

< 𝑄
𝑜2
} = (𝑝

𝑜
− 𝐶
𝑜2

−

𝐶
𝑜1
)/(𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑜2
) is an upper bound of 𝑄∗

𝑜2
.

From Theorem 5, the optimal order quantity of substi-
tuted component has an upper bound of equaling to a news-
vendor solution. And it is not affected by product substitution
or component substitution.

The aforementioned theorems about bounds of optimal
decisions have two actions. One is to decrease the feasible
domain of decision variables, which is very helpful for finding
the optimal decisions.The other action is to assist us to make
the sensitivity analysis.

4. Management Insights

In this section, we will investigate management insights
about product substitution and component substitution by
the first order conditions and the bounds in Theorems 2–
5. For the single-period problem, we can give the following
propositions by theoretical analysis rather than numerical
analysis.

Proposition 6. The optimal order quantity of any type of
component for new generation product is larger for the case
of considering product substitution and component product
simultaneously than the case of only considering component
substitution.

Proof. When 𝐶
𝑛𝑜

= 0, 𝜃(𝐶
𝑛𝑜
) = 0, which means that no

customer accept product substitution, that is, there is no
product substitution. From (16), we have

𝜕Π (𝑄)

𝜕𝑄
𝑛1

|
𝐶
𝑛𝑜
>0,𝑐
𝑛𝑜
>0

= 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
}

+ 𝜙
(1)

𝑛𝑜
Pr {𝑄
𝑛1

> 𝐷
𝑛
, 𝐷
𝑜
> 𝑄
𝑜2
,

𝑄
𝑛1

− 𝐷
𝑛
< 𝜃 (𝐶

𝑛𝑜
) (𝐷
𝑜
− 𝑄
𝑜2
)}

+ 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

+ 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑛
< 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
< min {𝐷

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
}

> 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
} + 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

+ 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑛
< 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
< min {𝐷

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
}

=

𝜕Π (𝑄)

𝜕𝑄
𝑛1

|
𝐶
𝑛𝑜
=0,𝑐
𝑛𝑜
>0
,

(25)

so 𝑄
∗

𝑛1
(𝐶
𝑛𝑜
) > 𝑄
∗

𝑛1
(0). The proposition holds.

Proposition 7. The optimal order quantity of any type of
component of new generation product is nonincreasing in
substitution effort.

Proof. The solution of Pr{𝑄
𝑛1

> 𝐷
𝑛
+ 𝐷
𝑜
} = (𝑝

𝑛
− 𝐶
𝑛1

−

𝐶
𝑛2
)/(𝑝
𝑛
+𝐶
𝑛𝑜

− 𝑆
𝑛1

− 𝑆
𝑛2
) is decreasing in substitution effort

𝐶
𝑛𝑜
. So, the feasible domain of 𝑄

𝑛1
is decreasing in 𝐶

𝑛𝑜
. The

proposition holds.

Proposition 8. The optimal order quantity of specific compo-
nent of new generation product is larger for the case of consider-
ing mark-up value and substitution effort simultaneously than
the case without mark-up value and substitution effort. And,
for the case of considering product substitution, the optimal
order quantity of specific component of new generation product
is larger for the case of not considering mark-up value.

Proof. From (16), we have

𝜕Π (𝑄)

𝜕𝑄
𝑛1

|
𝐶
𝑛𝑜
>0,𝑐
𝑛𝑜
>0

= 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
}

+ 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑛
< 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
< min {𝐷

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
}

+ 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

+ 𝜙
(1)

𝑛𝑜
Pr {𝑄
𝑛1

> 𝐷
𝑛
, 𝐷
𝑜
> 𝑄
𝑜2
,

𝑄
𝑛1

− 𝐷
𝑛
< 𝜃 (𝐶

𝑛𝑜
) (𝐷
𝑜
− 𝑄
𝑜2
)}

> 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
} + 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

+ (𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑛2
)

× Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑛
< 𝑄
𝑛1
, 𝑄
𝑛1
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−𝐷
𝑛
< min {𝐷

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
}

=

𝜕Π (𝑄)

𝜕𝑄
𝑛1

|
𝐶
𝑛𝑜
=0,𝑐
𝑛𝑜
=0
.

(26)

Therefore, the front half part in this proposition holds. From
the following inequality:

𝜕Π (𝑄)

𝜕𝑄
𝑛1

|
𝐶
𝑛𝑜
=0,𝑐
𝑛𝑜
>0

= 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
} + 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

+ 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑛
< 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
< min {𝐷

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
}

> 𝜙
𝑛
Pr {𝐷
𝑛
> 𝑄
𝑛1
} + 𝑆
𝑛1

− 𝐶
𝑛1

+ 𝑆
𝑛2

− 𝐶
𝑛2

+ (𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑛2
)

× Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑛
< 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
< min {𝐷

𝑜
, 𝑄
𝑜1
} − 𝑄
𝑜2
}

=

𝜕Π (𝑄)

𝜕𝑄
𝑛1

|
𝐶
𝑛𝑜
=0,𝑐
𝑛𝑜
=0
.

(27)

So, the second part also holds. Therefore, the proposition
holds.

Proposition 9. The optimal order quantity of specific com-
ponent of old generation product is larger for the case of
considering mark-up value of component substitution than the
case of not considering it.

Proof. From (17), we have

𝜕Π (𝑄)

𝜕𝑄
𝑜1

|
𝑐
𝑛𝑜
>0

= 𝑆
𝑜1

− 𝐶
𝑜1

+ (𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
)

× Pr {𝐷
𝑜
> 𝑄
𝑜1
, 𝐷
𝑛
≤ 𝑄
𝑛1
, 𝑄
𝑛1

− 𝐷
𝑛
> 𝑄
𝑜1

− 𝑄
𝑜2
}

≥ 𝑆
𝑜1

− 𝐶
𝑜1

+ (𝑝
𝑜
− 𝑆
𝑜1

− 𝑆
𝑛2
)

× Pr {𝐷
𝑜
> 𝑄
𝑜1
, 𝐷
𝑛
≤ 𝑄
𝑛1
, 𝑄
𝑛1

− 𝐷
𝑛
> 𝑄
𝑜1

− 𝑄
𝑜2
}

=

𝜕Π (𝑄)

𝜕𝑄
𝑜1

|
𝑐
𝑛𝑜
=0
,

(28)

so 𝑄
∗

𝑜1
(𝑐
𝑛𝑜
) > 𝑄
∗

𝑜1
(0). The proposition holds.

Proposition 10. The optimal order quantity of specific com-
ponent of old generation product is nondecreasing in mark-up
value.

Proof. The solution of Pr{𝐷
𝑜

≤ 𝑄
𝑜1
} = (𝑝

𝑜
+ 𝑐
𝑛𝑜

− 𝐶
𝑜1

−

𝑆
𝑛2
)/(𝑝
𝑜
+ 𝑐
𝑛𝑜

− 𝑆
𝑜1

− 𝑆
𝑛2
) is increasing in mark-up value 𝑐

𝑛𝑜
.

Therefore, the proposition is obvious.

Proposition 11. The optimal order quantity of substituted
component of old generation product is less for the case of
considering product substitution and component substitution
simultaneously than the case of only considering component
substitution.

Proof. From (18), we have

𝜕Π (𝑄)

𝜕𝑄
𝑜2

|
𝐶
𝑛𝑜
>0,𝑐
𝑛𝑜
>0

= 𝜙
𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
} + 𝑆
𝑜1

− 𝐶
𝑜1

+ 𝑆
𝑜2

− 𝐶
𝑜2

−𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑜
≤ 𝑄
𝑜1
, 𝐷
𝑛
≤ 𝑄
𝑛1
,

𝑄
𝑛1

− 𝐷
𝑛
> 𝐷
𝑜
− 𝑄
𝑜2
}

− 𝜃 (𝐶
𝑛𝑜
) 𝜙
(1)

𝑛𝑜
Pr {𝑄
𝑛1

> 𝐷
𝑛
, 𝐷
𝑜
> 𝑄
𝑜2
,

𝑄
𝑛1

− 𝐷
𝑛
> 𝜃 (𝐶

𝑛𝑜
) (𝐷
𝑜
− 𝑄
𝑜2
)}

< 𝜙
𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
} + 𝑆
𝑜1

− 𝐶
𝑜1

+ 𝑆
𝑜2

− 𝐶
𝑜2

− 𝜙
(2)

𝑛𝑜
Pr {𝐷
𝑜
> 𝑄
𝑜2
, 𝐷
𝑜
≤ 𝑄
𝑜1
,

𝐷
𝑛
≤ 𝑄
𝑛1
, 𝑄
𝑛1

− 𝐷
𝑛
> 𝐷
𝑜
− 𝑄
𝑜2
}

=

𝜕Π (𝑄)

𝜕𝑄
𝑜2

|
𝐶
𝑛𝑜
=0,𝑐
𝑛𝑜
>0
,

(29)

so 𝑄
∗

𝑜2
(𝐶
𝑛𝑜
) < 𝑄
∗

𝑜2
(0). The proposition holds.

From the aforementioned proposition above, if the firm
wants to decrease shortage by substitution, it must order
more components than the case of no substitution behaviors.
Moreover, when product substitution is also introduced, the
order quantities for all types of component of new generation
should be increased; but for old generation product, the order
quantity of its substituted component should be decreased,
and the order quantity of specific component should be
increased.

The existence of mark-up value is a positive stimulation,
to more effective cope with the emergent shortage, firm
should store more specific components of old generation
product, and it is also same for all type components of new
generation product. For product substitution, the existence of
substitution effort attracts partial customers of old generation
product to buy new generation product, so the firm should
order more components of new generation product in order
to satisfy the demand of product substitution. However,
increasing of the cost will decrease firm’s activity of offering
product substitution, so the order quantity should not be
increasing as substitution effort increases.

From a more widely viewpoint of supply chain, intro-
ducing mark-up value and substitution effort are helpful for
decreasing the shortage, and it is also an effective way of
increasing the service level.
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5. Conclusion

In this paper, we study an inventory decision problem with
component substitution and product substitution, where
a manufacturer produces two products with an updated
relation, replenishes the component inventory in advance,
and assembles the components into end products accord-
ing to the customer’s order. Since manufacturer makes the
replenishment decisions of component inventories before
the order arrivals, the shortage for component inventories
is inevitable. Therefore, manufacturer may fill the shortage
demand using an updated component. At the meanwhile,
the manufacturer also can stimulate the customer to buy the
other product himself by offering a discount price.We assume
a proportion of shortagewill purchase newproducts. Tomax-
imize firm’s profit, a two-stage dynamic programming model
was formulated. And decisions about assembled quantities
of different types of products were given. By analyzing the
expected profit function, we prove it to be concave in order
quantities, and some bounds of decision variables are given.
Finally, we investigate themanagement insights by theoretical
method.

There are some possible extensions in the future research.
Mark-up value and substitution effort are only regarded as
system parameters, in fact, the firm also makes a decision
on them. Therefore, the problem will be a joint inventory
and a pricing problem, which is very interesting. Certainly,
the extension also may result in a game problem between
manufacturer and customers.
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