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The cohomology groups of tiling spaces with three-fold and nine-fold symmetries are obtained.
The substitution tilings are characterized by the fact that they have vanishing first cohomology
group in the space of tilings modulo a rotation. The rank of the rational first cohomology, in
the tiling space formed by the closure of a translational orbit, equals the Euler totient function
evaluated atN if the underlying rotation group isZN . When the symmetries are of crystallographic
type, the cohomologies are infinitely generated.

1. Introduction

The computation of topological invariants of tiling spacesΩ is a subject of increasing research
activity, mainly since the work of Anderson and Putnam [1].

We use substitution rules to define collections of tilings. The expanding hierarchical
structures that arise are essentially the same at each level, because they are described by a
single substitution map. More general formalisms for handling general spaces of hierarchical
tilings are studied in [2].

The simplest invariants of tiling spaces are the Čech cohomology groups. A relevant
fact, also from the point of view of applications, is that the Čech cohomology is related to the
gap distribution in the spectrum of the Schroedinger operator with a potential associated to
a particular tiling. The Čech cohomology groups may be interpreted also in terms of certain
tiling properties. For projection tilings, there is in the first cohomology at least a subgroup
isomorphic to the reciprocal lattice of the tiling [3], and hence for a tiling with N-fold
symmetry its minimal dimension is given by the Euler totient functionΦ(N). If the stretching
factor of a one-dimensional substitution tiling is a Pisot number of algebraic degree k and the
rank of the first rational Čech cohomology is also k, then the number of appearances of a
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patch in a return word is determined by the Euclidean length of the return word [4]. Based
on this results, it has been shown in [5] that the top-dimensional cohomology for a tiling in
Rd governs patch frequencies and the number of appearances of a patch in a finite region.

A class of tiling spaces with fivefold symmetry has been analyzed in [6]. The rank
of the first cohomology coincides with Φ(5) and its restriction in the space of tilings
modulo a fivefold rotation is zero. In this paper we study several examples of tiling spaces
with crystallographic and noncrystallographic symmetries with analogous properties. They
have vanishing first cohomology in the space of tilings modulo a rotation Ω. When the
integer first cohomology in Ω is finitely generated, as in the tilings with ninefold and
pentagonal symmetries, its rank coincides with the Eulers totient function. In the cases with
crystallographic symmetries, it is the rank of the rational first cohomology which equals the
Eulers totient function.

2. Geometric Constructions of Substitution Tilings with d-Fold
Symmetry and Algebraic Surfaces

An extension of the methods introduced in [7] for tilings with odd symmetries nondivisible
by three to all the symmetries has been given in [8]. There are four types of geometric
constructions consisting in straight lines in d orientations: (A) for d = 2m, (B) for d =
2m + 1, (C) for d = 6m, and (D) for d = 6m + 3. They produce simplicial arrangements
SX,X = A,B,C,D, which are the basis for the generation of planar tilings with arbitrarily
high symmetry. The systems with d odd are included in the systems with d even: (B) is
included as a subsystem of (A), and (D) is included in (C). The fact that, in general, a system
with d lines is included in another with 2d lines allows to introduce in a systematic way
arrows on the edges, which are necessary for the definition of the inflation rules generating
face-to-face tilings [6]. We give an alternative formulation which simplifies the construction.
Systems of lines, equivalent up to scaling, translation, and rotation, to those obtained with
the constructions (A) and (B) are {Λk,d(x, y, 0) = 0}, k = 1, 2, . . . d, where

Λk,d

(
x, y, τ

)
:= y −

(
cos
(
k2π
d

)
− x

)
tan
(
kπ

d
+ τ

)
− sin

(
k2π
d

)
(2.1)

The simplicial arrangements SC, SD and their mirror images SC, SD can be obtained
also by using Λk,d(x, y, τ) for certain values of τ . For fixed d we consider the subset formed
by the lines Λ2k−1,2d(x, y, τ) with k = 1, 2, . . . d and τ = nπ/4d. When d = 3m, we get, for n =
0, 1, 2, . . . 8d, successive rotations of two types of simple arrangements of lines (no more than
two lines intersect) Σ1,Σ2 and the two types of simplicial arrangements SA, SC and SB, SD for
d even and odd, respectively. In addition to the nontriangular shapes, Σ1,Σ2, have two sets
of triangular prototiles: Σ1 has the prototiles of SA, SB while Σ2 and its mirror image Σ2 have
the prototiles of SC, SD and SC, SD. In Figure 1(a) we show the case d = 5 with (from top
to bottom) n = 0, 1, 2, . . . 6. Two rotated versions of SB correspond to n = 2, 6, the others are
simple arrangements of lines Σ1 obtained when n = 0, 4. The case d = 6 with n = 0, 1, 2, . . . 6
can be seen in Figure 1(b). Now we have two simplicial arrangements: SC with 3 prototiles
when n = 2 and SA with one prototile for n = 6. When n = 0, the simple arrangement Σ1

has 6 copies of the prototile appearing in SA, and when n = 4, Σ2 has seven triangles with 3
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(a) (b)

Figure 1: Line configurations described by (2.1) for (from top to bottom) (a) d = 5; n =
0(Σ1), 1, 2(SB), 3, 4(Σ1), 5, 6(SB) and (b) d = 6; n = 0(Σ1), 1, 2(SC), 3, 4(Σ2), 5, 6(SA).

different shapes (prototiles in SC). In both cases the prototiles have edges with three different
lengths as in Section 4.

The line configurations for d = 9 can be seen in Figure 2(a) when n = 0, 1, 2, 3 and
Figure 2(b) for n = 4, 5, 6.We get Σ1 when n = 0, 12, while Σ2 and Σ2 are obtainedwith n = 4, 8.
The simplicial arrangement SB corresponds to n = 6 and we get SD, SD when n = 2, 10. By
using the notation in [9], the prototiles appearing in Σ1 and SB are a, b, c (we use capital
letters in Section 3 to describe the same tiles), while in Σ1 and SD there are seven prototiles
a, b, c, d, e, f, g. All the prototiles now have edges with four different lengths as in Section 3.
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(a) (b)

Figure 2: Simple and simplicial arrangements for d = 9 (a) n = 0(Σ1), 1, 2(SD), 3, (b) n = 4(Σ2), 5, 6(SB).

The simple arrangements Σ1,Σ2 are on the basis of a construction of algebraic surfaces
with many real nodes proposed recently [10]. The surfaces have affine equations S(x, y, z) :=
F(x, y) + λF(z, 0) + μ = 0, λ, μ ∈ R, where the plane curve F(x, y) is a product of lines
corresponding to a simple arrangement. Real variants of Chmutov surfaces [11] are based
on Σ1 as shown in [12]. On the other hand Σ2, and its mirror image Σ2, have one more
triangle than Σ1, and this property can be used to construct surfaces with more singularities.
The dynamical formulation of the line configurations given by (2.1) can then be used to
get deformations of the surfaces by varying τ , where some singularities disappear. Other
deformations of interest, giving smooth surfaces, are obtained by varying μ.

3. Cohomology Groups of Tiling Spaces with Ninefold Symmetry

The tiling spaces ΩX are formed by the closure of the translational orbit of one tiling X. A
substitution σ is said to force the border [13] if there is a positive integer n such that if t1 and
t2 are two tiles of the same type, then the two level-n supertiles σn(t1) and σn(t2) have, up
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to translation, the same pattern of neighboring tiles. If a substitution forces the border, then
the tiling space is the inverse limit of the Anderson-Putnam complex Γ0, which contains one
copy of every kind of tile that is allowed with some edges identified [1]. For 2D tiling spaces
the cohomology classes are generated by the vertices, edges, and faces of Γ0.

In addition toΩX we consider also another type of tiling spacesΩX . The finite rotation
group ZN associated to the tiling acts onΩX , and the quotientΩX/ZN yields the spaceΩX of
tilings modulo a rotation about the origin [14].

We study first the cohomology of a ninefold symmetry tiling space ΩN . The
substitution rules for this and other composite patterns were studied in [9]. They can be
obtained by using SB in Figure 2(b). Up to mirror reflection and rotation, the tiling has
three triangular prototiles T with inflation or substitution rules (level-1 supertiles) given in
Figure 3. Iteration of the inflation rules shows that the tiling has 18 vertex configurations.
After three inflation steps, they are transformed into just two vertex configurations that
we call a and b representing a threefold and a ninefold star, respectively (Figure 4). The
substitution forces the border in four steps. The analysis of the vertex sequences appearing
in the level-4 superedges shows that there are four edge types αb,a, βa,b, γa,a, δb,a, where the
subindexes denote the vertices appearing on the edge borders. The lengths of α, β, γ, δ are
s1, s2, s3, s4, with sν ≡ sin(νπ/9).

The rotation group Z9 acts freely on edges and tiles. The two vertices satisfy a =
r3a, b = rb with r9 = 1. We have six tile types A = T(r4γ, r4β, r5α), Ã = T(r4γ, r3α, r5β), B =
T(δ, r8γ, rα), B̃ = T(δ, r7α, γ), C = T(δ, r3γ, r6β), C̃ = T(δ, r3β, r5γ), and each appears in 9
orientations. The Anderson-Putnam complex Γ0 has Euler characteristic χ = 22.

The three irreducible representations of Z9 over the integers are the one-dimensional
scalar (r = 1), a two-dimensional and a six-dimensional representation. The 2D and the 6D
representations have r acting by multiplication on the rings R1 = Z[r]/(r2 + r + 1) and
R2 = Z[r]/(r6 + r3 + 1), respectively. In this case the vertex b appears only in the scalar
representation, the vertex a in the scalar and 2D representations, while the edges and faces
appear in all representations. Vertices, edges, and faces form a basis for the spaces of chains
Ck with k = 0, 1, 2. The boundary maps ∂k : Ck+1 �→ Ck for k = 0, 1 are

∂1 =

⎛

⎜⎜⎜⎜⎜
⎝

r5 −r3 −r r7 0 0

r4 −r5 0 0 r6 −r3

−r4 r4 −r8 1 r3 −r5

0 0 1 −1 1 −1

⎞

⎟⎟⎟⎟⎟
⎠

(3.1)

in all representations and

∂0 =

(
−r2 1 0 −1
1 −1 0 1

)

(3.2)

in the scalar and 2D representations, but with appropriate modification having in mind that
only the vertex a appears in the 2D representation. If the cochain groups are denoted by Ck,
then, for k = 0, 1, the coboundary maps δk : Ck �→ Ck+1 are the transposes of the matrices ∂k
given above with r replaced with rT = r−1.
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A

B

C

Figure 3: Inflation rules for the ninefold symmetry tiling.

Figure 4: Level-3 supertiles in the ninefold symmetry tiling.
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Scalar Representation r = 1

In the scalar representation, C0 = Z2, C1 = Z4, C2 = Z6. We have rank δ0 = 1 and rank δ1 = 3.
The cohomologies of Γ0 in this representation are H0 = Ker δ0 = Z, H1 = Ker δ1/ Im δ0 = 0,
and H2 = Z6/ Im δ1 = Z3.

2D Representation

There is one vertex in the 2D representation, and C0, C1, C2 are free modules of dimensions
1, 4, 6 over the ring R1. The rank of δ0 over R1 is 1, the matrix δ1 has rank 3 over R1, and, as
abelian groups, we have H0 = H1 = 0,H2 = Z6.

6D Representation

There are no vertices in the 6D representation, and C1, C2 are free modules of dimensions 1
and 3 over the ring R2. The map δ1 has rank 3 over R2 and H0 = 0, H1 = Z6, H2 = Z18.

We have obtained the cohomology of the complex Γ0 which is enough because the
tiling forces the border [1]. To get the cohomology of the tiling spaceΩN , we need to compute
the direct limit of the cohomologies under the substitution.

The substitution matrix on vertices is

σ0 =

(
r2 0

0 1

)

, (3.3)

while the matrix on 1-chains is

σ1 =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 0 1

0 0 r r5

0 1 r5 1

r r5 r r5

⎞

⎟⎟⎟⎟⎟
⎠

, (3.4)

and the substitution on 2-chains

σ2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 r 0 r 1 r

1 0 1 0 1 r

0 r5 0 r5 + r8 r4 r5 + r8

r5 0 r2 + r5 0 r2 + r5 r6

r6 r r6 r + r4 1 + r3 + r6 r + r4 + r7

1 r4 1 + r6 r4 1 + r3 + r6 r + r4 + r7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.5)
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The induced matrices on cochains σ∗
k are obtained by transposition of the matrices σk

with r replaced with r−1. They are isomorphisms, and the direct limit of each Hk is simply
Hk. By taking into account all the irreducible representations, we get the following

Ȟ0(ΩN) = Z, Ȟ1(ΩN) = Z6, Ȟ2(ΩN) = Z27. (3.6)

The cohomology ofΩX is the rotationally invariant part of the cohomology ofΩX , and
we have

Ȟ0
(
ΩN

)
= Z, Ȟ1

(
ΩN

)
= 0, Ȟ2

(
ΩN

)
= Z3. (3.7)

Another tiling space with noncrystallographic symmetries and vanishing first
cohomology in ΩX was analyzed in [6]. The pentagonal tiling space ΩΞ+ has the same
prototiles as the Robinson decomposition of the Penrose tilings: A,B with edges α, β and
lengths s1, s2, with sν ≡ sin(νπ/5). The inflation rules can be obtained from SB in Figure 1(a)
with arrows as indicated in [6]. The cohomology groups are

Ȟ0(ΩΞ+) = Z, Ȟ1(ΩΞ+) = Z4, Ȟ2(ΩΞ+) = Z14, (3.8)

and the rotationally invariant part is Ȟ0(ΩΞ+) = Z, Ȟ1(ΩΞ+) = 0, Ȟ2(ΩΞ+) = Z2.
Fractal tilings related with Penrose patterns have been studied in [15, 16]. In addition

to the computation of the cohomologies, the analysis of the patterns of vertex configurations,
appearing in Ξ+ on the level-6 superedges, can be used also to construct tilings whose edges
and tiles have irregular shapes. In Figure 5(a) we have shown the vertex sequences arising
in the A-type level-6 supertile (see Figure 12 in [6]). The borders of the new prototile shapes
are formed by concatenation of scaled copies of oriented α and β. The substitution rules for
the corresponding pattern can be seen in Figure 5(b).

Tiling spaces with crystallographic symmetries also may have zero first cohomology.
For instance the chair tiling space ΩCH has [14]

Ȟ0(ΩCH) = Z, Ȟ1(ΩCH) = Z
[
1
2

]2
, Ȟ2(ΩCH) = Z

[
1
4

]
⊕ Z
[
1
2

]2
(3.9)

with Ȟ0(ΩCH) = Z, Ȟ1(ΩCH) = 0, Ȟ2(ΩCH) = Z[1/4]. In the next section we study other
tiling spaces with crystallographic symmetries, which also have Ȟ1(ΩT ) = 0.

4. Tiling Spaces with Threefold Symmetry

4.1. Equithirds Tiling

The equithirds tiling was obtained independently by L. Danzer and B. Kalahurka ([5] and
references therein). It is based on the substitution of Figure 6. The prototiles are an equilateral
triangle of side length 1 and an isosceles triangle with sides of length 1,1, and

√
3.
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(a) (b)

Figure 5: Pentagonal tiling with irregular shapes: (a) construction of the boundaries, (b) inflation rules.

The analysis of the five vertex configurations shows that, after one inflation step, they
are transformed into one: vertex a. The substitution forces the border in two steps. We denote
the edges by α, β with lengths 1,

√
3, and the rotation group Z3 acts freely on them.

We have four tile types A = T(α, rα, r2α), A = T(α, rα, r2α), B = T(α, β, rα), B =
T(α, r2α, r2β), with r3 = 1. The tiles B, B appear in three orientations and A,A in one. The
Anderson-Putnam complex Γ0 has therefore Euler characteristic χ = 3.

The two irreducible representations of Z3 over the integers are the one-dimensional
scalar (r = 1) and a two-dimensional vector representation. The vector representation has r
acting by multiplication on the ring R1 = Z[r]/(r2 + r + 1). The edges and the tiles B, B,D
appear in all representations, while the vertex and the tiles A,A appear only in the scalar
representation. The boundary maps are ∂0 = 0 and

∂1 =

(
1 −1 1 − r 1 − r2

0 0 −1 r2

)

. (4.1)

Scalar Representation r = 1

In the scalar representation, C0 = Z, C1 = Z2, C2 = Z4. In this case rank δ1 = 2 and we have
H0 = Ker δ0 = Z, H1 = Ker δ1/ Im δ0 = 0, and H2 = Z4/ Im δ1 = Z2.

Vector Representation

There are two tiles in the 2D representation, and C1, C2 are free modules of dimensions 2 over
the ring R1. The rank of δ1 over R1 is 1 and we have H0 = 0, H1 = Z2 and H2 = Z2.

The cohomology of the complex Γ0 is thereforeH0(Γ0) = Z, H1(Γ0) = Z2 andH2(Γ0) =
Z4. Now we compute the direct limit of the cohomologies under the substitution.
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A

B

A

B

Figure 6: Inflation rules for the equithirds tiling.

The substitution on the vertex is the identity. The substitution on edges is represented by

σ1 =

(
3 0

0 3

)

, (4.2)

and the substitution on 2-chains is

σ2 =

⎛

⎜⎜⎜⎜⎜
⎝

3 0 1 1

0 3 1 1

1 + r + r2 1 + r + r2 3 + r + r2 1 + r

1 + r + r2 1 + r + r2 1 + r2 3 + r + r2

⎞

⎟⎟⎟⎟⎟
⎠

. (4.3)

In the scalar representation the direct limits of each Hk, under the action of the
induced matrices on cochains σ∗

k, are Hk for k = 0, 1. We can take a basis for H2 in terms
of the canonical basis of Z4 formed by e1, e1 + e3 with the classes of v3 = e4 − e3, v4 =
e2 − e1 cohomologous to zero. The eigenvalues of σ∗

2 are 9, 3, 1 with eigenvectors v1 =
(1, 1, 1, 1)T , v2, v3, v4 = (−3,−3, 1, 1)T . Its action onH2 gives the direct limit Z ⊕ Z[1/3].

In the vector representation the direct limit of H1 is Z[1/3]2. A base for H2 in this
representation is given by the vector (−1, 0)T ∼ (r, 1)T which is the eigenvector of σ∗

2 with
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A

D

E

D

Figure 7: Inflation rules for T .

eigenvalue 1. The direct limit is now Z2. The cohomology groups for the equithirds tiling
space ΩEQ are (see also [5])

Ȟ0(ΩEQ) = Z, Ȟ1(ΩEQ) = Z
[
1
3

]2
, Ȟ2(ΩEQ) = Z3 ⊕ Z

[
1
3

]
. (4.4)

The rotationally invariant part of the cohomology is

Ȟ0
(
ΩEQ

)
= Z, Ȟ1

(
ΩEQ

)
= 0, Ȟ2

(
ΩEQ

)
= Z ⊕ Z

[
1
3

]
. (4.5)

4.2. The Tiling Spaces ΩT

Although the paper [7] deals with tilings having odd symmetries nondivisible by three, the
authors consider a case which can be derived with a set of six lines in the plane. The tiling
spaces ΩT that we treat now are based on such system of lines. In the construction discussed
in Section 2, it corresponds to the simplicial arrangements SA; SC in Figure 1(b).

The substitution rules for T are represented in Figure 7, and its seven vertex
configurations can be seen in Figure 8. After two inflation steps the vertex configurations
are transformed into the configurations 1 and 2 which are denoted by a, b. The substitution
forces the border also in two steps: the vertex sequences in the level-2 superedges (Figure 9)
are α : 53, β : 676, γ : 2354 with lengths s1, s2, s3, sν ≡ sin(νπ/6), and the vertices in the
edge borders are α : ab, β : aa, γ : ab. The rotation group Z3 acts freely on the edges and
a = ra, b = rb with r3 = 1.

The four tile types are A = T(α, r2α, β), D = T(β, rα, γ), D = T(γ, α, r2β), and E =
T(β, rβ, r2β), and each appears in 3 orientations, except E which appears in only one. The
Euler characteristic of Γ0 is χ = 3.
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1

2

3

4

5

6

7

Figure 8: Vertex configurations in T .

In this case the edges and the tiles A,D,D appear in all representations of Z3, while
the vertices a, b, and the tile E appear only in the scalar representation. The boundary maps
are

∂0 =

(
−1 0 −1
1 0 1

)

,

∂1 =

⎛

⎜⎜
⎝

1 − r2 r −1 0

−1 1 r2 −1
0 −1 1 0

⎞

⎟⎟
⎠.

(4.6)

Scalar Representation r = 1

In this representation, C0 = Z2, C1 = Z3, C2 = Z4. Here rank δ0 = 1 and rank δ1 = 2 with
cohomologies H0 = Ker δ0 = Z, H1 = Ker δ1/ Im δ0 = 0 and H2 = Z4/ Im δ1 = Z2.
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Figure 9: Level-2 supertiles in T .

Vector Representation

There are three edges and three tiles in the 2D representation, and C1, C2 are free modules of
dimension 3 over the ring R1. The rank of δ1 over R1 is 2, and, as abelian groups, we have
H0 = 0, H1 = Z2 and H2 = Z2.

Adding up the contributions of each representations, we get the cohomology of the
complex Γ0:H0(Γ0) = Z,H1(Γ0) = Z2, and H2(Γ0) = Z4.

The substitution on the vertices is the 2×2 identity matrix. The substitution on 1-chains
is

σ1 =

⎛

⎜⎜
⎝

0 0 2r

0 2r2 0

1 0 r2

⎞

⎟⎟
⎠, (4.7)

and the substitution on 2-chains is

σ2 =

⎛

⎜⎜⎜⎜⎜
⎝

0 r2 r 0

r2 0 1 + r2 1

1 r + r2 0 1

0 1 1 0

⎞

⎟⎟⎟⎟⎟
⎠

. (4.8)

In the scalar representation the direct limits ofHk for k = 0, 1 areHk. A base forH2 in
this representation is given by the vectors u3 = (0, 0, 1, 0)T , u4 = (0, 0, 0, 1)T , and the classes of
uk, k = 1, 2, with u1 = (0, 1,−1, 0)T , u2 = (−1, 0, 2,−1)T , are cohomologous to zero. The action
of σ∗

2 applied twice to u3 gives 4u3 ∼ 4u4, and the direct limit yields a contribution of Z[1/2].
In the vector representation v3 = (1, 1− r,−2r)T forms a base forH1. The matrix σ∗

1 has
eigenvalues −r, 2r, 2r with eigenvectors (−r2, 0, 1)T , (r2, 0, 2)T , (0, 1, 0)T , and the direct sum of
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Y

Z

Figure 10: Inflation rules for the patches Y and Z in T .

the eigenspaces is not isomorphic to all Z6. The action of σ∗
1 gives a contribution of Z[1/2]2

to the first cohomology. A base for H2 is given by u3 = (0, 1, 0)T with u1 = (1 − r, r2, 1)T , u2 =
(−1,−r2, 0)T cohomologous to zero. We have σ∗3

1 u3 ∼ u3, and the direct limit of H2 is Z2. The
cohomology groups are then

Ȟ0(ΩT ) = Z, Ȟ1(ΩT ) = Z
[
1
2

]2
, Ȟ2(ΩT ) = Z2 ⊕ Z

[
1
2

]
. (4.9)

The rotationally invariant part of the cohomology is

Ȟ0
(
ΩT

)
= Z, Ȟ1

(
ΩT

)
= 0, Ȟ2

(
ΩT

)
= Z
[
1
2

]
. (4.10)

With the purpose of studying themeaning of the topological invariants in tiling spaces,
Sadun shows that there are patches in the equithirds tiling that play a role analogous to return
words in one dimension [5]. The control patches are the equilateral triangle and a rhombus,
formed by two isosceles triangles, in three different orientations. This case illustrates themore
general property that if the rank of the second rational cohomology is k, then the number of
control patches is also k. The number of appearances of any patch in a sufficiently substituted
rhombus in the equithirds tiling is then determined by the number of appearances of the four
control patches.

For the tiling T we may find four patches that generate the tilings, because they obey
certain substitution rules induced by the inflation on the triangular prototiles. The patches
Y,Z, and their substitution rules are represented in Figure 10. The patch content in the
inflation rules is

Y �−→ YZZZ Z �−→ ZYYY, (4.11)

where Z and Z represent rotated versions of Z by 120 and 240 degrees.
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Although we have studied in detail only some particular cases, we can see that the
general constructions of substitutions proposed in [7, 8] are a rich source of tiling spaces with
unusual properties. The tilings with noncrystallographic symmetries studied in this paper,
derived with such constructions, have vanishing rotationally invariant first cohomology, but
this is not true in general. For instance, the analysis of a tiling T ∗ obtained with the same basic
construction as T (which has inflation factor s3/s1) but with scaling factor s2/s1 shows that
the associated tiling space has in Ȟ1 a nontrivial rotationally invariant piece. The tiling T ∗ has
six prototiles with the same three shapes A,D,E as in T . The mirror images of A,D, and E
shape level-1 supertiles are different in T ∗, while in T we have two mirror inflation rules only
for D (Figure 7). The first cohomology for the tiling space ΩT∗ in the scalar representation
of Z3 is now Z. An open question is, for general tiling spaces, which property distinguishes
them in relation to the existence of a nontrivial rotationally invariant component in the first
cohomology group.
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