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We study the relationship between corruption in public procurement and economic growthwithin
the Solow framework in discrete time, while assuming that the public good is an input in the
productive process and that the State fixes a monitoring level on corruption. The resulting model
is a bidimensional triangular dynamic system able to generate endogenous fluctuations for certain
values of some relevant parameters. We study the model from the analytical point of view and
find that multiple equilibria with nonconnected basins are likely to emerge. We also perform a
stability analysis and prove the existence of a compact global attractor. Finally, we focus on local
and global bifurcations causing the transition to more and more complex asymptotic dynamics.
In particular, as our map is nondifferentiable in a subset of the states space, we show that border
collision bifurcations occur. Several numerical simulations support the analysis. Our study aims
at demonstrating that no long-run equilibria with zero corruption exist and, furthermore, that
periodic or aperiodic fluctuations in economic growth are likely to emerge. As a consequence, the
economic system may be unpredictable or structurally unstable.

1. Introduction

Many modern States use procurement in order to obtain goods and services that they deem
necessary to support their public policy actions, one of which being to support productive
activity. But this procurement is not immune to manipulation through corruption. As Rose-
Ackerman [1] stressed when the government is a buyer or a contractor, there are several
reasons to pay off officials: a firm may pay to be included in the list of qualified bidders, it
may pay to have officials structure bidding specifications, or it may pay to get inflated prices
or to skimp on quality.

In our model, we deal with the relationship between corruption in public procurement
and economic growth. Although the issue of corruption in public procurement is very
relevant, it has only recently attracted a lot of attention. To be more precise, the existing
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literature has been concerned with the effect of corruption on public procurement (e.g., [2])
or with the effect of the presence of public goods on economic growth, as an input to private
production (e.g., [3]). Unlike previous works, we consider the role of corruption in public
procurement and its effects on growth via a reduction in the quality of public infrastructure
and services supplied to the private sector. Public procurement is typically organized by a
bureaucrat on behalf of the State who delegates the public good’s purchase to a bureaucrat,
via reverse auction for the procurement of a public good. The provision of the good is
awarded to the firm which offers the highest quality good in the sealed bid: we assume that
the public good can be produced at different quality levels (low quality and high quality).
As a general rule, the firm which offers the highest quality wins the auction. The corrupt
bureaucrat can, when announcing the winner, lie about the quality of the public good in
exchange for a bribe.

Our paper analyzes the consequences of corruption on public procurement in a
discrete-time Solow growth model, considering that corruption, in lowering the quality of
the public good, can reduce economic growth. We consider the capital intensive Cobb-
Douglas production function while assuming that the quality of the public good, used as
an input in the productive process, affects the total productivity factor (one unit of the high-
quality public good generates more units of the private good by means of the greater total
productivity factor). Like Del Monte and Papagni [4], we introduce a public input into the
production function, assuming that the supply of public input is affected by corruption,
which harms the efficiency of public expenditure.

Del Monte and Papagni [4] fix the amount of corruption exogenously, in the sense that
they consider that the private sector can count only on a share of public good production
while corrupt agents take the rest. Unlike them, we assume that firms which produce the
public good differ with respect to their “shame cost,” hence we endogenize the level of
corruption, while determining the fraction of firms which produce the low-quality public
good by solving a one-shot game via the backward induction method.

Following more recent contributions to the literature (e.g., [5]), we consider that the
exante quality of a public good is the private information of firms, and only after checks
by a controller is the quality verifiable. Then, the State, in order to weed out or reduce
corruption, monitors bureaucrats’ behavior through controllers and fixes the monitoring level
by comparing the marginal benefit of corruption controls with the cost of actually doing it.
In detail, the State fixes the monitoring level by considering the current level of corruption,
the benefit of reduction of corruption, the costs associated with monitoring activity, and the
problem of a cogent public budget constraint that represents a limit to the use of public
resources allocated to the control of corruption. The resulting two-dimensional, discrete time,
nonlinear dynamic system will be studied both from the analytical and the numerical points
of view. As far as the fixed points owned by the system are concerned, we will prove that
multiple equilibria are likely to emerge. In particular, a locally stable fixed point in which all
firms are corrupt does exist if budget constraint is cogent enough. Other fixed points with
low or high equilibrium corruption can be exhibited, and we will provide conditions relating
to the parameters for their existence. We will also perform a local stability analysis in order to
state conditions for the equilibria to be locally asymptotically stable. Furthermore, we show
conditions for our system having a compact global attractor.

In order to show how cyclical or complex fluctuations may be produced in our model,
we will consider several kinds of bifurcations. In particular, as our map is piecewise smooth,
the state space is divided into two regions, and, for some parameter values, a fixed or
periodic point may collide with the borderline, and this may lead to a so-called border
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collision bifurcation. We will prove that border collision bifurcations will occur as some
parameters vary. In addition, as multiple attractors can coexist in our model, we will show
how the structure of the basins of attraction can change because of the occurrence of contact
bifurcations. We will also perform a mainly numerical analysis to describe the bifurcations
which increase the complexity of the asymptotic dynamic behaviour of the system.

Our study aims at confirming that the presence of corruption in public procurement
produces long-run equilibria in which corrupt firms survive. Furthermore, it can represent a
source of endogenous instability in economic growth since periodic or aperiodic fluctuations
are likely to emerge. As a consequence, the economic system may be unpredictable or
structurally unstable.

The paper is organized as follows. In Section 2we discuss the underlying assumptions,
and we present the two-dimensional triangular map describing the economic growth
evolution relating to the dynamics of the corruption level. In Section 3 we determine the
number of fixed points in our system and find that multiple equilibria can be presented. We
also arrive at some preliminary results about their local stability and point out the occurrence
of a rich variety of local bifurcations. In Section 4 we prove some general results concerning
the global dynamics of the system, in particular the existence of the compact global attractor.
Section 5 is devoted to the study of the local and global bifurcationswhich cause the transition
to more and more complex asymptotic dynamics.

2. The Model

Consider an economy composed by three types of players: the State, bureaucrats, and private
firms. We assume that all economic agents are risk-neutral. Then two types of private firms
are considered: the one-(j-type)-producing a private good and the other-(i-type)-producing
a public good. In order to provide the public good for the private j-type firms, the State must
buy the public good from the private i-type firms. We assume that at any time t = 1, 2, . . . the
State procures a unit of public good from each private i-type firm in order to provide it free
to j-type firms.

2.1. Game Description and Solution

The public good can be produced at different quality levels (low-quality public good and
high-quality public good). For the nature of public good, for example, infrastructure, we
assume that it is not any possible kind of arbitrage on the purchased inputs. We assume
that the public good’s price, at any time t = 1, 2, . . ., is constant and given by pt = p, for all t,
and let i-type firms compete over the good’s quality: the higher the quality offered, the lower
the profit for i-type firms and the higher the welfare for the community. Following Bose et al.
[6], the constant cost of production for an i-type firm is such that if the public good’s quality
is high the unit cost ch is also high, while if the public good’s quality is low, the unit cost cl is
too, that is, ch > cl. Furthermore, the production of public goods is assumed to be profitable,
that is, p > ch. Each i-type firm produces one unit of public good. We assume that i-type firms
differ with respect to their “shame costs”—for the social stigma associated with being found
guilty—hence with mi ∈ [0, 1], we indicate the specific i-th entrepreneur “shame costs” that
we assume to be constant in time. In addition, we assume that i-type firms are uniformly
distributed with respect to their “shame costs,” hencemi represents the fraction of firms with
“shame costs” lesser or equal tomi.
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The bureaucrat receives a salaryw. It is assumed that no arbitrage is possible between
the public and the private sector and that therefore there is no possibility for the bureaucrats
to become entrepreneurs, even if their salaries w were lower than the entrepreneur’s net
return. This happens because the bureaucrat individuals in the population have no access to
capital markets, but only a job, and thereforemay not become entrepreneurs. The bureaucrats
organize a reverse auction for the procurement of the public good, and the provision of the
good is awarded to the firm which offers the highest quality good in the sealed bid. Only the
bureaucrat observes the firms’ sealed bids. As a general rule, the firmwhich offers the highest
quality wins the auction. The corrupt bureaucrat can, when proclaiming the winner, lie about
the quality of the public good in exchange for a bribe b. Let bd be the bribe demanded by the
bureaucrat. Then, the firm can refuse to pay the bribe or agree to pay and start negotiating
the bribe with the bureaucrat. The State, in order to weed out or reduce corruption, monitors
bureaucrats: in fact, at any time t there is an endogenous probability qt of being monitored
according to the control level fixed by the State and, then, of being reported.

The firm, if detected, must supply the high-quality public good, pay the “shame cost,”
but it is refunded the cost of the bribe while the bureaucrat must only return the bribe. This
assumption can be more easily understood when, rather than corruption, there is extortion
by the bureaucrat, even though, in many countries, the relevant provisions or laws stipulate
that the bribe shall in any case, be returned to the entrepreneur and that combined minor
punishment (penal and/or pecuniary) be inflicted on him/her. The results do not depend on
the existence of a cost for the bureaucrat detected in a corrupt transaction. To simplify the
results, we have preferred to omit this. The economic problem can be formalized with a game
tree which shows the interaction between the bureaucrat and the i-th firm which produces
one unit of public good. In what follows, we refer to the bureaucrat payoff by a superscript
(1) and to the i-th firm payoff by a superscript (2): they represent, respectively, the first and
the second element of the payoff vector πn,t, n = 1, 2, 3 at time t.

The timing of the game is as follows.

(1) In the first stage of the game, the bureaucrat decides the amount to ask for as a bribe
bdt to award the bid. The bureaucrats, if indifferent whether to ask for a bribe or not,
will prefer to be honest.

(1.1) If the bureaucrat decides not to ask for a bribe (bdt = 0) to award the bid, then
the game ends and the payoff vector for bureaucrat and entrepreneur at time t
is

π1,t =
(
π

(1)
1,t , π

(2)
1,t

)
=
(
w, p − ch

)
. (2.1)

(1.2) If the bureaucrat decides to ask for a bribe (bdt > 0), the game continues to
stage two.

(2) At stage two, the entrepreneur should decide whether to negotiate the bribe to be
paid to the bureaucrat or to refuse to pay the bribe. Should he decide to carry out a
negotiation with the bureaucrat, the two parties will find the bribe corresponding
to the Nash solution to a bargaining game (bNB

t ), and the game ends. At time t, the
payoffs will depend on whether the bureaucrat and the entrepreneur aremonitored
(with probability qt) or not (with probability 1 − qt).
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(2.1) If the entrepreneur refuses the bribe, then the payoff vector, at time t, is given
by

π2,t =
(
π

(1)
2,t , π

(2)
2,t

)
=
(
w, p − ch

)
. (2.2)

Then the game ends.
(2.2) Otherwise the negotiation starts. Let bNB

t be the final equilibrium bribe
associated to the Nash solution to a bargaining, that is, the result of the
negotiation. Then, at time t, given the probability level qt of being detected,
the expected payoff vector is

π3,t =
(
π

(1)
3,t , π

(2)
3,t

)
=
(
w +

(
1 − qt

)
bNB
t , p − (1 − qt

)
cl − (1 − qt

)
bNB
t − qtc

h − qtm
i
)
. (2.3)

The game ends.

The one-shot game previously described may be solved by backward induction,
starting from the last stage of the game. At any time t, the bribe resulting as the Nash solution
to a bargaining game in the last subgame should be determined. This bribe is the outcome of
a negotiation between the bureaucrat and the entrepreneur. In the following proposition we
determine the equilibrium bribe bNB

t .

Proposition 2.1. Let qt /= 1. Then there exists a unique bribe (bNB
t ), as the Nash solution to a

bargaining game, given by

bNB
t = τ

[(
ch − cl

)
− qt(

1 − qt
)mi

]
, (2.4)

where τ ≡ ε/(λ + ε) is the share of the surplus that goes to the bureaucrat and ε and λ are the
parameters that can be interpreted as the bargaining strength measures, of the firm and the bureaucrat,
respectively.

Proof. Let πΔ,t = π3,t − π2,t = (π(1)
Δ,t , π

(2)
Δ,t) be the vector of the differences in the payoffs

between the case of agreement and disagreement about the bribe, between bureaucrat and
entrepreneur. In accordance with generalized Nash bargaining theory, the division between
two agents will solve

max
bt∈�+

([
π

(1)
Δ,t

]ε
·
[
π

(2)
Δ,t

]λ)
(2.5)

in formula

max
bt∈�+

([(
1 − qt

)
bt
]ε[−(1 − qt

)
cl − (1 − qt

)
bt − qtc

h − qtm
i + ch

]λ)
, (2.6)

that is, the maximum of the product between the elements of πΔ,t and where [w, p − ch]
is the point of disagreement, that is, the payoffs that the entrepreneur and the bureaucrat,
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respectively, would obtain if they did not come to an agreement. The parameters ε and λ can
be interpreted as measures of bargaining strength. It is now easy to check that the bureaucrat
gets a share τ = ε/(λ + ε) of the surplus π , that is, the bribe is b = τπ . Then the bribe bNB

t is
an asymmetric (or generalized)Nash bargaining solution and is given by

bNB
t = τ

[(
ch − cl

)
− qt(

1 − qt
)mi

]
, (2.7)

that is, the unique equilibrium bribe in the last subgame, for all qt /= 1.

As a consequence of the model, let us assume that the bureaucrat and the firm share
the surplus on an equal basis. This is the standard Nash case, when λ = ε = 1 and bureaucrat
and firm get equal shares. In this case the bribe is

bNB
t =

1
2

[(
ch − cl

)
− qt(

1 − qt
)mi

]
. (2.8)

In other words, the bribe represents 50 percent of surplus.
Hence, the payoff vector at time t is given by

π3,t =

(
w +

(
ch − cl

)(
1 − qt

)

2
− qt

2
mi, p −

(
1 − qt

)(
ch + cl

)

2
− qt

2
mi − qtc

h

)
. (2.9)

By solving the static game, we can prove the following proposition.

Proposition 2.2. Let 0 ≤ mt = (1 − qt)(ch − cl)/qt. Then,

(a) if mt ≥ 1, that is, qt ≤ (ch − cl)/(1 + (ch − cl)), all the private firms produce low-quality
public good;

(b) if mt < 1, that is, qt > (ch − cl)/(1 + (ch − cl)), then mt (1 −mt) private firms produce a
low (high) quality public good.

Proof. (backward induction method). The static game is solved with the backward induction
method, which allows identification of the equilibria. Starting from stage 3, the entrepreneur
needs to decide whether to negotiate with the bureaucrat. Both payoffs are then compared,
because the bureaucrat asked for a bribe.

(2) At stage two, the entrepreneur negotiates the bribe if, and only if,

π
(2)
3,t ≥ π

(2)
2,t =⇒

(
p −
(
1 − qt

)
cl

2
−
(
1 + qt

)
ch

2
− qtmi

2

)
> p − ch =⇒

mi <

(
ch − cl

)(
1 − qt

)

qt
= mt.

(2.10)
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(1) Going up the decision-making tree, at stage one the bureaucrat decides whether to
ask for a positive bribe.

(i) Let mi < (ch − cl)(1 − qt)/qt = mt; then the bureaucrat knows that if he asks
for a positive bribe, the entrepreneur will accept the negotiation, and the final
bribe will be bNB

t . Then, the bureaucrat asks for a bribe if, and only if,

π
(1)
3,t > π

(1)
1,t =⇒ w +

(
ch − cl

)(
1 − qt

)

2
− qtm

i

2
> w, (2.11)

that is, the bureaucrat’s payoff. If mi < (ch − cl)(1 − qt)/qt = mt, then
(2.11) is always verified. Then, the bureaucrat asks for the bribe bNB

t , that the
entrepreneur will accept. The expected payoff vector is given by

π3,t =

(
w +

(
ch − cl

)(
1 − qt

)

2
− qt

2
mi, p −

(
1 − qt

)(
ch + cl

)

2
− qt

2
mi − qtc

h

)
. (2.12)

The game ends in the equilibrium with corruption, and the i-th entrepreneur
produces low-quality goods.

(ii) Let mi ≥ (ch − cl)(1 − qt)/qt = mt; then the bureaucrat knows that the
entrepreneur will not accept any possible bribe, so he will be honest, and the
firm must sell the product at a high level of quality. The payoff vector for the
entrepreneurs and bureaucrats is

π1,t =
(
w, p − ch

)
. (2.13)

The game ends in the equilibrium with no corruption.

Trivially, if mt ≥ 1 then mi < mt, for all i, hence all private firms produce the low-quality
public good.

According to our previous result, the entrepreneurs with moral costs mi ≤ mt are
corrupt while the entrepreneurswith “shame costs”mi > mt are honest. Since we assume that
i-type firms are uniformly distributed with respect to their “shame costs” then mt represents
the fraction of corrupt entrepreneurs.

2.2. The Dynamic System

Consider now the j-type firms producing the private good and normalize their number to
one. At any time t = 1, 2, . . ., following Barro [3], the private good is produced by using two
production factors, the capitalKt and the public good. Hence a fractionmt (1 −mt) of public
good available to j-type firms to produce the private good is of low (high) quality; then we
can consistently assume that, at any time, j-type firms use a fractionmt of low-quality public
input and a fraction (1 −mt) of high-quality public input to produce the final private good.
We capture these quality differences through differences in the total productivity factor so
that the total productivity, in the case of the high-quality public good used (Ah), is higher
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than in the case of the low-quality public good (Al). In order to study the effect of corruption
in procurement on economic growth, we consider the Solow neoclassical growth model in
discrete time (see [7]). Hence, let yl

t = φl(kt) (yh
t = φh(kt)) be the production function to

produce a private good by using a low (high) quality public good as an input, where yt =
Yt/Lt is the output per worker while kt = Kt/Lt is the capital-labor ratio (i.e., capital per
capita). Obviously for all kt we have that yl

t < yh
t since the use of high-quality inputs implies

greater production. Hence the final output per capita is given by

yt = mtφ
l(kt) + (1 −mt)φh(kt). (2.14)

In particular, using the Cobb-Douglas production function, we obtain φl(kt) = Alk
ρ
t and

φh(kt) = Ahk
ρ
t with Ah > Al. Substituting in (2.14) we obtain

yt = mtAl(kt)ρ + (1 −mt)Ah(kt)ρ, ρ ∈ (0, 1). (2.15)

Each year, the j-type firms invest the fraction of their profits which remains after
consumption, that is, saving adds to the capital stock (saving is equal to investment).
Following the Solow framework, we consider the capital accumulation as given by the
following formula:

kt+1 =
1

1 + n

[
syt + (1 − δ)kt

]
, (2.16)

where n > 0 is the exogenous population growth rate while s ∈ (0, 1) is the constant saving
ratio and δ ∈ [0, 1] is the depreciation rate of capital.

In order to reduce corruption, the State checks the public procurement: it fixes the
monitoring level comparing the marginal benefit due to the reduction of corruption level
with the cost of doing it. More precisely, the State observes the corruption level at time t and
decides the monitoring level for time t + 1. In other words, the monitoring level of the next
year qt+1 is a function of the current level of corruption

qt+1 = ω(mt). (2.17)

In order to determine qt+1, the State has to take into account the benefit of a reduction
in the corruption level, the costs associated with the monitoring activity, and the problem
of a cogent public budget constraint. Obviously, the monitoring level qt+1 increases as the
corruption level increases, while it decreases as the monitoring costs increase. We state
some assumptions about the cost function: costs are assumed to be null in the case of
absence of corruption, as it naturally should be. Moreover, we assume that the marginal
costs of monitoring activity increase as the corruption level increases. Indeed, comprehensive
monitoring activity implies increased costs, since it requires more sophisticated action and
specialized knowledge about complex corrupt transactions. In addition, we consider the
existence of a public budget constraint that represents a limit to the use of public resources
allocated to the control of corruption. In particular, as corruption spreads to all firms, the State
cannot monitor them all because of increasing marginal costs of monitoring, and, therefore,
the monitoring level for a completely corrupt population (total corruption case) is less than
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one and depends on how cogent the budget constraint is. A monitoring function ω having
the previous properties may satisfy the following conditions:

(i) ω(0) = 0;

(ii) ω(1) = q̃ < 1;

(iii) m̃t ∈ (0, 1) exists such that ω′(mt) > 0 (< 0), ifmt < m̃t(mt > m̃t);

(iv) 0 ≤ ω(mt) ≤ 1, for all mt ∈ [0, 1];

(v) ω(mt) = q̃, for all mt > 1.

The following function enjoys all these properties:

qt+1 :=

⎧
⎨
⎩
mt − μ(mt)α if mt < 1,

1 − μ if mt ≥ 1
(2.18)

with μ ∈ (0, 1) and α > 1, where ω′(mt) = 1 − μα(mt)α−1, hence m̃t = (μα)1/(1−α) is the
corruption level at which monitoring is maximum.

Function (2.18) takes into account two opposite effects. On the one hand, as corruption
increases, the monitoring cost increases, and then the optimal monitoring level decreases;
on the other hand, as corruption increases, the monitoring level increases. Unifying these
two opposite channels we will show that there is a threshold value of corruption where
the probability of being reported reaches a maximum. For corruption levels lower than this
threshold value, the probability of being detected increases with respect to the corruption
level. Indeed, the increase in the probability of being detected—due to the benefits of a
reduction in corruption—overtakes the reduction in monitoring level—due to the increasing
monitoring cost. Vice versa for corruption levels higher than this threshold value, the
growing monitoring costs overtake the increase in the benefit of reducing corruption, then
the probability of being reported decreases. In addition, we consider the existence of a
public budget constraint that represents a limit to the use of public resources allocated to
the control of corruption. Indeed, lower μmeans that public budget constraint is less cogent,
and therefore the State can, ceteris paribus, put in place a higher monitoring level (with total
corruption the monitoring level is different from one because of the public budget constraint).
Notice the role of α: this parameter represents the rate of growth of marginal costs of carrying
out monitoring activity.

In order to determine the final dynamic model describing the economic growth in a
context with corruption in public procurement, we first consider the case in whichmt < 1. By
substituting (2.14) in formula (2.16)we obtain the discrete time dynamic equation describing
the evolution of capital per capita kt. As far as the evolution of the fractionmt of corrupt firms
is concerned, by taking into account Proposition 2.2 and defining Δc = ch − cl we have that
qt+1 = Δc/(Δc +mt+1), hence, while considering (2.18), we get

mt+1 =
Δc

mt − μ(mt)α
−Δc (2.19)

representing the dynamic equation describing the evolution of mt.
Observe also that, ifmt ≥ 1, then, as stated in Proposition 2.2, all firms are corrupt (i.e.,

mt = 1 for allmt ≥ 1).
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Define ΔA = Ah −Al being the difference in the total productivity factors of using the
two inputs; finally we obtain the following two-dimensional dynamic systems:

T1 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

mt+1 =
Δc

mt − μ(mt)α
−Δc

kt+1 =
1

1 + n

[
sk

ρ
t (Ah −mtΔA) + (1 − δ)kt

] if mt < 1,

T2 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

mt+1 =
μΔc

1 − μ

kt+1 =
1

1 + n

[
sAlk

ρ
t + (1 − δ)kt

] if mt ≥ 1.

(2.20)

3. Fixed Points and Their Stability

As described at the end of the previous section, the time evolution of the capital per capita
and of the fraction of corrupt firms is obtained by the iteration of a two-dimensional nonlinear
map T : (mt, kt) → (mt+1, kt+1) given by

T =

⎧
⎨
⎩
g(mt),

f(kt,mt),
(3.1)

where

g :=

⎧
⎪⎨
⎪⎩
g1 =

Δc

mt − μ(mt)α
−Δc if mt < 1,

g2 = mc if mt ≥ 1
(3.2)

being mc = μΔc/(1 − μ) and

f :=

⎧
⎪⎪⎨
⎪⎪⎩

f1 =
1

1 + n

[
sk

ρ
t (Ah −mtΔA) + (1 − δ)kt

]
if mt < 1,

f2 =
1

1 + n

[
sAlk

ρ
t + (1 − δ)kt

]
if mt ≥ 1.

(3.3)

As it is easy to verify, T is a continuous and piecewise smooth map, that is, it is non-
differentiable in points belonging to the line mt = 1, which separates the state space into
two regions: R1 = {(m, k) : m < 1} and R2 = {(m, k) : m > 1}. We also observe that the
first component of the map T does not depend on kt hence T is a triangular map. (About
triangular maps see, e.g., Gardini and Mira [8], Kolyada [9], and Kolyada and Sharkovski
[10].) This means that the dynamics of the fraction of corrupt firms are only affected by the
fraction itself; as a consequence, the one-dimensional system (3.2) is the driving system while
the capital percapita evolution is driven by the dynamics of corrupt firms.

The equilibrium points (or steady states) of map T are the solutions of the algebraic
system T1(m, k) = (m, k) if and only if m < 1 and of T2(m, k) = (m, k) if and only ifm ≥ 1.
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In order to determine the number of fixed points of T and their local stability, consider
the first equation of map T . Function g is a continuous map presenting a unique non-
differentiable point P1 = (1, μΔc/(1−μ)); furthermore, in any open neighborhoodU ofmt = 1
the map g is constant on the right component of U − {1} and nonlinear on the other.

Simple geometrical considerations enable us to observe that g has at least one fixed
point for any choice of the parameter values (being limmt → 0+g1 = +∞ and limmt →+∞g2 = L).

It is important to stress that, in our model, the possible scenarios for the long term
depend on the parameters that determine the expedience of corruption: the differential
costs (Δc), the growth rate of the marginal costs of monitoring (α) that influence its level
and availability of public resources to reduce corruption (1 − μ). Whatever the parameters
considered in our model, there is always at least one equilibrium. Observe also that no long-
run equilibria with zero corruption are possible. This fact derives from the assumption about
the monitoring function ω: the equilibrium with no corruption is not a steady state because if
corruption were zero, then the corresponding monitoring level would be zero, and all i-type
firms would find it worthwhile to be corrupt.

Regarding the number of fixed points of the one-dimensional map g and some
preliminary results on their stability, the following proposition holds.

Proposition 3.1. Consider the one-dimensional map g given by (3.2).

(a) Let μ ≤ 1/α. Then,

(a.1) if Δc > (1 − μ)/μ, g has a unique fixed point m∗ = mc = μΔc/(1 − μ) > 1, that is,
globally asymptotically stable;

(a.2) if Δc = (1 − μ)/μ, g has a unique fixed point m∗ = mc = 1, that is, globally
asymptotically stable;

(a.3) if Δc < (1 − μ)/μ, g has a unique fixed point m∗ = m < 1 that may be stable or
unstable; a two period cycle may be present.

(b) Let μ > 1/α. Then,

(b.1) if Δc < (1 − μ)/μ, g has a unique fixed point m∗ = m < 1 that may be stable or
unstable, and complex dynamics can be exhibited;

(b.2) if Δc = (1 − μ)/μ two cases may occur:

(b.2.1) if α ≤ Δc/(Δc + 1) + Δc + 1, g has a unique fixed point m∗ = mc = 1, that is,
globally asymptotically stable,

(b.2.2) if α > Δc/(Δc+1)+Δc+1, g has two fixed pointsm∗
1 = m < m∗

2 = mc = 1 such
that mc attracts all trajectories starting from an initial condition (i.c.) m0 ≥ 1
whilem < 1 may be stable or unstable and complex dynamics can be exhibited;

(b.3) if Δc > (1 − μ)/μ, two cases may occur:

(b.3.1) if α ≤ Δc/(Δc+1)+Δc+1, g has a unique fixed pointm∗ = mc = μΔc/(1−μ) >
1, that is, globally asymptotically stable,

(b.3.2) if α > Δc/(Δc + 1) + Δc + 1, then a Δc does exist such that (i) if Δc > Δc,
g has a unique fixed point m∗ = mc = μΔc/(1 − μ) > 1, that is, globally
asymptotically stable; (ii) if Δc = Δc a fold bifurcation occurs such that g has
two fixed points m∗

1 = m < 1 < m∗
2 = mc, furthermore m is unstable while

mc is locally asymptotically stable; (iii) if Δc < Δc, g has three fixed points
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m∗
1 = m < m∗

2 = m1 < 1 < m∗
3 = mc such that mc is locally asymptotically

stable, m1 is unstable while m may be stable or unstable and complex dynamics
can be exhibited.

Proof. Consider first that g1(mt) = Δc/ω(mt)−Δc, hence g ′
1(mt) = −(Δc/[ω(mt)]2)ω′(mt). As

a consequence m̃t = (μα)1/(1−α) is a minimum point of g if and only if m̃t < 1, that is, μ > 1/α
(otherwise map g is monotonically decreasing).

(a) Assume that μ ≤ 1/α so that g is monotonically decreasing. Being limm∗
t → 0+g1 = +∞

and limm∗
t →+∞g2 = L a unique fixed point exists. Trivially, if Δc ≥ (1 − μ)/μ then

g2(1) ≥ 1, and the fixed point mc = Δcμ/(1 − μ) > 1 does exist; it is globally
asymptotically stable for g being g ′

2(mc) = 0. Observe that a border collision
bifurcation occurs if Δc = (1 − μ)/μ, being mc = 1. Otherwise, if Δc < (1 − μ)/μ the
fixed point is given bym < 1. Since g ′

1(m) < 0, thenm can be stable or unstable, and
a two-period cycle may be created via flip bifurcation if g ′

1(m) = −1. No complex
dynamics can be exhibited.

(b) Assume that μ > 1/α so that g is unimodal and the point Pmin = (m̃, g(m̃)) =
((μα)1/(1−α),Δc/(μα)α/(1−α)(μα − μ) − Δc) is the unique minimum point of g. If
Δc < (1 − μ)/μ the point P1 = (1, g(1)) is below the main diagonal hence a unique
fixed point m < 1 exists; it can be stable or unstable, and complex dynamics can
be exhibited. If Δc = (1 − μ)/μ a border collision bifurcation occurs such that
mc = 1 becomes fixed point. In such a case another fixed point m < 1 exists if
and only if limmt → 1−g ′(mt) > 1, that is, α > Δc/(Δc + 1) + Δc + 1; m can be stable
or unstable and complex dynamics can be exhibited. Finally, if Δc > (1 − μ)/μ
the point P1 = (1, g(1)) is above the main diagonal, hence mc = Δcμ/(1 − μ) is a
locally asymptotically stable fixed point. Consider what happens in the limiting
cases: if Δc → +∞ then g1(mmin) → +∞ (where g1(mmin) is increasing with
respect to Δc), if Δc → (1 − μ)/μ we get into the case (b.2). Consequently, if
α ≤ Δc/(Δc + 1) + Δc + 1, g has a unique fixed point m∗ = mc = μΔc/(1 − μ) > 1,
that is, globally asymptotically stable (since this holds in the limiting case
Δc → (1 − μ)/μ). While, if α < Δc/(Δc + 1) + Δc + 1, a Δc does exist such that if
Δc = Δc a fold bifurcation occurs. Two more fixed points are created that are given
bym∗

1 = m < m∗
2 = m1, thenm1 is always unstable whilem can be stable or unstable

and complex dynamics can be exhibited.

All the above-mentioned cases are presented in Figure 1.
Letm∗ be a fixed point of map g. From the second equationwe have that the associated

k-values are the fixed points of the one-dimensional map f(m∗, k).
Assume that m∗ < 1, then equation f1(m∗, k) = k has two solutions given by

k01 = 0, k11 =
[

s

n + δ
(Ah −m∗ΔA)

]1/(1−ρ)
> 0; (3.4)

otherwise, ifm∗ ≥ 1 we obtain a similar result, that is, f2(m∗, k) = k if and only if

k02 = 0 or k12 =
[
sAl

n + δ

]1/(1−ρ)
> 0. (3.5)
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Figure 1: Fixed points of map g as stated in cases of Proposition 3.1. In case (a) μ = 0.1, α = 5 while Δc = 18
in (a.1), Δc = 9 in (a.2), Δc = 2 in (a.3). In case (b.1) μ = 0.8, α = 5 while Δc = 0.1. In case (b.2) and (b.3.1),
μ = 0.8, Δc = 0.25 while α = 1.4 in (b.2.1), α = 3 in (b.2.2), α = 1.4 and Δc = 0.3 in (b.3.1). In case (b.3.2)
μ = 0.8, α = 5 while Δc = 1.8 in (i), Δc = 1 in (ii), and Δc = 0.3 in (iii).

Hence, two solutions of equation f(m�, k) = k correspond to any fixed point of g
and consequently, by taking into account Proposition 3.1, system T has up to six fixed points
depending on the parameter values of themodel. As a consequence, multiple equilibria occur,
corresponding to different long-run economic growth paths associated with the presence of
corruption.

Let P ∗ = (m∗, k∗) be a generic fixed point of system T such that m∗ /= 1. For its local
stability analysis we denote with J1(m, k) the Jacobian matrix of the system T1 and with
J2(m, k) the jacobian matrix of the system T2. We recall the following property.

Property 1. The eigenvalues of J1(m∗, k∗), (J2(m∗, k∗)) are always real, given by λ1 = g ′
1(m

∗)
and λ2 = (∂f1/∂k)(m∗, k∗)(ν1 = g ′

2(m
∗) and ν2 = (∂f2/∂k)(m∗, k∗)). Any fixed point of T such

that m∗ /= 1 is therefore either a node or a saddle.

The local stability analysis of the fixed points can be carried out by studying the
localization of the eigenvalues of the jacobian matrixes in the complex plane, and it is well
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known that a sufficient condition for the local stability is that both the eigenvalues are inside
the unit circle. The triangular structure of system T simplifies our analysis, since, according
to Property 1, the jacobian matrixes of T have real eigenvalues located on the main diagonal,
given by

λ1(m∗) =
−Δc

[
1 − μα(m∗)α−1

]

[
m∗ − μ(m∗)α

]2 ,

λ2(m∗, k∗) =
1

1 + n

[
sρ(k∗)ρ−1(Ah −m∗ΔA) + 1 − δ

]
(3.6)

if P ∗ ∈ R1 and

ν1(m∗) = 0,

ν2(m∗, k∗) =
1

1 + n

[
sAlρ(k∗)ρ−1 + 1 − δ

] (3.7)

if P ∗ ∈ R2.
Observe that all the fixed points belonging to the region R1 are of the kind (m∗, 0) or

(m∗, k11). Moreover limk→ 0+λ2(m∗, k) = +∞, and

λ2(m∗, k11) =
1

1 + n

[
ρ(n + δ) + (1 − δ)

] ∈ (0, 1) (3.8)

so that fixed points belonging to the line kt = 0 can be both saddle points or unstable nodes
while fixed points belonging to kt = k11 can be both saddle points or stable nodes.

Similarly, ifm∗ = mc > 1, ν1(m∗) = 0. Also in this case we have limk→ 0+ν2(m∗, k) = +∞,
and it is possible to see that ν2(m∗, k12) = λ2(m∗, k11) ∈ (0, 1), so that fixed points (mc, 0) are
saddle points, while fixed points (mc, k12) are stable nodes.

In order to consider the stability of the fixed points and the bifurcations they undergo
as some parameters vary, in what follows we study the system T restricted to k /= 0, according
to the following considerations. First of all, all the steady states characterized by zero capital
per capita have no economic significance; secondly the set k = 0 is repelling.

Observe that Proposition 3.1 states conditions such that ourmodel admits a fixed point
in which all i-type firms are corrupt. In fact, for any given value of μ, a Δc exists such that
if Δc is great enough, that is, Δc ≥ (1 − μ)/μ, Mc = (mc, k12) is a steady state. Previous
condition is verified if, given the budget constraint, the State cannot guarantee a sufficiently
high monitoring level to reduce corruption, being the difference between costs of producing
a high-quality level and a low-quality level public good, too high. FurthermoreMc is a stable
node, hence, for any i.c. (m0, k0) ∈ I(Mc, r) the system will converge to Mc. Notice that
the State can only use the amount of public resources used to monitor public procurement
as an instrument to reduce the corruption level. Thus, in this situation, the State may seek to
remove the expedience of corruption, using more public funds in the fight against corruption.
The low use of resources allocated for that purpose may lead the economy into a corruption
trap with all the corrupt firms and low-growth trap from which the economic system fails to
exit.
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Furthermore, if μ ≤ 1/α such a fixed point is unique so that it is globally stable.
Differently, if μ > 1/α, equilibria with low, intermediate, or high corruption (eventually
coexisting) can be owned. They can be stable nodes or saddle points, and complicated
dynamics can arise.

3.1. Local Bifurcations

In order to consider the qualitative dynamics of the two-dimensional system T and some
local bifurcations, we first focus on the case (a) of Proposition 3.1 in which μ ≤ 1/α. In such a
case function g monotonically decreases, and system T admits only one fixed point which is a
border crossing fixed point since, as some parameters vary, it passes from R1 to R2. Regarding
its stability, recall Proposition 3.1, then if Δc > (1 − μ)/μ the fixed point Mc = (mc, k12) ∈ R2

is a stable node, while, if Δc = (1 − μ)/μ the fixed point collides with the border separating
R1 and R2; anyway it is still a stable node. On the contrary, ifΔc < (1−μ)/μ, that is, μΔc/(1−
μ) ∈ (0, 1), the fixed point M = (m, k11) ∈ R1 is such that λ1(m) < 0 hence it can be both a
stable node or a saddle point, and a 2-period cycle may be created via flip or border collision
bifurcation. More in detail, observe that

(i) if μΔc/(1 − μ) → 1, thenm → 1 and g ′
1(1) → −Δc(1 − μα)/(1 − μ)2 = L < 0;

(ii) if μΔc/(1 − μ) → 0, thenm → 0 and g ′
1(m) → −∞;

(iii) g ′
1(m) is increasing with respect tom.

As a consequence, two cases may occur.

(1) If L < −1 then a border collision bifurcation occurs at the border crossing fixed
point. In fact for μΔc/(1 − μ) > 1 there is an attracting fixed point Mc (whose orbit
index is +1), for μΔc/(1−μ) < 1 there are a flip saddle (on such a kind of bifurcation
see [11]) M with eigenvalues λ1 < −1 and 0 < λ2 < 1 (whose orbit index is 0) and a
period 2 attractor (with orbit index +1); about the concept of orbit index see Nusse
and Yorke [12]. Finally, observe that at μΔc/(1−μ) = 1 the fixed point collides with
the border. In other words, a border collision bifurcation does occur since the orbit
index of the fixed point before the collision with the border is different from the
orbit index of the fixed point after the collision (see again [12]).

(2) If L ∈ (−1, 0) then the fixed point M loses stability via flip bifurcation (a 2-period
cycle is created for map g that is asymptotically stable).

Observe that, being the second component of our system T strictly increasing with
respect to k, in all the above-mentioned cases no complex dynamics can emerge.

From the economic point of view, we observe that, if μ is low enough, the budget
constraint for the State in monitoring corruption is not so strict, and the State may always
increase its control activity as corruption increases. However, two different cases may occur.
If μ ≥ 1/(1 + Δc) the monitoring activity is not able to reduce corruption since the difference
between the production costs is high and, consequently, all firms are corrupt. Hence the
systemwill converge in the long run to a steady state with total corruption andwith economic
growth at the minimum level (that which can be reachedwith low-quality production input).
If μ < 1/(1 + Δc) the State can reduce corruption as it is only worth a fraction m∗ < 1 of i-
type firms’ while to be corrupted: in such a case the difference between production costs is
not so high as to make corruption worthwhile for all firms. However, simple geometrical
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considerations enable us to conclude that the system may fluctuate. The fixed point may be
stable or unstable; in this last case a stable cycle of period two exists but no complex dynamics
is possible. Monitoring follows corruption, for example, at time t; for example, corruption is
low, hence in the following period themonitoring level will also be low so that corruptionwill
become economically more attractive, making it grow. This, in turn, will increase monitoring
again to discourage corruption: it will decrease, and the cycle begins again. As a consequence,
the economic growth rate motion will also fluctuate.

Consider now case (b) of Proposition 3.1 with μ > 1/α, that is, function g is unimodal,
in order to investigate complex dynamics produced by system T .

We first observe that g has a minimum point given by

Pmin =
(
mmin, g1(mmin)

)
=

((
μα
)1/(1−α)

,
Δc

(
μα
)α/(1−α)(

μα − μ
) −Δc

)
. (3.9)

Then it is worth distinguishing the possible scenarios: Pmin above or below themain diagonal.
Recalling Proposition 3.1, we can summarize what happens in terms of the two-dimensional
system T in the first case, that is, mmin ≤ g(mmin), as follows:

(i) in cases (b.3.1) and (b.2.1), that is, Δc ≥ (1 − μ)/μ and α ≤ Δc/(Δc + 1) + Δc + 1,
the unique fixed pointMc exists, which is a stable node (and it is globally stable for
any i.c. with k0 /= 0);

(ii) in case (b.3.2) (i), that is,Δc > (1−μ)/μ and α > Δc/(Δc+1)+Δc+1, with Δc great
enough, the unique fixed pointMc0 exists, which is a stable node;

(iii) in case (b.3.2) (ii), that is, Δc > (1 − μ)/μ and α > Δc/(Δc + 1) + Δc + 1, with
Δc = Δc, T has two fixed points having positive k values: a stable node Mc and a
saddle point M, created via fold bifurcation.

Notice that in the above-mentioned cases all the fixed points of g having m∗ /= 1 are
such that g ′(m∗) > 0, hence (m∗, k∗) can be both a stable node or a saddle point but no
complex dynamics can be exhibited. Consequently, in what follows we focus on the dynamics
of the system when the minimum point is below the main diagonal. The following remark
summarizes such a case.

Remark 3.2. Assume μ > 1/α, k /= 0 and mmin > g(mmin), that is,

(
μα
)1/(1−α) + Δc >

Δc
(
μα
)α/(1−α)(

μα − μ
) , (3.10)

hence

(i) if Δc < (1 − μ)/μ, T has one fixed point M = (m, k11);

(ii) if Δc = (1 − μ)/μ, T has two fixed points M = (m, k11) and (1, k12);

(iii) ifΔc > (1−μ)/μ, T has three fixed points:M = (m, k11), (m1, k11) (which is a saddle
since λ1(m1) > 1) andMc = (mc, k12) (which is a stable node).

Observe that T has at most one fixed point having a negative eigenvalue given by M,
which can be a stable node. In this case, the only way it loses stability is via period-doubling
bifurcation. This result is rigorously proved in the following proposition.



Discrete Dynamics in Nature and Society 17

Proposition 3.3. LetM = (m, k11) be the fixed point of the system T withm < (μα)1/(1−α). For each
(α, μ) in the region defined as

Ω1(m) =

{
(
α, μ
)
: μ >

Δc2

(α − 1)mα(m + Δc)2

}
. (3.11)

M is a stable node. Outside this region, it is a saddle.

Proof. We recall that the eigenvalues of the Jacobian evaluated at the fixed point (m, k11) are
λ1(m) and λ2(m, k11) with 0 < λ2 < 1. As a consequence, we look at λ1(m).

Notice that −Δc[1 − μα(m)α−1] < 0 (i.e., λ1(m) < 0) is always satisfied under the
assumption m < (μα)1/(1−α). This means that |λ1(m)| < 1 if and only if λ1(m) > −1, that
is,

λ1(m) =
−Δc

[
1 − μα(m)α−1

]

[
m − μmα]2 > −1. (3.12)

The last condition can be rewritten as

Δc
(
m − μmα) + Δcμmα(1 − α) −m

(
m − μmα)2 < 0. (3.13)

We already know that the equationm = Δc/(m−μmα)−Δc, that is,m−μmα = Δc/(m +Δc),
implicitly defines the corruption equilibrium levelm, so that condition (3.13) can be rewritten
as

μ >
Δc2

(α − 1)mα(m + Δc)2
. (3.14)

From Proposition 3.3, it follows that the only way the equilibriumM can lose stability
is through a flip (or period doubling) bifurcation, where the stable fixed point becomes
unstable (a saddle) giving rise to a 2-period stable cycle C2. The determination of the flip-
bifurcation curve S1

μ =
Δc2

(α − 1)mα(m + Δc)2
(3.15)

in the parameters’ plane (α, μ) can only be done through numerical evaluation.
The following proposition states a sufficient condition on the parameters for the

existence of a stable 2-period cycle {(m1, k1), (m2, k2)} such that (mi, ki) ∈ Ri, (i = 1, 2).

Proposition 3.4. Let Δc < (1 − μ)/μ. For each (α, μ) in the region defined as

Ω2 =

{
(
α, μ
)
:

Δc

m1 − μmα
1
−Δc ≥ 1

}
, (3.16)
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the system T admits a stable 2-period cycle defined as C′
2 = {(m1, k1), (m2, k2)} withm1 = μΔc/(1−

μ), m2 = g1(m1) and ki such that ki = fi(mi, ki) (i = 1, 2).

Proof. A 2-cycle for g(m) must be of the form {m1, m2} with g1(m1) = m2 and g2(m2) = m1.
We observe that m1 = μΔc/(1 − μ) < 1 (under the assumption Δc < (1 − μ)/μ), hence m2 =
g(m1) = g1(m1). As a consequence, if m2 ≥ 1 then g(m2) = g2(m2) = m1. Consequently, the
map g(m) admits a 2-period cycle {m1, m2} defined bym1 = μΔc/(1 − μ) andm2 = g1(m1).

Condition m2 = g1(m1) ≥ 1 is given by

Δc

m1 − μmα
1
−Δc ≥ 1. (3.17)

This implies the existence of a 2-period cycle of the system T defined as C′
2 =

{(m1, k1), (m2, k2)}with k1 = f1(m1, k1) and k2 = f2(m2, k2), and condition g1(m1) = m2 = 1 is
the border collision bifurcation curve leading to the existence of such cycle.

Finally, the eigenvalues of the 2-cycle (i.e., the eigenvalues of the jacobian
matrix of T2 in any point of the cycle) are given by z1 = g ′

1(m1)g ′
2(m2) and z2 =

(∂f1/∂k)(m1, k1)(∂f2/∂k)(m2, k2). Recalling that g ′
2(m) = 0 for allm (hence z1 = 0) and that a

stable 2-cycle for g generates a stable 2-cycle for T (since f is strictly increasing with respect
to k), our statement is proved.

From Proposition 3.4 it immediately follows that the curve S2 defined in the
parameters’ plane (α, μ) as Δc/(m1 − μmα

1) −Δc = 1 is the boundary of the region Ω2, where
the existence of the 2-period cycle C′

2 of T is guaranteed.
In Figure 2 we consider the parameters’ plane (α, μ) and summarize the main results

related to cases (a) and (b) (the set of points below and above the curve μα = 1, resp.).
More precisely, we present different regions such that the trajectory starting from the initial
condition (mmin, k0) having k0 > 0 converges to a fixed point,Mc orM, to a two-period cycle,
C2 orC′

2, or to amore complex attractor (CD). The curves S1 and S2 are obtained by numerical
evaluation of the ones defined in Propositions 3.3 and 3.4.

4. Global Dynamics

In this section we prove some general results concerning the global dynamics of system T

in the more interesting case: αμ > 1 and (μα)1/(1−α) + Δc > Δc/(μα)α/(1−α)(μα − μ), that is,
the one-dimensional map g admits the minimum point Pmin below the main diagonal. In
particular, we first prove the existence of the compact global attractor, and, then, we describe
its structure. Recall the following definition of the global attractor.

Definition 4.1. A nonempty compact setK is the global attractor of the dynamical system T if
the following conditions are fulfilled:

(1) K is invariant with respect to T ;

(2) K attracts all the bounded subsets from R+
2 .

We recall that a set K is invariant if T(K) = K.
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Figure 2: Region of local stability of the fixed points and of the two-period cycles in the parameters’ plane
(α, μ) being n = 1.1, δ = 0.5Δc = 1, s = 0.3, ρ = 0.3, and ΔA = 0.1 and the initial condition m0 = mmin and
k0 > 0. In region Mc the fixed point Mc is a stable node; in region M the fixed point M is a stable node;
in region C2 the two-period cycle C2 is stable; in region C′2 the two-period cycle C′

2 is stable while in CD
more complex dynamics can be exhibited.

Firstly, we prove the existence of a trapping region, that is, a closed and positively
invariant region, for the one-dimensional map g. Afterwards, we give conditions for the
existence of the compact global attractor for the two-dimensional system T .

The following proposition states the existence of a trapping set for the map g when it
admits the minimum point mmin (i.e., αμ > 1)with mmin > g(mmin).

Proposition 4.2. For all α, μ, and Δc such that αμ > 1 and mmin > g(mmin), the one-dimensional
map g admits a trapping interval J , where J is defined as follows:

(1) J = [g1(mmin), g1(1)] if μΔc/(1 − μ) ≥ 1,

(2) J = [g1(mmin), g2
1(mmin)] if μΔc/(1 − μ) < 1.

Proof. For all α and μ such that αμ > 1, the one-dimensional map g has the minimum point
mmin, and three different cases may occur: g has one, two, or three equilibria. Through the
grafical analysis it is possible to see that when there exists a unique fixed point, that is, when
μΔc/(1 − μ) < 1, J = [g1(mmin), g2

1(mmin)] is mapped into itself by g. Otherwise, when other
equilibria exist (i.e., for μΔc/(1 − μ) ≥ 1), J = [g1(mmin), g1(1)] is mapped into itself by g.

The existence of the compact global attractor for the system T is proved in the
following proposition.

Proposition 4.3. For all α, μ, and Δc such that αμ > 1 andmmin > g(mmin), the dynamic system T

admits the compact global attractorK ⊂ J × [0, kε], where kε > (sAh/(δ + n))1/(1−ρ) and J is defined
as in Proposition 4.2.
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Proof. Firstly notice that Proposition 4.2 holds, and the map g admits a trapping interval J .
Consequently, g admits a compact global attractor contained into J .

Let us go to consider the map f . We observe that limk→+∞kρ/k = 0 (since ρ ∈ (0, 1)).
This trivially means that for all ε > 0∃kε > 0 such that kρ < εk for all k > kε, consequently,

f1(m, k) =
1

1 + n
[skρ(Ah −mΔA) + (1 − δ)k]

<
1

1 + n
[sεAh + 1 − δ]k,

(4.1)

where we have made use of relation Ah −mΔA < Ah which holds for allm > 0.
Notice that the continuity of the map f = f1 ∪ f2 with the fact that f2(m, k) = f2(1, k)

for all m ≥ 1 implies that formula (4.1) holds even if we consider function f2. In this way we
obtain

f(m, k) < j(k) :=
1

1 + n
[sεAh + 1 − δ]k, (4.2)

In other words, we have proved that kt+1 < j(kt) for all kt > kε, where kε = (1/ε)1/(1−ρ).
We now wish to prove that the generic trajectory starting from a point (m0, k0) at

least one time intersects the set J × [0, kε]. To reach this goal, we suppose that the previous
statement is false. Then there exists a point (m0, k0) /∈ J × [0, kε] such that Tt(m0, k0) /∈
J × [0, kε], for all t ∈ �+. We already know properties of the one-dimensional map g, hence it
must be kt = ft(m0, k0) > kε, for all t ∈ �+. Nevertheless, assuming ε < (δ + n)/sAh, we have

kt+1 < j(kt) =
(
sεAh + 1 − δ

1 + n

)t

k0 → 0 as t → +∞, (4.3)

so that we obtain a contradiction.
Second, we observe that for all t such that kt < kε ⇒ kt+1 < kε. In fact, from relation

kt+1 < j(kt) = (1/(1+n))[sεAh+1−δ]kt it follows that kt+1 < kε since (1/(1+n))[sεAh+1−δ] < 1
and kt < kε.

Notice that kε > (sAh/(δ + n))1/(1−ρ) under the assumption ε < (δ + n)/sAh, and we
already know that k� < (sAh/(δ + n))1/(1−ρ) for all (m�, k�) fixed point. Since J × [0, kε] is
a compact, positively invariant, and attracting set for T , then K =

⋂
t≥0 T

t(J × [0, kε]) is a
compact invariant set which attracts J × [0, kε].

The previous proposition enables us to observe that our growthmodel with corruption
cannot explode since the asymptotic dynamics is always bounded, as economically plausible.

In order to investigate the structure of the attractor K, we consider the case in which
hypotheses of Proposition 4.3 are fulfilled. Furthermore, K ⊂ J × [0, kε], and, as previously
underlined, kt = 0 is a repelling invariant set, hence we define the setD := J × (0, kε] in order
to consider the restriction of the system on D, that is, the subsystem (T,D).

By taking into account the previous considerations on the invariant set kt = 0 of T and
also considering the arguments used to prove Proposition 4.3, it is easy to conclude as in the
following proposition.
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Proposition 4.4. For any initial condition (m0, k0) ∈ D, all the images Tt(m0, k0) of any rank t
belong to the set D.

Given the triangular structure of our system, the dynamics of T is closely related to the
one of the one-dimensional map g, as stated in the following property (see [8, 9] for a wider
discussion).

Property 2. IfOn = {m1, m2, . . . , mn} is an n-cycle of the map g, then the restriction of the map
Tn to any vertical lines m = mi, i = 1, . . . , n, is trapping on that line. If the n-cycle of g is
attracting (resp., repelling) then the vertical lines m = mi, i = 1, . . . , n, are attracting (resp.,
repelling) for Tn.

From the previous property, it trivially follows that any bifurcation of the one-
dimensional map g gives rise to a bifurcation of system T . In particular, a fold bifurcation
of g creates a couple of cyclical trapping lines of T (one repelling and one attracting). After
a flip bifurcation of a cycle of g, trapping cyclical vertical lines (of T) from attracting become
repelling, and new cyclical attracting lines are created. Furthermore, as f(mi, k) is strictly
increasing with respect to k, if On is an n-period cycle for g, then system T has an n-period
cycle as well. In any case, as argued at the end of the previous section, if g exhibits complex
dynamics, the attractor of T may consist of a complicated set.

5. Complex Dynamics and Simulations

In this section, we describe the local and global bifurcations which increase the complexity
of the asymptotic dynamic behaviour of the system. As we pointed out, the bifurcations and
the dynamic behaviour of the two-dimensional map T can be completely described on the
basis of those of the one-dimensional map g, hence we focus on the case in which g is
noninvertible so that our growth model can produce cyclical fluctuations or even chaotic
dynamics; furthermore, as our map is non-differentiable along the line mt = 1, border
collision bifurcations may occur. This noncanonical bifurcations have been mainly studied
in the context of piecewise linear maps. Hommes and Nusse [13] showed, for instance, that
a “period three to period two” bifurcation occurs for a class of piecewise linear maps. More
recently, Nusse and Yorke [14] have conducted a deeper analysis of these bifurcations and
described the very rich dynamics arising from them. The fact that the rich dynamics which
can emerge in our model are strictly related to the analytical properties of map g is not only a
consequence of the triangular structure of system T , but is also due to the fact that the second
component of T is strictly increasing with respect to kt.

The main purpose of this section is to describe the route to chaos of system T . As
previously underlined, n-period cycle having n > 2 or more complex features may be
exhibited by our model if and only if Remark 3.2 is applied (i.e., g has a minimum point
below the main diagonal). In order to describe the complicated behaviour of the economic
system, it is worth distinguishing between two different cases. Recall Proposition 4.2, and
assume that μ ≥ 1/(Δc + 1) see again Figure 1 panel (b.3.2 case (iii)), then every initial
condition generates bounded trajectories converging to an attractor included in the trapping
interval J1 = [g1(mmin), g1(1)], where g1(mmin) = Δc/(μα)α/(1−α)(μα−μ)−Δc is the minimum
value of g (critical point of rank-1) and g1(1) is the maximum value. Observe that, given
the qualitative shape of g, we can have coexistence of attractors, as stated in the following
proposition. The proof of this proposition is trivial, see Figure 3.
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Figure 3:Coexistence of the attractorsK1 andK2, their basins, and the final bifutrcation asΔc = 0.7, μ = 0.6,
and α = 5. (b) Contact bifurcation as α = 5.457.

Proposition 5.1. Let αμ > 1 and μ ≥ 1/(Δc + 1).

(1) If g2(mmin) < m1, then (T,D) has two coexistent attractors K1 and K2 such that K1 ⊂
[g1(mmin), g2

1(mmin)] × (0, kε] while K2 is the pointMc.

(2) If g2(mmin) > m1, then the unique attractor of (T,D) is the pointK2 = Mc.

(3) For g2(mmin) = m1 a contact bifurcation occurs.

Notice that in the case of coexistence of attractors,K1 may be a strange attractor while
K2 consists of a fixed point. If they both exist, we denote by B(K1) (and B(K2)) their basins
of attractions, that is, the set of points (m0, k0) ∈ D which generate trajectories converging to
K1 (and K2), then

B(K1) =
(
g−1(m1), m1

)
× (0, kε],

B(K2) =
[(

0, g−1(m1)
)
∪ (m1,+∞)

]
× (0, kε].

(5.1)

Furthermore, when g2(mmin) = m1 the critical point mmin is preperiodic, proving the
existence of parameter values such that the system is chaotic. In fact, no attracting cycles exist
since their basins of attraction cannot contain the critical point.

When some parameters vary until g2(mmin) crosses m1, a global bifurcation occurs,
and the attractor K1 disappears. The contact bifurcation curve CB in the parameters’ plane
(α, μ) is presented in Figure 2. The attractor K2 becomes stable everywhere except a Cantor
set with zero Lebesgue measure. As is well known, the dynamics on the invariant Cantor set
can be described by symbolic dynamics. More specifically, it is equivalent to the dynamics of
the chaotic shift map on the set of all one-sided symbolic sequences of 0’s and 1’s. This means
that the dynamics on the Cantor set is also chaotic.

In order to discuss the bifurcations leading to chaos and to show the strange attractor
that can be owned by T we present some numerical simulations. Hence we fix the following
parameter values: n = 1.1, δ = 0.5, s = 0.3, ρ = 0.3, and ΔA = 3. This latter assumption is
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Figure 4: Attractor K1 and its basin (the grey region) and attractor K2 and its basin (the white region) for
μ = 0.6 and Δc = 0.7. (a) If α = 4K1 is a two-period cycle; (b) if α = 5.4, K1 is strange attractor.

without loss of generality since such parameters do not affect the final qualitative dynamics
of T . On the contrary, we let parameters α, μ, andΔc vary as they are responsible for complex
dynamics being produced.

We now consider the case in which the hypotheses of Proposition 5.1 hold. Hence,
different attractors may coexist as showed in Figure 4. The basins of attraction of the stable
node K2 and of the attractor K1 are separated by the stable manifold of the saddle point
M1 = (m1, k11)which, as previously proved, is the vertical line mt = m1, and by its preimage,
that is, the line mt = g−1(m1). Notice that the basin of K2 is composed by two regions (i.e., it
is nonconnected): this means that the economic system with a low initial level of corruption
may converge to the equilibrium in which all firms are corrupted as μ is not small enough
and consequently the choice of the initial conditions is crucial to decide whether economic
fluctuations are obtained or not in the long run.

From the economic point of view, this situation can be presented if μ is high enough
(i.e., scarce public resources for corruption monitoring). In such a case being m0 the initial
level of corruption, if m0 < g−1(m1) (at the initial time the corruption level in the system is
low), then the State fixes a low monitoring level. At time t = 1, once the monitoring level is
observed, all i-firms will find it worthwhile to be corrupted, and finally, as μ is high, the long-
run steady state will be characterized by total corruption. On the contrary, for intermediate
levels of corruption at time t = 0, the corresponding monitoring level can reduce corruption
and in the long run, both the fraction of corrupt firms and the economic growth would exhibit
periodic or a-periodic fluctuations. However, in such a case, not all i-firms are corrupt. The
equilibrium with high corruption is due to scarce public resources for controls, therefore, the
State should seek to establish a value of μ to push the system at an intermediate level of
corruption in order to allow greater levels of economic growth.

Observe that the two-period cycle presented in Figure 4(a) has been created via
period-doubling bifurcations at α � 3.88: the fixed point M loses its stability and becomes
a saddle, and a stable cycle of period two appears. We point out that such a local bifurcation
simply replaces the stable steady state with an attracting 2-cycle, without modifying the
basins of the coexisting attractors. If α still increases other period doubling bifurcations occur
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Figure 5: Attractor K1: transition to complex dynamics due to a flip-bifurcation sequence for μ = 0.6 and
Δc = 0.7 and increasing values of α. Contact bifurcation for α � 5.458.

till a strange attractor is exhibited (see Figure 4(b)). The situation drastically changes at
α � 5.458 where a final contact bifurcation occurs.

After this final bifurcation almost all trajectories will converge to the fixed point with
total corruption and low economic growth long-run equilibrium (corruption trap).

The period-doubling route to chaos and contact bifurcation for increasing values of α
are presented in Figure 5. We consider as the initial value α = 2.8 in order to guarantee that
the minimum point of function g is below the main diagonal.

Consider now the second case, that is, μ < 1/(Δc + 1), then every initial condition
(m0, k0) generates bounded trajectories converging to the unique attractor K1 inside J2 =
[g1(mmin), g2

1(mmin)]. As J2 is trapping for g, if the absorbing interval J2 of the map g is
included in the interval where this map is defined by g1, that is,

g2(mmin) ≤ 1, (5.2)

then only flip bifurcations are exhibited. Thus the parameter region in which condition (5.2)
is satisfied has the logistic bifurcation structure (the set of points above the white curve in
Figure 6). Differently the set of pairs (α,Δc) below the white curve are such that condition
(5.2) does not hold, hence the break point m = 1 ∈ J2 (i.e., both functions g1 and g2 are
involved in the absorbing interval).

More precisely, as previously underlined the unique fixed point M = (m, k11) is a
stable node or a saddle point. For some parameter values, the pointM is a stable node, while,
as some parameters vary, it may become a saddle node. The only way it loses stability is
via period-doubling bifurcation (see Proposition 3.3). After this first bifurcation, a period-
doubling route to chaos occurs till a border collision bifurcation arises at g2(mmin) = 1.

In fact, the attractor of T is confined into the invariant set J2 × (0, kε] hence, as long as
1 /∈ J2, that is, g2(mmin) < 1, the canonical period-doubling route to chaos is exhibited, while a
border collision bifurcation occurs when g2(mmin) = 1, that is, a point of the period-n cycle or
of the strange attractor K1 owned by T collides with the break point under the change in the
parameters. Furthermore, after such a collision, the orbit index of the border-crossing cycle
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Figure 6: 2D bifurcation diagram of system T in the parameter plane (α,Δc) as μ = 0.6. The white curve is
the border collision bifurcation curve. (a)We detect cycles Cn of period n, n ≤ 15. In (b) an enlargement of
the previous picture.

changes so that qualitative dynamics drastically changes: a new cycle of period p /=n can be
exhibited or the final dynamics may be chaotic. Hence the economic evolution may become
unpredictable (see Figure 7). In any case, it is easy to prove that the new cycle has only one
point in the region R2. The following statement summarizes our previous considerations.

Proposition 5.2. If αμ > 1 and μ < 1/(Δc + 1), the attractorK1 ⊂ J2 is globally stable, and it may
consist of a fixed point, an n-period cycle, or a strange attractor. Period-doubling bifurcations together
with border collision bifurcations occur.

Studying the map T numerically, we get an interesting two-dimensional bifurcation
diagram in the plane (α,Δc) with tongues of periodicity (we leave the study of the origin
and structure of these tongues for further development). In Figure 6 we fix parameter μ and
let α and Δc vary in a way such that hypotheses of Proposition 5.2 hold. The white curve is
the border collision bifurcation curve such that a point of the n-period cycle or of the strange
attractor collides with the border.

Observe also that g2(mmin) is increasing with respect to α (and decreasing with respect
to Δc). Hence a value α (Δc, resp.) may exist such that for all α > α (for all Δc < Δc, resp.)
atypical bifurcations are observed. At α = α (Δc = Δc, resp.) a border collision bifurcation
occurs (see Figures 7 and 8).

Our analysis proves that a rich variety of bifurcations can occur and that the attractor
may be very complicated. This implies that the economic evolution can be unpredictable
(as different initial conditions generate different qualitative asymptotic dynamics) and
structurally unstable (as small perturbations in the parameters may generate completely
different qualitative dynamics).

6. Conclusions and Further Development

In the present paper, starting from the discrete-time Solow growthmodel, we analyze the role
of corruption in public procurement on long time economic growth. Our model is described
by a two-dimensional dynamical system of triangular type, since one of its components
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Figure 8: One-dimensional bifurcation diagram of map g as α varies for μ = 0.6. In (a) Δc = 0.3 while in
(b) Δc = 0.6. A α exists such that if α < α a period-doubling bifurcation route to chaos is exhibited while at
α = α a border collision bifurcation occurs.

(namely, the one driving the corruption level) is an independent one-dimensional map. In
addition, our map is piecewise smooth, that is, the phase space is divided into two regions in
which the map is smooth.

Due to the triangular structure of the system, we have been able to explore the
asymptotic dynamic behaviour and the bifurcations, starting from the study of the one-
dimensional map. In particular, we have explored the dynamics of the model under different
regimes of the main parameters.

An important preliminary result is that no equilibria with zero corruption can exist.
Furthermore, for some parameter values, there exists a steady state with total corruption
associated to a low-growth path, which can be globally stable, giving rise to the loss of control
for the State. We have called this phenomenon corruption-trap.

We also found that the system will converge to a compact global attractor which may
consist of fixed points, periodic points, or even strange attractors. As a consequence, the
economic growthmodel may fluctuate; in such a case, it can be unpredictable and structurally
unstable. Moreover, different attractors may coexist: nonconnected basins can appear, and
different kind of behaviour may arise, if an exogenous perturbation moves the state of the
system inside the basin of another attractor.
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A variety of qualitative long-run dynamics emerge in our model depending on the
parameter values. Several bifurcations are possible: the typical period-doubling bifurcation
leading to chaos, some global bifurcations related to the structure of the basins of coexisting
attractors, and finally, a-typical border collision bifurcations are likely to occur. In fact, for
piecewise smooth maps, when a border crossing fixed point (or a border crossing orbit)
collides with the border, a border collision bifurcation arises. The rich variety of bifurcations
exhibited by our model implies that the qualitative dynamics can drastically change after
perturbations on some parameters.

The present model is a first step in the study of the role of corruption in public
procurement and of its effect on growth. An interesting development would incorporate the
State balance to take into account the budget constraint explicitly (for instance, by introducing
taxation to finance corruption monitoring activity).
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