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By incorporating the chemotherapy into a previous model describing the interaction of the im-
mune system with the human immunodeficiency virus (HIV), this paper proposes a novel HIV
virus spread model with control variables. Our goal is to maximize the number of healthy cells
and, meanwhile, to minimize the cost of chemotherapy. In this context, the existence of an optimal
control is proved. Experimental results show that, under this model, the spread of HIV virus can
be controlled effectively.

1. Introduction

Numerous studies have been devoted to the description and understanding of the spread
of infectious diseases (especially, the acquired immunodeficiency syndrome (AIDS)) [1–18].
Mathematical modeling of the human immunodeficiency virus (HIV) viral dynamics has
offered many insights into the pathogenesis and treatment of HIV [1, 2, 4–10, 12–16, 18].
Consequently, many mathematical models have been developed to depict the relationships
among HIV, etiological agent for AIDS and CD4+T lymphoblasts, which are the targets for the
virus [13]. Some of these models investigate how to avoid an excessive use of drugs because
it might be toxic to human body and, hence, cause damages [1, 4–6, 8–11, 14, 15, 17, 18].

Recently, Sedaghat et al. [13] proposed a model, which describes the law governing
the transition of two populations of target cells, the T cells (the abbreviation of the CD4+T
lymphoblasts) and the M cells (say, macrophages, T cells in a lower state of activation, or
another cell type), in the effect of free virus (see Figure 1). The T cells produce most of the
plasma virus and are responsible for the first-phase decay, while the M cells are responsible
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Figure 1: The HIV model.

for the second-phase decay. T cells are classified into three categories: TU cells (uninfected T
cells), T1 cells (early-stage infected T cells), and T2 cells (late-stage infected T cells). Let TU, T1
and T2 denote the numbers of TU cells, T1 cells, and T2 cells, respectively. Likewise, M cells are
classified into three categories: Mu cells (uninfected M cells), M1 cells (early-stage infected
M cells), andM2 cells (late-stage infected M cells). LetMu,M1, andM2 denote the numbers
of MU cells, M1 cells and M2 cells, respectively. Besides, let V denote the number of free
viruses. Sedaghat et al. [13] made the following reasonable assumptions.

(A1) TU cells are produced with constant rate θT . MU cells are produced with constant
rate θM.

(A2) TU cells become T1 cells with constant rate βT . MU cells become M1 cells with
constant rate βM.

(A3) T1 cells become T2 cells with constant rate kT . M1 cells become M2 cells with
constant rate kM.

(A4) These cells die with constant rates δTU , δT1 , δT2 , δMU , δM1 , and δM2 respectively.

(A5) Free viruses (V ) are cleared at a rate c, produced by T2 cells with a burst size ofNT ,
and produced byM2 cells with a burst size of NM, respectively.

Under these assumptions, Sedaghat et al. [13] deduced the following system of ordinary
differential equations:

dTU
dt

= θT − δTUTU − βTTUV,

dT1
dt

= βTTUV − (δT1 + kT )T1,

dT2
dt

= kTT1 − δT2T2,
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dMU

dt
= θM − δMUMU − βMMUV,

dM1

dt
= βMMUV − (δM1 + kM)M1,

dM2

dt
= kMM1 − δM2M2,

dV

dt
= NTT2 +NMM2 − cV.

(1.1)

For a highly simplified version of this system, Sedaghat et al. [13] derived its analytic
solution.

It is well known [5, 6, 8–11, 13, 15, 17] that there are mainly two categories of anti-
HIV drugs: the reverse transcriptase inhibitors (RTIs), which prevent new HIV infection by
disrupting the conversion of viral RNA into DNA inside of T cells, and the protease inhibitors
(PIs), which reduce the number of virus particles produced by actively-infected T cells.

In consideration of this, this paper introduces a novel HIV model by incorporating the
drug dosage into the above-mentionedmodel. Our goal is to maximize the number of healthy
cells and, meanwhile, to minimize the cost of chemotherapy. In this context, the existence of
an optimal control strategy is proved. Experimental results show that, under this model, the
spread of HIV virus can be controlled effectively.

2. Presentation of a New Model

For our purpose, let us introduce the following notations (see Figure 2):

u1(t): the dosage of RTI at time t, which is assumed to take values in the interval [0, 1];

u2(t): the dosage of PI at time t, which is assumed to take values in [0, 1];

γ1: the capability of preventing TU cells from becoming T1 cells with per unit dosage of
RTI;

γ2: the capability of preventingMU cells from becomingM1 cells with per unit dosage
of RTI;

α1: the capability of preventing T2 cells from producing viruses with per unit dosage of
PI;

α2: the capability of preventing M2 cells from producing viruses with per unit dosage
of PI.

Next, let us consider the following assumptions.

(A6) Due to the effect of RTIs, TU cells become T1 cells with rate βT (1 − u1(t))γ1, andMU

cells become M1 cells with rate βM(1 − u1(t))γ2, where γ1 and γ2 are constants.

(A7) Due to the effect of PIs, Free viruses (V ) are produced by T2 and M2 cells with a
burst size of α1(1−u2(t))NT and α2(1−u2(t))NM, respectively, where α1 and α2 are
constants.
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Figure 2: The HIV model with therapy strategy.

Under assumptions (A1)–(A7), we can derive the following system of ordinary differential
equations:

dTU
dt

= θT − δTUTU − βTVTU(1 − u1)γ1,

dT1
dt

= βTVTU(1 − u1)γ1 − (δT1 + kT )T1,

dT2
dt

= kTT1 − δT2T2,

dMU

dt
= θM − δMUMU − βMVMU(1 − u1)γ2,

dM1

dt
= βMVMU(1 − u1)γ2 − (δM1 + kM)M1,

dM2

dt
= kMM1 − δM2M2,

dV

dt
= α1NTT2(1 − u2) + α2NMM2(1 − u2) − cV.

(2.1)

Our target is to maximize the objective functional by increasing the number of healthy
T and M cells and minimizing the cost based on the percentage effect of the chemotherapy
given. For that purpose, we introduce the following objective functional

J(u1(t), u2(t)) =
∫ t1

t0

{
B1TU + B2MU −

[
A1u

2
1 +A2u

2
2

]}
dt, (2.2)
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where B1, B2 represent the benefit of per TU cell and per MU cell, respectively, and A1, A2

represent the cost of per unit RTI and per unit PI, respectively. Our goal is to obtain an optimal
control pair (u∗1, u

∗
2) such that

J(u∗1, u∗2) = max{J(u1, u2) : (u1, u2) ∈ U}, (2.3)

where U is the admissible control set defined by

U = U1 ×U2,

U1 = U2 = {u(t) : u measurable, 0 ≤ u(t) ≤ 1, t ∈ [t0, t1]}.
(2.4)

3. Existence of an Optimal Control Pair

For our purpose, let us introduce the following four assumptions.

(A8) The set of control and corresponding state variables is nonempty.

(A9) The admissible control set U is closed and convex.

(A10) All the right hand sides of equations of system (2.1) are continuous, bounded above
by a sum of bounded control and state, and can be written as a linear function of u
with coefficients depending on time and state.

(A11) There exist positive constants c1, c2 and β > 1 such that the integrand (denoted
by L(y, u, t)) of the objective functional (2.2) is concave and satisfies the condition
L(y, u, t) ≤ c1 − c2(u2

1 + u2
2)

β/2.

In what follows, it is always assumed that assumptions (A1)–(A7) hold.

Theorem 3.1. Consider system (2.1) with initial conditions, and the objective functional (2.2). There
exists u∗ = (u∗1, u

∗
2) such that

J(u∗1, u∗2) = max
u∈U
J(u1, u2). (3.1)

Proof. It suffices to verify the assumptions (A8)–(A11) with respect to the seven ODEs of
system (2.1).

Since the coefficients involved in the system are bounded, and each state variable of
the system is bounded on the finite time interval, it follows by a result (see Appendix A) from
[19] we can obtain the existence to the solution of the system (2.1).

The control set U = U1 ×U2 is obviously closed and convex, because both U1 and U2

are closed and convex sets.
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By definition, each right hand side of the ODEs of system (2.1) is continuous and can
be written as a linear function of u with coefficients depending on time and states. The fact
that all state variables TU, T1, T2, MU, M1, M2, V , and U are bounded on [t0, t1], implies the
rest of assumption (A10).

It is easy to see that L(y, u, t) is concave in U. By setting c1 = max{B1TU + B2MU},
c2 = inf(A1, A2) and β = 2, we can derive

L
(
y, u, t

)
= B1TU + B2MU −

[
A1u

2
1 +A2u

2
2

]

≤ c1 − c2
(
u2
1 + u2

2

)
.

(3.2)

The proof is complete.

4. Optimally Controlling Chemotherapy

In this section, we discuss the theorem related to the characterization of the optimal con-
trol. This result depends on the Pontryagin’s Maximum Principle, which gives necessary con-
ditions for the optimal control. First, we rewrite the system (2.1) in the following vector
notation:

dy(t)
dt

= A
(
y, u, t

)
; ∀t > t0, ∀u ∈ U,

y(t0) = y0,

(4.1)

where y(t) and A(y, u, t) are given by

y(t) = (TU(t), T1(t), T2(t),MU(t),M1(t),M2(t),V (t))T ,

A
(
y, u, t

)
=
(
g1
(
y, u, t

)
, g2
(
y, u, t

)
, . . . , g6

(
y, u, t

)
, g7
(
y, u, t

))T
.

(4.2)

The Hamiltonian associated with our problem is

H
(
y, u, p, t

)
= L
(
y, u, t

)
+ λ(t)TA

(
y, u, t

)
, (4.3)

where the adjoint vector λ(t) is defined by the adjoint equation

dλ(t)
dt

= −Ayλ(t) − Ly,

λ(t1) = 0.

(4.4)
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Here

Ay =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂g1
∂TU

∂g2
∂TU

∂g3
∂TU

∂g4
∂TU

∂g5
∂TU

∂g6
∂TU

∂g7
∂TU

∂g1

∂T1

∂g2

∂T1

∂g3

∂T1

∂g4

∂T1

∂g5

∂T1

∂g6

∂T1

∂g7

∂T1
∂g1
∂T2

∂g2
∂T2

∂g3
∂T2

∂g4
∂T2

∂g5
∂T2

∂g6
∂T2

∂g7
∂T2

∂g1
∂MU

∂g2
∂MU

∂g3
∂MU

∂g4
∂MU

∂g5
∂MU

∂g6
∂MU

∂g7
∂MU

∂g1

∂M1

∂g2

∂M1

∂g3

∂M1

∂g4

∂M1

∂g5

∂M1

∂g6

∂M1

∂g7

∂M1

∂g1
∂M2

∂g2
∂M2

∂g3
∂M2

∂g4
∂M2

∂g5
∂M2

∂g6
∂M2

∂g7
∂M2

∂g1
∂V

∂g2
∂V

∂g3
∂V

∂g4
∂V

∂g5
∂V

∂g6
∂V

∂g7
∂V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (E, F), (4.5)

where

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δTU − βTV (1 − u1)γ1 βTV (1 − u1)γ1 0

0 −(δT1 + kT) kT

0 0 −δT2
0 0 0

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 α1NT (1 − u2)

−δMU − βMV (1 − u1)γ2 βMV (1 − u1)γ2 0 0

0 −(δM1 + kM) kM 0

0 0 −δM2 α2NM(1 − u2)

0 0 0 −c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.6)

In addition, the Ly in system (4.3) is

Ly =
(

∂L

∂TU
,
∂L

∂T1
,
∂L

∂T2
,

∂L

∂MU
,
∂L

∂M1
,
∂L

∂M2
,
∂L

∂V

)T

,

= (B1, 0, 0, B2, 0, 0, 0)T .

(4.7)
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Next, adding the penalty term will give us the optimality condition

ξ
(
y, u, λ, t

)
= H

(
y, u, λ, t

)
+ Γ(u(t))ω(t), (4.8)

where Γ is an operator from �
2 to �4 defined by

Γ(u(t)) = (1 − u1(t), u1(t), 1 − u2(t), u2(t)),

ω(t) =

⎛
⎜⎜⎜⎜⎜⎝

ω11(t)

ω12(t)

ω21(t)

ω22(t)

⎞
⎟⎟⎟⎟⎟⎠

,
(4.9)

where all ωij , i, j = 1, 2 are nonnegative penalty multipliers satisfying the following condi-
tions:

(
1 − u∗1(t)

)
ω11(t) = u∗1(t)ω12(t) =

(
1 − u∗2(t)

)
ω21(t) = u∗2(t)ω22(t) = 0. (4.10)

According to the Pontryagin’s Maximum Principle, if the control u∗(t) and the corre-
sponding state y∗(t) constitute an optimal pair, there exists an adjoint vector λ(t) defined
system (4.4) such that the function ξ(y, u, λ, t) defined by (4.8) reaches its maximum on the
set U at the point u∗. This gives the following result.

Theorem 4.1. Given an optimal control pair u∗(t) = (u∗1(t), u
∗
2(t)) and a solution y∗(t) = (T∗U(t),

T∗1 (t), T
∗
2 (t),M

∗
U(t),M

∗
1(t),M

∗
2(t),V

∗(t)) of the corresponding system, then there exist seven adjoint
variables λ1(t), λ2(t), . . . , λ7(t) satisfying

dλ1

dt
=
[
δTU + βTV (1 − u1)γ1

]
λ1 − βTV (1 − u1)γ1λ2 − B1,

dλ2

dt
= (δT1 + kT )λ2 − kTλ3,

dλ3

dt
= δT2λ3 − α1NT (1 − u2)λ7,

dλ4

dt
=
[
δMU + βMV (1 − u1)γ2

]
λ4 − βMV (1 − u1)γ2λ5 − B2,

dλ5

dt
= (δM1 + kM)λ5 − kMλ6,

dλ6

dt
= δM2λ6 − α2NM(1 − u2)λ7,

dλ7

dt
= cλ7 + βTTU(1 − u1)γ1λ1 − βTTU(1 − u1)γ1λ2

+ βMMU(1 − u1)γ2λ4 − βMMU(1 − u1)γ2λ5,

(4.11)
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with the final conditions

λ1(t1) = λ2(t1) = · · · = λ7(t1) = 0. (4.12)

Furthermore, u∗1(t) = min{max{0, R1(t)}, 1}, u∗2(t) = min{max{0, R2(t)}, 1}, where

R1(t) =
V ∗

2A1

(
βTT

∗
Uγ1(λ1 − λ2) + βMM∗

Uγ2(λ4 − λ5)
)
,

R2(t) = − λ7

2A2
(α1NTT2 + α2NMM2).

(4.13)

Proof. According to the previous section, an optimal couple (y∗(t), u∗(t)) exists for maxi-
mizing the objective functional (2.2) subject to the system (2.1). Therefore, by Pontryagin’s
Maximum Principle, there exists a vector λ(t) = (λ1(t), . . . , λ7(t))T satisfying

λ(t)
dt

= −∂H
∂y

= −Ly −Ayλ(t). (4.14)

That yields

λ1(t)
dt

= −
(

∂g1
(
y∗, u∗, t

)
∂TU

, . . . ,
∂g7
(
y∗, u∗, t

)
∂TU

)
λ(t) − ∂L

(
y∗, u∗, t

)
∂TU

,

λ2(t)
dt

= −
(

∂g1
(
y∗, u∗, t

)
∂T1

, . . . ,
∂g7
(
y∗, u∗, t

)
∂T1

)
λ(t) − ∂L

(
y∗, u∗, t

)
∂T1

,

λ3(t)
dt

= −
(

∂g1
(
y∗, u∗, t

)
∂T2

, . . . ,
∂g7
(
y∗, u∗, t

)
∂T2

)
λ(t) − ∂L

(
y∗, u∗, t

)
∂T2

,

λ4(t)
dt

= −
(

∂g1
(
y∗, u∗, t

)
∂MU

, . . . ,
∂g7
(
y∗, u∗, t

)
∂MU

)
λ(t) − ∂L

(
y∗, u∗, t

)
∂MU

,

λ5(t)
dt

= −
(

∂g1
(
y∗, u∗, t

)
∂M1

, . . . ,
∂g7
(
y∗, u∗, t

)
∂M1

)
λ(t) − ∂L

(
y∗, u∗, t

)
∂M2

,

λ6(t)
dt

= −
(

∂g1
(
y∗, u∗, t

)
∂M2

, . . . ,
∂g7
(
y∗, u∗, t

)
∂M2

)
λ(t) − ∂L

(
y∗, u∗, t

)
∂M2

,

λ7(t)
dt

= −
(

∂g1
(
y∗, u∗, t

)
∂V

, . . . ,
∂g7
(
y∗, u∗, t

)
∂V

)
λ(t) − ∂L

(
y∗, u∗, t

)
∂V

.

(4.15)

Through simple calculations, we derive system (4.11). The Pontryagin’s Maximum Prin-
ciple gives the following necessary conditions to obtain the optimal pair (y∗, u∗):

∂ξ
(
y∗, u∗, λ, t

)
∂u1

= 0,
∂ξ
(
y∗, u∗, λ, t

)
∂u2

= 0, (4.16)
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where ξ(y∗, u∗, λ, t) = H(y∗, u∗, λ, t) + Γ(u∗(t))ω(t). From (4.10) and (4.16), we have

∂ξ
(
y∗, u∗, λ, t

)
∂u1

= 0

=⇒ ∂L
(
y∗, u∗, t

)
∂u1

+
∂
(
λ(t)TA

(
y∗, u∗, t

))
∂u1

+
∂(Γ(u∗(t))ω(t))

∂u1
= 0,

(4.17)

which implies

u∗1(t) =
V ∗

2A1

(
βTT

∗
Uγ1(λ1 − λ2) + βMM∗

Uγ2(λ4 − λ5)
)
. (4.18)

On the other hand,

∂ξ
(
y, u∗, λ, t

)
∂u2

= 0

=⇒ ∂L
(
y∗, u∗, t

)
∂u2

+
∂
(
λ(t)TA

(
y, u∗, t

))
∂u2

+
∂(Γ(u∗(t))ω(t))

∂u2
= 0,

(4.19)

which indicates

u∗2(t) = −
λ7

2A2
(α1NTT2 + α2NMM2). (4.20)

Now from the constraint condition, the following three cases arise.

Case 1. t ∈ {t : 0 < u∗1(t) < 1} and ω11(t) = ω12(t) = 0. Then u∗1(t) = R1(t).

Case 2. t ∈ {t : u∗1(t) = 0} and ω11(t) = 0. Then 0 = u∗1(t) = R1(t) + ω12(t), which implies
u∗1(t) ≥ R1(t) because ω12(t) ≥ 0.

Case 3. t ∈ {t : u∗1(t) = 1} andω12(t) = 0. Then u∗1(t) = R1(t)−ω11(t), which leads to 1 = u∗1(t) ≤
R1(t), owing to ω11 ≥ 0.

Hence, we have u∗1(t) = min{max{0, R1(t)}, 1}. Similarly, we can get that u∗2(t) =
min{max{0, R2(t)}, 1}.

The proof is complete.
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Now, the optimality system is given by incorporating the optimal control pair in the
state system coupled with the adjoint system. Thus, we have

dy∗(t)
dt

= A
(
y∗, u∗, t

)
; ∀t > t0,

dλ(t)
dt

= −Ay∗λ(t) − Ly∗ ,

y∗(t0) = y∗0,

λ(t1) = 0.

(4.21)

We substitute the expressions u∗ = (u∗1, u
∗
2) in the above system. The uniqueness of the solu-

tion of the optimality system can be derived by a standard method (refer to [6] for more de-
tails on the proof).

5. Numerical Algorithm and Results

The resolution of the optimal system is created improving the Gauss-Seidel-like implicit
finite-difference method developed by [7] and denoted by GSS1 method. It consists on dis-
cretizing the interval [t0, t1] at the points tk = kl + t0(k = 0, 1, . . . , n), where l is the time step.

In the following, we define the state and adjoint variables TU(t), T1(t), T2(t), MU(t),
M1(t), M2(t), V (t), λ1(t) ∼ λ7(t) and the controls u1(t) and u2(t) in terms of nodal points Tk

U,
Tk
1 , T

k
2 , M

k
U, M

k
1 , M

k
2 , V

k, λk
1 ∼ λk

7 , u
k
1 , u

k
2 as the state and adjoint variables and the controls

at initial time t0, while Tn
U, T

n
1 , T

n
2 , M

n
U, M

n
1 , M

n
2 , V

n, λn
1 ∼ λn

7 , u
n
1 , u

n
2 as the state and adjoint

variables and the controls at final time t1. As it is well known that the approximation of the
time derivative by its first-order forward-difference is given, for the first state variable TU, by

dTU(t)
dt

= lim
l→ 0

TU(t + l) − TU(t)
l

. (5.1)

We use the scheme developed by Gumel et al. [7] in the following way:

Tk+1
U − Tk

U

l
= θT − δTUTk+1

U − βTγ1V k
(
1 − uk

1

)
Tk+1
U . (5.2)

Analogously, we have

Tk+1
1 − Tk

1

l
= βTγ1V

k
(
1 − uk

1

)
Tk+1
U − (δT1 + kT )Tk+1

1 ,

Tk+1
2 − Tk

2

l
= kTT

k+1
1 − δT2Tk+1

2 ,

Mk+1
U −Mk

U

l
= θM − δMUM

k+1
U − βMγ2V

k
(
1 − uk

1

)
Mk+1

U ,
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Mk+1
1 −Mk

1

l
= βMγ2V

k
(
1 − uk

1

)
Mk+1

U − (δM1 + kM)Mk+1
1 ,

Mk+1
2 −Mk

2

l
= kMMk+1

1 − δM2M
k+1
2 ,

V k+1 − V k

l
= α1NTT

k+1
2

(
1 − uk

2

)
+ α2NMMk+1

2

(
1 − uk

2

)
− cV k+1.

(5.3)

By applying an analogous technology, we approximate the time derivative of the ad-
joint variables by their first-order backward-difference and we use the appropriated scheme
as follows:

λn−k
1 − λn−k−1

1

l
=
[
δTU + βTV

k+1
(
1 − uk

1

)
γ1
]
λn−k−1
1 − βTV

k+1
(
1 − uk

1

)
γ1λ

n−k
2 − B1,

λn−k
2 − λn−k−1

2

l
= (δT1 + kT )λn−k−1

2 − kTλn−k
3 ,

λn−k
3 − λn−k−1

3

l
= δT2λ

n−k−1
3 − α1NT

(
1 − uk

2

)
λn−k
7 ,

λn−k
4 − λn−k−1

4

l
=
[
δMU + βMV k+1

(
1 − uk

1

)
γ2
]
λn−k−1
4 − βMV k+1

(
1 − uk

1

)
γ2λ

n−k
5 − B2,

λn−k
5 − λn−k−1

5

l
= (δM1 + kM)λn−k−1

5 − kMλn−k
6 ,

λn−k
6 − λn−k−1

6

l
= δM2λ

n−k−1
6 − α2NM

(
1 − uk

2

)
λn−k
7 ,

λn−k
7 − λn−k−1

7

l
= cλn−k−1

7 + βTT
k+1
U

(
1 − uk

1

)
γ1
(
λn−k−1
1 − λn−k−1

2

)

+ βMMk+1
U

(
1 − uk

1

)
γ2
(
λn−k−1
4 − λn−k−1

5

)
.

(5.4)

Hence, we can establish an algorithm to solve the optimality system and then to com-
pute the optimal control pair by employing the GSS1 method (5.2)–(5.4) that we denote by
IGSS1 method here (see Appendix B).

5.1. Numerical Results

By making some parameter value choices, computer simulation experiments are done to
verify the effectiveness of our new model by comparing the disease progression before and
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Table 1

Time (days) TU BT TU AT MU BT MU AT V BT V AT
0 1000 1000 1000 1000 1 1
2 980.2369 980.2012 926.3417 926.1494 15.33444 19.568136
4 955.4799 953.1210 856.9665 852.1262 283.2647 334.65888
6 839.4257 889.1900 754.0975 754.1006 4710.942 315.44809
8 270.1388 833.1982 372.5725 671.2911 38782.17 297.34008
10 11.92899 784.0453 41.26735 601.1371 99155.03 280.27154
20 0.511601 628.5318 1.021524 388.0657 255003.3 208.54835
30 0.379269 597.7372 0.756860 313.0676 335762.8 155.17956
40 0.334284 574.2037 0.666976 268.0361 376288.7 115.46816
50 0.322352 555.2309 0.643089 240.5969 387774.5 85.919158
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After treatment

Figure 3: Uninfected T cells.

after introducing the two optimal control variables u∗1(t), u
∗
2(t). For the following parameters

and initial values:
θT = 10, θM = 10, δTU = 0.02, δT1 = 0.5, δT2 = 1, δMU = 0.0495, δM1 = 0.0495, δM2 = 0.0495,
βT = 0.00008, βM = 0.00008, kT = 0.1, kM = 0.1, NT = 100, NM = 100, T0

U = 1000, T0
1 = 0,

T0
2 = 0,M0

U = 1000,M0
1 = 0,M0

2 = 0, V 0 = 1, c = 0.03.
The experimental results obtained are listed in Table 1 (in which “before treatment”

and “after treatment” are denoted by BT and AT, resp.).
For more clearness, it is better to present these comparative results by the following

graphs. When the viruses attack the human body, uninfected T and M cells decrease (see
Figures 3 and 4).

The viruses do not stop to proliferate and so its abundance dramatically increases (see
Figure 5). However, after introducing the optimal controls, the situation changes. A few days
later, the effect of chemotherapy starts to appear; which explains the growth of uninfected T
and M cells and the diminishing of viruses (see Figure 6).

Finally, the optimal controls u∗1(t), u
∗
2(t) for drug administration are presented through

Figures 7 and 8.
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Figure 4: Uninfected M cells.
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Figure 5: Virus population before optimal controls.

6. Conclusions

By incorporating the chemotherapy into a previous model describing the interaction of the
immune system with the human immunodeficiency virus (HIV), this paper has proposed a
novel HIV virus spread model with control variables. Our goal is to maximize the number
of healthy cells and, meanwhile, to minimize the cost of chemotherapy. In this context, the
existence of an optimal control has been proved. Experimental results show that, under this
model, the spread of HIV virus can be controlled effectively.

Our next work is to study other kinds of models, especially those with impulsive drug
effect.
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Figure 6: Virus population after optimal controls.
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Figure 7: Optimal control variable u∗1(t).
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Figure 8: Optimal control variable u∗2(t).
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Appendices

A. The Theorem Used in Theorem 3.1

The equations

ẋ(t) = f(t, x(t)),

x|t=τ = ξ,
(A.1)

where (τ, ξ) ∈ D, with D a nonempty open subset of R × Rn and f : D → Rn, are called a
Cauchy problem or initial-value problem.

A solution to the Cauchy Problem is defined to be any pair (I, φ) in which I is an open
subinterval of R containing τ, φ : I → Rn is absolutely continuous, (t, φ(t)) ∈ D for all t ∈ I,
and φ satisfies the above two equations at a.e.t ∈ I.

For x ∈ Rn with coordinates xi, define a norm on Rn by

|x| = max
1≤i≤n
|xi|. (A.2)

The following theorem applies the Lebesgue integral and the hypothesis is stated in
terms of the rectangular subset of R × Rn centered about (τ, ξ),

Ra,b = {(t, x) : |t − τ | ≤ a, |x − ξ| ≤ b}, a > 0, b > 0. (A.3)

Theorem A.1 (see [19, p.182]). The Cauchy problem has a solution if for some Ra,b ⊂ D centered
about (τ, ξ) the restriction of f to Ra,b is continuous in x for fixed t, measurable in t for fixed x, and
satisfies

∣∣f(t, x)∣∣ ≤ m(t), (t, x) ∈ Ra,b, (A.4)

for somem integrable over the interval [τ − a, τ + a].

B. An Algorithm Using the GSS1 Method

Algorithm B.1.

Step 1.

TU(t0)←− T0
U, T1(t0)←− T0

1 , T2(t0)←− T0
2 ,

MU(t0)←−M0
U, M1(t0)←−M0

1, M2(t0) ←−M0
2, V (t0)←− V 0,

λ1(tn) ←− 0, λ2(tn) ←− 0, λ3(tn) ←− 0, λ4(tn)←− 0,

λ5(tn)←− 0, λ6(tn)←− 0, λ7(tn) ←− 0,

u1(t0) ←− 0, u2(t0)←− 0.

(B.1)
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Step 2. for k = 1, . . . , n do

Tk
U ←−

lθT + Tk−1
U

1 + lδTU + lβTV k−1
(
1 − uk−1

1

)
γ1
,

Tk
1 ←−

lβTγ1V k−1
(
1 − uk−1

1

)
Tk
U + Tk−1

1

1 + (δT1 + kT )l
,

Tk
2 ←−

lkTT
k
1 + Tk−1

2

1 + lδT2
,

Mk
U ←−

lθM +Mk−1
U

1 + lδMU + lβMγ2V k−1
(
1 − uk−1

1

) ,

Mk
1 ←−

lβMγ2V
k−1
(
1 − uk−1

1

)
Mk

U +Mk−1
1

1 + (δM1 + kM)l
,

Mk
2 ←−

lkMMk
1 +Mk−1

2

1 + lδM2

,

V k ←−
lα1NTT

k
2

(
1 − uk−1

2

)
+ lα2NMMk

2

(
1 − uk−1

2

)
+ V k−1

1 + cl
,

λn−k
1 ←−

lB1 + lβTV k
(
1 − uk−1

1

)
γ1λ

n−k+1
2 + λn−k+1

1

1 + lδTU + lβTV k
(
1 − uk−1

1

)
γ1

,

λn−k
2 ←− λn−k+1

2 + lkTλ
n−k+1
3

1 + (δT1 + kT)l
,

λn−k
3 ←−

λn−k+1
3 + lα1NT

(
1 − uk−1

2

)
λn−k+1
7

1 + lδT2
,

λn−k
4 ←−

lB2 + lβMV k
(
1 − uk−1

1

)
γ2λ

n−k+1
5 + λn−k+1

4

1 + lδMU + lβMV k
(
1 − uk−1

1

)
γ2

,

λn−k
5 ←− λn−k+1

5 + lkMλn−k+1
6

1 + (δM1 + kM)l
,

λn−k
6 ←−

λn−k+1
6 + lα2NM

(
1 − uk−1

2

)
λn−k+1
7

1 + lδM2

,

λn−k
7 ←−

λn−k+1
7 + l

(
1 − uk−1

1

)[
βTT

k
Uγ1
(
λn−k
2 − λn−k

1

)
+ βMMk

Uγ2
(
λn−k
5 − λn−k

4

)]
1 + lc

,
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Rk
1 ←−

V k

2A1

[
βTT

k
Uγ1
(
λn−k
1 − λn−k

2

)
+ βMMk

Uγ2
(
λn−k
4 − λn−k

5

)]
,

Rk
2 ←− −

λn−k
7

2A2

(
α1NTT

k
2 + α2NMMk

2

)
,

uk
1 ←− min

{
max

{
0, Rk

1

}
, 1
}
, uk

2 ←− min
{
max

{
0, Rk

2

}
, 1
}
.

(B.2)

Step 3. for k = 1, . . . , n, denote

T∗U(tk) = Tk
U,M

∗
U(tk) = Mk

U, u
∗
1(tk) = uk

1 , u
∗
2(tk) = uk

2 . (B.3)

It is easy to conclude that this algorithm takesO(n) execution time.
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