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This work is concerned with the following first-order dynamic equation on time scale T, xΔ(t) +
p(t)x(σ(t)) = f(t, x(t)), t ∈ [0, T]

T
with the nonlinear boundary condition x(0) = g(x(σ(T))). By

applying monotone iteration method, we not only obtain the existence of positive solutions, but
also establish iterative schemes for approximating the solutions.

1. Introduction

The theory of time scales was introduced by Hilger in his Ph.D. thesis [1] in 1988 in order to
unify continuous and discrete analysis. The study of dynamic equations on time scales is a
fairly new subject and research in this area is rapidly growing. For some basic definitions and
relevant results on time scales, see [2, 3].

Recently, first-order boundary value problems (BVPs for short) on time scales have
attracted much attention from many authors. For example, for first-order periodic boundary
value problem (PBVP for short) on time scales

uΔ(t) = f(t, u(t)), t ∈ [a, b]
T
,

u(a) = u(σ(b)),
(1.1)

Cabada [4] developed the method of lower and upper solutions coupled with the monotone
iterative techniques to derive the existence of extremal solutions. In [5], Cabada and Vivero
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studied the existence of solutions for the first-order dynamic equation with nonlinear fun-
ctional boundary value conditions

uΔ(t) = f(t, uσ(t)), for Δ − a.e. t ∈ [a, b]
T
,

B(u(a), u) = 0.
(1.2)

They proved the uniqueness of solutions and developed the monotone iterative technique
when B(x, y) = x − g(yσ(b)) and g was a continuous and nonincreasing function. In 2007,
Sun and Li [6] considered the first-order PBVP on time scales

xΔ(t) + p(t)x(σ(t)) = g(t, x(σ(t))), t ∈ [0, T]
T
,

x(0) = x(σ(T)).
(1.3)

Some existence criteria of at least one solution were established by using novel inequalities
and the Schaefer fixed point theorem. In [7], by applying several well-known fixed point
theorems, Sun and Li obtained some existence and multiplicity criteria of positive solutions
for the first-order PBVP on time scales

xΔ(t) + p(t)x(σ(t)) = f(x(t)), t ∈ [0, T]
T
,

x(0) = x(σ(T)).
(1.4)

In 2010, Zhao and Sun [8] investigated the first-order PBVP on time scales

xΔ(t) + p(t)x(σ(t)) = f(t, x(t)), t ∈ [0, T]
T
,

x(0) = x(σ(T)).
(1.5)

Some existence criteria of positive solutions were established, and the method used was the
monotone iterative technique. For other related results, one can refer to [9–14] and the ref-
erences therein.

Motivated greatly by the above-mentioned works, in this paper, we are interested in
the existence and iteration of positive solutions for the following first-order dynamic equation
with nonlinear boundary condition on time scales:

xΔ(t) + p(t)x(σ(t)) = f(t, x(t)), t ∈ [0, T]
T
,

x(0) = g(x(σ(T))),
(1.6)

where T is an arbitrary time scale, T > 0 is fixed, and 0, T ∈ T. For each interval I of R, we
denote by IT = I ∩ T. Throughout this paper, we always assume that p : [0, T]

T
→ (0,+∞)

is right-dense continuous. Here, a solution x of the BVP (1.6) is said to be positive if x is
nonnegative and nontrivial. By applying monotone iteration method, we not only obtain
the existence of positive solutions for the BVP (1.6), but also establish iterative schemes for
approximating the solutions. It is worth mentioning that the initial terms of our iterative
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schemes are constant functions, which implies that the iterative schemes are significant and
feasible. In our arguments, the following monotone iteration method [15] is very crucial.

Theorem 1.1. Let K be a normal cone of a Banach space E and v0 ≤ w0. Suppose that

(a1) T : [v0, w0] → E is completely continuous,

(a2) T is monotone increasing on [v0, w0],

(a3) v0 is a lower solution of T , that is, v0 ≤ Tv0,

(a4) w0 is an upper solution of T ; that is, Tw0 ≤ w0.

Then, the iterative sequences

vn = Tvn−1, wn = Twn−1 (n = 1, 2, 3, . . .) (1.7)

satisfy

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0, (1.8)

and converge to, respectively, v and w ∈ [v0, w0], which are fixed points of T .

2. Main Results

Theorem 2.1. Assume that f : [0, T]
T
× [0,+∞) → [0,+∞) and g : [0,+∞) → [0,+∞) are

continuous and
∫σ(T)
0 f(s, 0)Δs > 0. If there exists a constant R > 0 such that the following conditions

are satisfied:

(H1) f(t, u) ≤ f(t, v) ≤ R/2σ(T), t ∈ [0, T]
T
, 0 ≤ u ≤ v ≤ R,

(H2) g(u) ≤ g(v) ≤ R/2, 0 ≤ u ≤ v ≤ R,

then the BVP (1.6) has positive solutions.

Proof. Let

E = {x | x : [0, σ(T)]
T
→ R is continuous} (2.1)

be equipped with the norm

‖x‖ = max
t∈[0,σ(T)]

T

|x(t)|. (2.2)

Then, E is a Banach space. Denote

K = {x ∈ E | x(t) ≥ 0, t ∈ [0, σ(T)]
T
}. (2.3)
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Then, K is a normal cone of E. Now, if we define an operator Φ : K → K by

(Φx)(t) =
1

ep(t, 0)

[∫ t

0
ep(s, 0)f(s, x(s))Δs + g(x(σ(T)))

]

, t ∈ [0, σ(T)]
T
, (2.4)

then it is easy to know that fixed points of Φ are nonnegative solutions of the BVP (1.6).
Let v0(t) ≡ 0 andw0(t) ≡ R, t ∈ [0, σ(T)]

T
. Now, we divide our proof into the following

steps.

Step 1. We verify that Φ : [v0, w0] → K is completely continuous.
First, we will show that Φ : [v0, w0] → K is continuous.
Let xn (n = 1, 2, . . .), x ∈ [v0, w0] and limn→∞xn = x. Then,

0 ≤ xn(t) ≤ R, 0 ≤ x(t) ≤ R, for t ∈ [0, σ(T)]
T
. (2.5)

For any given ε > 0, since f is uniformly continuous on [0, T]
T
× [0, R], there exists

δ1 > 0 such that for any u1, u2 ∈ [0, R] with |u1 − u2| < δ1,

∣∣f(s, u1) − f(s, u2)
∣∣ <

ε

2σ(T)ep(σ(T), 0)
, s ∈ [0, T]

T
. (2.6)

On the other hand, since g is continuous at x(σ(T)), there exists δ2 > 0 such that for
any u ∈ [0,+∞) with |u − x(σ(T))| < δ2,

∣∣g(u) − g(x(σ(T)))
∣∣ <

ε

2
. (2.7)

Let δ = min{δ1, δ2}. Then, it follows from limn→∞xn = x that there exists a positive
integer N such that for any n > N,

|xn(s) − x(s)| < δ, s ∈ [0, σ(T)]
T
. (2.8)

In view of (2.6), (2.7), and (2.8), we know that for any n > N,

|(Φxn)(t) − (Φx)(t)|

=
1

ep(t, 0)

∣∣∣∣∣

∫ t

0
ep(s, 0)

[
f(s, xn(s)) − f(s, x(s))

]
Δs +

[
g(xn(σ(T))) − g(x(σ(T)))

]
∣∣∣∣∣

≤ ep(σ(T), 0)
∫σ(T)

0

∣∣f(s, xn(s)) − f(s, x(s))
∣∣Δs +

∣∣g(xn(σ(T))) − g(x(σ(T)))
∣∣

< ε, t ∈ [0, σ(T)]
T
,

(2.9)

which indicates that limn→∞Φxn = Φx. So, Φ : [v0, w0] → K is continuous.
Next, we will show that Φ : [v0, w0] → K is compact.
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Let X ⊂ [v0, w0] be a bounded set. Then, there exists a constant L > 0 such that for
any x ∈ X and s ∈ [0, σ(T)]

T
, 0 ≤ x(s) ≤ L. Define Q = maxs∈[0,T]

T
,u∈[0,L]f(s, u) and M =

maxu∈[0,L]g(u).
On the one hand, for any x ∈ X, we have

(Φx)(t) =
1

ep(t, 0)

[∫ t

0
ep(s, 0)f(s, x(s))Δs + g(x(σ(T)))

]

≤ ep(σ(T), 0)
∫σ(T)

0
f(s, x(s))Δs + g(x(σ(T)))

≤ Qσ(T)ep(σ(T), 0) +M, t ∈ [0, σ(T)]
T
,

(2.10)

which shows that Φ(X) is uniformly bounded.
On the other hand, for any x ∈ X and t1, t2 ∈ [0, σ(T)]

T
with t1 ≤ t2, we have

|(Φx)(t2) − (Φx)(t1)|

=

∣∣∣∣∣

[
1

ep(t2, 0)
− 1
ep(t1, 0)

][∫ t1

0
ep(s, 0)f(s, x(s))Δs + g(x(σ(T)))

]

+
1

ep(t2, 0)

∫ t2

t1

ep(s, 0)f(s, x(s))Δs

∣∣∣∣∣

≤
[

1
ep(t1, 0)

− 1
ep(t2, 0)

][∫σ(T)

0
ep(s, 0)f(s, x(s))Δs + g(x(σ(T)))

]

+
∫ t2

t1

ep(s, 0)f(s, x(s))Δs

≤
[

1
ep(t1, 0)

− 1
ep(t2, 0)

]
[
Qσ(T)ep(σ(T), 0) +M

]
+Qep(σ(T), 0)(t2 − t1),

(2.11)

which implies that Φ(X) is equicontinuous. Consequently, Φ : [v0, w0] → K is compact.

Step 2. We assert that Φ is monotone increasing on [v0, w0].
Suppose that u, v ∈ [v0, w0] and u ≤ v. Then, 0 ≤ u(t) ≤ v(t) ≤ R, t ∈ [0, σ(T)]

T
. By

(H1) and (H2), we have

(Φu)(t) =
1

ep(t, 0)

[∫ t

0
ep(s, 0)f(s, u(s))Δs + g(u(σ(T)))

]

≤ 1
ep(t, 0)

[∫ t

0
ep(s, 0)f(s, v(s))Δs + g(v(σ(T)))

]

= (Φv)(t), t ∈ [0, σ(T)]
T
,

(2.12)

which shows that Φu ≤ Φv.
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Step 3. We prove that v0 is a lower solution of Φ.
For any t ∈ [0, σ(T)]

T
, it is obvious that

(Φv0)(t) =
1

ep(t, 0)

[∫ t

0
ep(s, 0)f(s, 0)Δs + g(0)

]

≥ 0 = v0(t), (2.13)

which implies that v0 ≤ Φv0.

Step 4. We show that w0 is an upper solution of Φ.
In view of (H1) and (H2), we have

(Φw0)(t) =
∫ t

0

ep(s, 0)
ep(t, 0)

f(s, R)Δs +
g(R)
ep(t, 0)

≤
∫ t

0
f(s, R)Δs + g(R)

≤
∫σ(T)

0
f(s, R)Δs + g(R)

≤ R = w0(t), t ∈ [0, σ(T)]
T
,

(2.14)

which indicates that Φw0 ≤ w0.

Step 5. We claim that the BVP (1.6) has positive solutions.
In fact, if we construct sequences {vn}∞n=1 and {wn}∞n=1 as follows:

vn = Φvn−1, wn = Φwn−1, n = 1, 2, 3, . . . , (2.15)

then it follows from Theorem 1.1 that

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0, (2.16)

and {vn}∞n=0 and {wn}∞n=0 converge to, respectively, v andw ∈ [v0, w0], which are solutions of
the BVP (1.6). Moreover, it follows from

(Φv0)(σ(T)) =
1

ep(σ(T), 0)

[∫σ(T)

0
ep(s, 0)f(s, 0)Δs + g(0)

]

≥ 1
ep(σ(T), 0)

∫σ(T)

0
f(s, 0)Δs

> 0

(2.17)

that

0 < (Φv0)(σ(T)) ≤ (Φv)(σ(T)) = v(σ(T)) ≤ w(σ(T)), (2.18)

which shows that v and w are positive solutions of the BVP (1.6).
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Example 2.2. Let T = [0, 1] ∪ [2, 3]. We consider the following BVP on T:

xΔ(t) + p(t)x(σ(t)) =
t
√
x(t) + 3
9

, t ∈ [0, 3]
T
,

x(0) =
x2(3)
12

.

(2.19)

Since f(t, x) = t
√
x + 3/9 and g(x) = x2/12, if we choose R = 6, then all the conditions

of Theorem 2.1 are fulfilled. So, it follows from Theorem 2.1 that the BVP (2.19) has positive
solutions v and w. Furthermore, if we construct sequences {vn}∞n=1 and {wn}∞n=1 as follows:

vn = Φvn−1, wn = Φwn−1, n = 1, 2, 3, . . . , (2.20)

where v0(t) ≡ 0 and w0(t) ≡ 6, then

lim
n→∞

vn = v, lim
n→∞

wn = w. (2.21)
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