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This paper deals with the problem of delay-dependent H∞ filtering for singular time-delay
systems. First, a new delay-dependent condition which guarantees that the filter error system has
a prescribed H∞ performance γ is given in terms of linear matrix inequalities (LMIs). Then, the
sufficient condition is obtained for the existence of theH∞ filter, and the explicit expression for the
desiredH∞ filter is presented by using LMIs and the cone complementarity linearization iterative
algorithm. A numerical example is provided to illustrate the effectiveness of the proposedmethod.

1. Introduction

Over the past decades, the filtering problem has been widely studied and has found many
applications [1, 2]. Current efforts on this topic can be mainly divided into two classes:
the Kalman filtering approach and the H∞ filtering approach. The objective of the latter
one is to find a filter such that the resulting error system is asymptotically stable and the
L2-induced norm (for continuous systems) or l2-induced norm (for discrete systems) from
the disturbance input to the filtering error output satisfies a prescribed H∞ performance
level. In contrast to the Kalman filtering, the H∞ filtering approach does not require the
exact knowledge of the statistics of the external noise signals, and it is insensitive to the
uncertainties. These features render the H∞ filtering attracting much attention, and many
efforts have been made on this issue [3–6]. The filtering problem for singular systems has
also been investigated bymany researchers. For example, a necessary and sufficient condition
is obtained in [7] for the solvability of the H∞ filtering problem and the designed filter is
proper with a McMillan degree no more than the exponential modes of the plant, while,
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in [8], a linear normal H∞ filter is obtained for singular systems. Reduced-order H∞ filters
are designed in [9] for both continuous and discrete singular systems. In [10], a reduced-
order H∞ filter design approach is developed for a class of discrete singular systems with
lossy measurements.

On the other hand, for many practical control systems, time delays are frequently
encountered and they are often the sources of instability and degradation in control
performance. So, recently, there has been increasing interest in H∞ filtering for time-delay
systems. Existing results can be classified into two types: delay-independent ones [11–14] and
delay-dependent ones [15–23]; the former do not include any information on the size of delay
while the latter employ such information. Generally speaking, delay-dependent results are
less conservative than the delay-independent ones, especially when the size of delay is small.

Singular time-delay systems, which are also referred to as implicit time-delay systems,
descriptor time-delay systems, or generalized differential-difference equations, often appear
in various engineering systems, including aircraft attitude control, flexible arm control
of robots, large-scale electric network control, chemical engineering systems, and lossless
transmission lines (see, e.g., [24]). Since singular time-delay systems are more general, it is of
significance to consider the H∞ filtering problem for them. Recently, some delay-dependent
[25–27] and delay-dependent [28–31] results about H∞ filters for such systems have been
obtained. In [28], the delay-independent filter is of the Luenberger observer type and the
decomposition and transformation of the system matrices are involved, which would result
in some numerical problems. A full-order filter is designed in [29] for singular systems with
communication delays, and H∞ filtering problems are concerned in [30, 31] for singular
systems with time-varying delay in a range.

In this paper, the problem of delay-dependentH∞ filtering is investigated for singular
time-delay systems. We consider the case of discrete delay which is assumed to be constant
and known. First, based on the result in [32], we derive a new delay-dependent condition
which guarantees that the filter error system has a prescribedH∞ performance γ ; and it can be
seen that this new condition is more “efficient” than that in [32] since no redundant variables
are involved. Then, the sufficient condition for the existence of the full-orderH∞ filter, which
is an admissible singular time-delay system, is obtained and the explicit expression for the
desiredH∞ filter is given by using LMIs and the cone complementarity linearization iterative
algorithm.

Notations

Rn denotes the n-dimensional Euclidean space and Rn×m denotes the set of all n × m real
matrices, In is the n-dimensional identity matrix, and diag{· · · } is a block-diagonal matrix.
For real symmetric matrix X, the notation X ≥ 0 (X > 0) means that the matrix X is positive-
semidefinite (positive-definite). The superscript T represents the transpose; the symbol ∗will
be used in some matrix expressions to induce a symmetric structure. L2[0,∞) refers to the
space of square-integrable vector functions over [0,∞) with norm ‖f‖2 := (

∫∞
0 ‖f(t)‖2dt)1/2.

2. Problem Statement

Consider the following singular time-delay system:

Eẋ(t) = Ax(t) +Aτx(t − τ) + Bw(t),

y(t) = Cx(t) + Cτx(t − τ) + B1w(t),
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z(t) = Gx(t) +Gτx(t − τ) + B2w(t),

x(t) = φ(t), t ∈ [−τ, 0],
(2.1)

where x(t) ∈ Rn is the state, w(t) ∈ Rr is the external disturbance signal that belongs to
L2[0,∞), y(t) ∈ Rm is the measurement output, and z(t) ∈ Rs is the signal to be estimated.
E, A, Aτ , B, C, Cτ , B1, G, Gτ , and B2 are known real constant matrices with appropriate
dimensions and 0 < rankE = p < n. τ > 0 is the known delay constant and φ(t) ∈ Cn,τ is a
compatible vector-valued initial function.

Without loss of generality, we assume that Cτ = 0, B1 = 0, Gτ = 0, and B2 = 0.
Otherwise, system (2.1) can be equivalently changed into

[
E 0

0 0

][
ẋ(t)

ζ̇(t)

]

=

[
A 0

0 −Im+s

][
x(t)

ζ(t)

]

+

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

Aτ | 0

−− − −−
Cτ |

0m+s

Gτ |

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

[
x(t − τ)
ζ(t − τ)

]

+

⎡

⎢⎢⎢⎢⎢
⎣

B

−−
B1

B2

⎤

⎥⎥⎥⎥⎥
⎦
w(t),

[
y(t)

z(t)

]

=

⎡

⎢⎢
⎣

C |
Im+s

G |

⎤

⎥⎥
⎦

[
x(t)

ζ(t)

]

.

(2.2)

Then in the sequel, we discuss the system model as follows:

Eẋ(t) = Ax(t) +Aτx(t − τ) + Bw(t),

y(t) = Cx(t),

z(t) = Gx(t),

x(t) = φ(t), t ∈ [−τ, 0].

(2.3)

Throughout this paper, we need the following assumption for system (2.3).

Assumption 2.1. System (2.3) is admissible, that is, whenw(t) ≡ 0, system (2.3) is regular, impulse
free, and asymptotically stable.

Remark 2.2. About the definitions of regularity, absence of impulses and asymptotical stability
for singular time-delay systems, we refer the readers to [33].

For the estimates of z(t), we consider the following linear filter with delay:

E ˙̂x(t) = Afx̂(t) +Aτf x̂(t − τ) + Bfy(t),
ẑ(t) = Cfx̂(t),

x̂(t) = ψ(t), t ∈ [−τ, 0],
(2.4)
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where x̂(t) ∈ Rn and ẑ(t) ∈ Rs are the state and the output of the filter, respectively. The
constant matrices Af, Aτf , Bf , and Cf are filter parameters to be determined.

Letting

e(t) :=
[
xT (t) x̂T (t)

]T
, z̃(t) := z(t) − ẑ(t), (2.5)

one obtains the filter error system

Ẽė(t) = Ãe(t) + Ãτe(t − τ) + B̃w(t),

z̃(t) = G̃e(t),

e(t) =
[
φT (t) ψT (t)

]T
, t ∈ [−τ, 0],

(2.6)

where

Ẽ =

[
E 0

0 E

]

, Ã =

[
A 0

BfC Af

]

,

Ãτ =

[
Aτ 0

0 Aτf

]

, B̃ =

[
B

0

]

, G̃ =
[
G −Cf

]
.

(2.7)

Thus, the filtering problem to be addressed is stated as follows.

H∞ Filtering Problem

For a given γ > 0, design a full-order filter with delay of the form of (2.4) such that the filter
error system (2.6) has prescribedH∞ performance γ , that is,

(1) system (2.6) is admissible;

(2) under zero initial condition, for any nonzero w(t) ∈ L2[0,∞), theH∞ performance
‖z(t)‖2 ≤ γ‖w(t)‖2 is guaranteed.

Remark 2.3. Similar to [17], it is easy to see that system (2.3) is admissible if the error system
(2.6) is admissible. That is why we made Assumption 2.1 on system (2.3).

3. Main Results

At first, we will concentrate our attention on H∞ performance analysis for the error system
(2.6). The following lemma is useful in the proof of Theorem 3.2.

Lemma 3.1 (see [32]). Given a scalar γ > 0, the filter error system (2.6) has a prescribed H∞
performance γ if there exist matrices Q̃ > 0, Z̃ > 0, P̃ , Ỹ , and W̃ satisfying
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ẼT P̃ T = P̃ Ẽ ≥ 0, (3.1)

Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ1 Φ2 τỸ T P̃ B̃ τÃT Z̃ G̃T

∗ Φ3 τW̃T 0 τÃT
τ Z̃ 0

∗ ∗ −τZ̃ 0 0 0

∗ ∗ ∗ −γ2I τB̃T Z̃ 0

∗ ∗ ∗ ∗ −τZ̃ 0

∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.2)

where

Φ1 = P̃ Ã + ÃT P̃ T + Q̃ − Ỹ T Ẽ − ẼT Ỹ , Φ2 = P̃ Ãτ + Ỹ T Ẽ − ẼTW̃,

Φ3 = −Q̃ + W̃T Ẽ + ẼTW̃.
(3.3)

Based on Lemma 3.1, we will present a new delay-dependent bounded real lemma
(BRL) for the performance analysis of system (2.6), which can be shown to bemore “efficient”
than Lemma 3.1.

Theorem 3.2. Given a scalar γ > 0, the filter error system (2.6) has a prescribedH∞ performance γ
if there exist matrices Q̃ > 0, Z̃ > 0 and P̃ satisfying (3.1) and

Ω =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω1 Ω2 P̃ B̃ τÃT Z̃ G̃T

∗ Ω3 0 τÃT
τ Z̃ 0

∗ ∗ −γ2I τB̃T Z̃ 0

∗ ∗ ∗ −τZ̃ 0

∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.4)

where

Ω1 = P̃ Ã + ÃT P̃ T + Q̃ − 1
τ
ẼT Z̃Ẽ, Ω2 = P̃ Ãτ +

1
τ
ẼT Z̃Ẽ, Ω3 = −Q̃ − 1

τ
ẼT Z̃Ẽ. (3.5)

Proof. From Lemma 3.1, if we can prove that the feasibility of Ω < 0 for solution (Q̃ > 0, Z̃ >

0, P̃) is equivalent to that of Φ < 0 for solution (Q̃ > 0, Z̃ > 0, P̃ , Ỹ , W̃), then Theorem 3.2 is
proved.
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Similar to Lemma 4 of [34], take

Ψ = ΠΦΠT =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω1 Ω2 τỸ T − ẼT Z̃ P̃ B̃ τÃT Z̃ G̃T

∗ Ω3 τW̃T + ẼT Z̃ 0 τÃT
τ Z̃ 0

∗ ∗ −τZ̃ 0 0 0

∗ ∗ ∗ −γ2I τB̃T Z̃ 0

∗ ∗ ∗ ∗ −τZ̃ 0

∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.6)

with

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

I 0
1
τ
ẼT 0 0 0

0 I − 1
τ
ẼT 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (3.7)

It follows from Schur complement that

Φ < 0 ⇐⇒ Ψ < 0 ⇐⇒ Z̃ > 0, Ω +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

τỸ T − ẼT Z̃
τW̃T + ẼT Z̃

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(
τZ̃
)−1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

τỸ T − ẼT Z̃
τW̃T + ẼT Z̃

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

T

< 0. (3.8)

If there exist Q̃ > 0, Z̃ > 0, P̃ , Ỹ , and W̃ satisfying Φ < 0, from (3.8) it is easy to see
that the above (Q̃, Z̃, P̃) is a feasible solution of Ω < 0. Conversely, if there exist Q̃ > 0, Z̃ > 0
and P̃ such that Ω < 0 holds, via taking Ỹ = (1/τ)Z̃Ẽ and W̃ = −(1/τ)Z̃Ẽ, Φ < 0 is also
feasible for the above (Q̃, Z̃, P̃ , Ỹ , W̃). This completes the proof.

The following corollary is easy to be obtained from Theorem 3.2.

Corollary 3.3. The filter error system (2.6) is admissible if there exist matrices Q̃ > 0, Z̃ > 0 and P̃
satisfying (3.1) and
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⎡

⎢
⎢
⎢
⎢
⎣

P̃ Ã + ÃT P̃ T + Q̃ − 1
τ
ẼT Z̃Ẽ P̃ Ãτ +

1
τ
ẼT Z̃Ẽ τÃT Z̃

∗ −Q̃ − 1
τ
ẼT Z̃Ẽ τÃT

τ Z̃

∗ ∗ −τZ̃

⎤

⎥
⎥
⎥
⎥
⎦
< 0. (3.9)

Remark 3.4. Theorem 3.2 can also be proved by employing the relationship of two integral
inequalities concluded in [35]. In fact, we can see that Lemma 3.1 is obtained by using
the integral inequality (7) in [35], while using the integral inequality (9) in [35] yields
Theorem 3.2. As shown by [35], the upper bound provided by (9) in [35] is the least
upper bound provided by (7) in [35]; therefore introducing more free matrices cannot
reduce the conservativeness. Then, Theorem 3.2 can be obtained from Lemma 3.1, and the
introduced slack variables Ỹ and W̃ in Lemma 3.1 are redundant variables. Hence, from the
computational point of view, Theorem 3.2 is more “efficient” than Lemma 3.1.

In the sequel, based on Theorem 3.2, we are devoted to the design of the filter param-
eters Af, Aτf , Bf , and Cf . Noticing that (3.4) is nonlinear about the unknown variables
Ã, Ãτ , P̃ , and Z̃, to reduce the number of the unknown variables, we can do as follows.

From (3.4) we know that

⎡

⎢
⎣
P̃ Ã + ÃT P̃ T + Q̃ − 1

τ
ẼT Z̃Ẽ P̃ Ãτ +

1
τ
ẼT Z̃Ẽ

∗ −Q − 1
τ
ẼT Z̃Ẽ

⎤

⎥
⎦ < 0. (3.10)

Multiplying (3.10) by [I I] from the left and by [I I]T from the right results in

P̃
(
Ã + Ãτ

)
+
(
Ã + Ãτ

)T
P̃ T < 0, (3.11)

which implies that P̃ is nonsingular. Let

P̃ =

[
P P2

P3 P4

]

, P ∈ Rn×n, Pi ∈ Rn×n, i = 2, 3, 4. (3.12)

Without loss of generality, we can assume that P, Pi, i = 2, 3, 4, are all nonsingular [36]. Then,
from (3.1), we have that

ETPT = PE, ETPT3 = P2E, ETPT4 = P4E. (3.13)

Taking

T1 =

[
I 0

0 PP−1
3

]

, T2 =

[
I 0

0 P−1
2 P

]

, T3 = diag
{
T1, T1, I, T

T
2 , I
}

(3.14)
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and combining with (2.7) and (3.12), we obtain

E = T−1
2 ẼTT1 =

[
E 0

0 P−1P2EP−T
3 PT

]

=

[
E 0

0 P−1ETPT3 P
−T
3 PT

]

=

[
E 0

0 E

]

,

P = T1P̃T2 =

[
P P

P PP−1
3 P4P

−1
2 P

]

,

A = T−1
2 ÃTT1 =

[
A 0

P−1P2BfC P−1P2AfP
−T
3 PT

]

=

[
A 0

BfC Af

]

,

Aτ = T−1
2 ÃτT

T
1 =

[
Aτ 0

0 P−1P2AτfP
−T
3 PT

]

=

[
Aτ 0

0 Aτf

]

,

B = T−1
2 B̃ =

[
B

0

]

,

G = G̃TT
1 =
[
G −CfP

−T
3 PT

]
=
[
G −Cf

]
,

(3.15)

where

Af = P−1P2AfP
−T
3 PT , Aτf = P−1P2AτfP

−T
3 PT , Bf = P−1P2Bf , Cf = CfP

−T
3 PT ,

(3.16)

and denote

Q = T1Q̃TT1 , Z = TT2 Z̃T2. (3.17)

Premultiplying by T1 and postmultiplying by TT1 on both sides of (3.1), we have that

T1Ẽ
TT−T

2 TT2 P̃
TTT1 = T1P̃T2T−1

2 ẼTT1 ≥ 0, (3.18)

that is,

E
T
P
T
= P E ≥ 0. (3.19)



Discrete Dynamics in Nature and Society 9

Multiplying (3.4) by T3 from the left and by TT3 from the right yields

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P A +A
T
P
T
+Q − 1

τ
E
T
Z E P Aτ +

1
τ
E
T
Z E P B τA

T
Z G

T

∗ −Q − 1
τ
E
T
Z E 0 τA

T

τ Z 0

∗ ∗ −γ2I τB
T
Z 0

∗ ∗ ∗ −τZ 0

∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (3.20)

It can be seen that the systems (Ẽ, Ã, Ãτ , B̃, G̃) and (E,A,Aτ , B,G) are algebraically
equivalent under the r.s.e. (restricted system equivalence) transformation, where T−1

2
and TT1 are taken as the row full rank transformation matrix and the coordinate full
rank transformation matrix, respectively, and comparing the coefficient matrices of the
two systems, we can see that the difference between them is just the filter parameters
Af, Aτf , Bf , Cf , and Af, Aτf , Bf , Cf . Moreover, in the r.s.e. transformation, the state and
the equation of the filter change while the state and the equation of system (2.3) do not
change. So, in the design of the filter, we can directly substitute Af, Aτf , Bf , Cf for Af,
Aτf , Bf , Cf . Noticing that

[
I 0

−P3P−1 I

][
P P2

P3 P4

][
I −P−1P2

0 I

]

=

[
P 0

0 P4 − P3P−1P2

]

, (3.21)

then P4 − P3P−1P2 is nonsingular. Let

PP−1
3 P4P

−1
2 P − P = PP−1

3

(
P4 − P3P−1P2

)
P−1
2 P = S−1; (3.22)

then P can be written as

P =

[
P P

P P + S−1

]

. (3.23)

Denote

JT = S + P−1, T4 =

[
JT −S
I 0

]

, T5 = T4P Z
−1
. (3.24)

Since P(S + P−1) = (P + S−1)S = PP−1
3 P4P

−1
2 PS is nonsingular, J is also a nonsingular matrix.

From (3.19), we have that,

T4E
T
P
T
TT4 = T4P ETT4 ≥ 0. (3.25)
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Noticing (3.23) and (3.24), we derive

T4P =

[
I 0

P P

]

,

T4P ET
T
4 =

[
EJ E

PEJ − PEST PE

]

=

[
EJ E

PEP−T PE

]

=

[
EJ E

ET PE

]

,

T4E
T
P
T
TT4 =

[
JTET E

ET ETPT

]

;

(3.26)

then (3.25) is just

EJ = JTET , PE = ETPT ,

[
EJ E

ET PE

]

≥ 0. (3.27)

Premultiplying by diag{T4, T4, I, T5, I} and postmultiplying by diag{TT4 , TT4 , I, TT5 , I} on
both sides of (3.20), we have

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

T4A
T
P
T
TT4 + T4P ATT4

+T4QTT4 − 1
τ
T4E

T
Z ETT4

T4P AτT
T
4 +

1
τ
T4E

T
Z ETT4 T4P B τT4A

T
ZTT5 T4G

T

∗ −T4QTT4 − 1
τ
T4E

T
Z ETT4 0 τT4A

T

τZT
T
5 0

∗ ∗ −γ2I τB
T
ZTT5 0

∗ ∗ ∗ −τT5ZTT5 0

∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0. (3.28)

Noticing that

T4P AT
T
4 =

[
AJ A

PAJ + PBfCJ − PAfS
T PA + PBfC

]

,

T4P AτT
T
4 =

[
AτJ Aτ

PAτJ − PAτfS
T PAτ

]

,

T4P B =

[
B

PB

]

, T4G
T
=

⎡

⎣J
TGT + SC

T

f

GT

⎤

⎦,
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T4A
T
ZTT5 = T4A

T
ZZ

−1
P
T
TT4 = T4A

T
P
T
TT4 ,

T4A
T

τZT
T
5 = T4A

T

τZZ
−1
P
T
TT4 = T4A

T

τ P
T
TT4 ,

B
T
ZTT5 = B

T
ZZ

−1
P
T
TT4 = B

T
P
T
TT4 ,

T5ZT
T
5 = T4P Z

−1
ZZ

−1
P
T
TT4 = T4P Z

−1
P
T
TT4 ,

(3.29)

denote

Q = T4QTT4 =

[
Q1 Q2

QT
2 Q3

]

, (3.30)

Z = T4P Z
−1
P
T
TT4 =

[
Z1 Z2

ZT
2 Z3

]

, (3.31)

L = PAJ + PBfCJ − PAfS
T , Lτ = PAτJ − PAτfS

T , (3.32)

WB = PBf , WC = CfS
T . (3.33)

Since (3.31) implies that Z = P
T
TT4 Z

−1T4P , then

T4E
T
Z ETT

4 = T4E
T
P
T
TT4 Z

−1T4P ETT4 =

[
EJ E

ET PE

]

Z−1
[
EJ E

ET PE

]

. (3.34)

Introduce matrixW =
[
W1 W2

WT
2 W3

]
≥ 0 satisfying

τW ≤
[
EJ E

ET PE

]

Z−1
[
EJ E

ET PE

]

, (3.35)

then

⎡

⎢
⎣
− 1
τ
T4E

T
Z ETT4

1
τ
T4E

T
Z ETT4

∗ − 1
τ
T4E

T
Z ETT4

⎤

⎥
⎦ ≤

[−W W

∗ −W

]

; (3.36)

Obviously, if there exist matrices Q1 > 0, Q3 > 0,W1 ≥ 0, W3 ≥ 0, Z1 > 0, Z3 >
0, P, J, WB, WC, L, Lτ , Q2, W2, and Z2 with P, J being nonsingular, satisfying (3.35) and
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ11 Ξ12 AτJ +W1 Aτ +W2 B τJTAT τLT JTGT +WT
c

∗ Ξ22 Lτ +WT
2 PAτ +W3 PB τAT τATPT + τCTWT

B GT

∗ ∗ −Q1 −W1 −Q2 −W2 0 τJTAT
τ τLTτ 0

∗ ∗ ∗ −Q3 −W3 0 τAT
τ τAT

τ P
T 0

∗ ∗ ∗ ∗ −γ2I τBT τBTPT 0

∗ ∗ ∗ ∗ ∗ −τZ1 −τZ2 0

∗ ∗ ∗ ∗ ∗ ∗ −τZ3 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3.37)

with

Ξ11 = AJ + JTAT +Q1 −W1, Ξ12 = A + LT +Q2 −W2,

Ξ22 = PA +ATPT +WBC + CTWT
B +Q3 −W3,

(3.38)

then taking

S = JT − P−1, Bf = P−1WB, Cf =WCS
−T ,

Af = P−1(PAJ +WBCJ − L)S−T , Aτf = P−1(PAτJ − Lτ)S−T ,
(3.39)

one obtains that there are solutions Q > 0, Z > 0, and P to (3.20).
Hence we get the following theorem for the design of the filter (2.4).

Theorem 3.5. Given a scalar γ > 0, if there are matrices Q1 > 0, Q3 > 0, W1 ≥ 0, W3 ≥ 0, Z1 >
0, Z3 > 0, P, J, WB, WC, L, Lτ , Q2, W2, Z2 with P, J being nonsingular, satisfying (3.27),
(3.35), and (3.37), then the H∞ filter of the form of (2.4) exists and the parameters are given by
(3.39).

Remark 3.6. It is worth noting that (3.35) is not an LMI. In order to use the LMI Toolbox in
MATLAB to get the solutions, we can do as follows.

Assume that E =
[
Ip 0
0 0

]
; otherwise, we can find nonsingular matrices M and N such

that MEN =
[
Ip 0
0 0

]
. It is worth noting that the feasibility of (3.27), (3.35), and (3.37) is not

affected by the selection ofM andN. Then, thematrices P, J satisfying (3.27) are of the forms

P =

[
P11 P12

0 P22

]

, J =

[
J11 0

J21 J22

]

, P11 ∈ Rp×p, J11 ∈ Rp×p (3.40)

with

[
J11 I

I P11

]

≥ 0. (3.41)
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Introduce another variableU > 0; then (3.35) can be replaced by

τW ≤
[
EJ E

ET PE

]

U

[
EJ E

ET PE

]

, (3.42)

UZ = I. (3.43)

WriteU as

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

U11 U12 U13 U14

UT
12 U22 U23 U24

UT
13 UT

23 U33 U34

UT
14 UT

24 UT
34 U44

⎤

⎥
⎥
⎥
⎥
⎥
⎦
> 0, (3.44)

where

U11 ∈ Rp×p, U22 ∈ R(n−p)×(n−p), U33 ∈ Rp×p, U44 ∈ R(n−p)×(n−p). (3.45)

Noticing that

[
EJ E

ET PE

]

U

[
EJ E

ET PE

]

=

⎡

⎢⎢⎢⎢⎢
⎣

Π11 0 Π13 0

∗ 0 0 0

∗ ∗ Π33 0

∗ ∗ ∗ 0

⎤

⎥⎥⎥⎥⎥
⎦
, (3.46)

where

Π11 = J11U11J11 +UT
13J11 + J11U13 +U33,

Π13 = J11U11 +UT
13 + J11U13P11 +U33P11,

Π33 = U11 + P11UT
13 +U13P11 + P11U33P11,

(3.47)

we can assume that

W =

⎡

⎢⎢⎢⎢⎢
⎣

W11 0 W21 0

0 0 0 0

WT
21 0 W31 0

0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎦

≥ 0,

[
W11 W21

WT
21 W31

]

> 0. (3.48)
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Then (3.42) is just

τ

[
W11 W21

WT
21 W31

]

≤
[
J11 I

I P11

][
U11 U13

UT
13 U33

][
J11 I

I P11

]

. (3.49)

Invoking Schur complement again, we have that (3.49) is equivalent to

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[
U11 U13

UT
13 U33

] [
J11 I

I P11

]−1

[
J11 I

I P11

]−1 (

τ

[
W11 W21

WT
21 W31

])−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≥ 0. (3.50)

Introducing

α =

[
α1 α2

αT2 α3

]

> 0, θ =

[
θ1 θ2

θT2 θ3

]

> 0, (3.51)

then (3.50) can be replaced by

⎡

⎢⎢⎢⎢⎢
⎣

U11 U13 τα1 τα2

∗ U33 ταT2 τα3

∗ ∗ τθ1 τθ2

∗ ∗ ∗ τθ3

⎤

⎥⎥⎥⎥⎥
⎦

≥ 0, (3.52)

[
J11 I

I P11

][
α1 α2

αT2 α3

]

= I,

[
W11 W21

WT
21 W31

][
θ1 θ2

θT2 θ3

]

= I. (3.53)

Therefore, one can consider theH∞ filter design problem as the following cone complemen-
tary problems:

Minimize

{

tr(UZ) + tr

([
J11 I

I P11

][
α1 α2

αT2 α3

]

+

[
W11 W21

WT
21 W31

][
θ1 θ2

θT2 θ3

])}

(3.54)

subject to LMIs (3.30), (3.31), (3.37), (3.40), (3.41), (3.44), (3.48), (3.51), (3.52), and

Q > 0, Z > 0,

[
U I

I Z

]

≥ 0,

⎡

⎢⎢⎢⎢⎢
⎣

α1 α2 I 0

αT2 α3 0 I

I 0 J11 I

0 I I P11

⎤

⎥⎥⎥⎥⎥
⎦

≥ 0,

⎡

⎢⎢⎢⎢⎢
⎣

θ1 θ2 I 0

θT2 θ3 0 I

I 0 W11 W21

0 I WT
21 W31

⎤

⎥⎥⎥⎥⎥
⎦

≥ 0.

(3.55)
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Then the filer (2.4) can be solved by using the iterative algorithm as [37], in the interests of
economy, which is omitted here.

Remark 3.7. Since the filter (2.4) is designed with parameters (3.39) such that inequality (3.20)
holds, we have

⎡

⎢
⎢
⎢
⎢
⎣

P A +A
T
P
T
+Q − 1

τ
E
T
Z E P Aτ +

1
τ
E
T
Z E τA

T
Z

∗ −Q − 1
τ
E
T
Z E τA

T

τ Z

∗ ∗ −τZ

⎤

⎥
⎥
⎥
⎥
⎦
< 0. (3.56)

By (3.15), (3.16), (3.17), (3.23) and letting Pf := P + S−1, Q =
[
Q1 Q2

∗ Q3

]
, and Z =

[
Z1 Z2

∗ Z3

]
with

Q1 ∈ Rn×n and Z1 ∈ Rn×n, we can conclude from (3.56) that

⎡

⎢⎢⎢⎢
⎣

PfAf +A
T

fP
T
f
+Q3 −

1
τ
ETZ3E PfAτf +

1
τ
ETZ3E τA

T

fZ3

∗ −Q3 −
1
τ
ETZ3E τA

T

τfZ3

∗ ∗ −τZ3

⎤

⎥⎥⎥⎥
⎦
< 0. (3.57)

In addition, (3.19) implies that

ETPTf = PfE ≥ 0. (3.58)

Invoking Corollary 3.3, it is obtained that the designed filter (2.4) is admissible, and then it is
proper and can be realized in practice.

4. Numerical Examples

Example 4.1. Consider the singular time-delay system given in [25]without uncertainties and
distributed delay and with

E =

⎡

⎢⎢
⎣

1 0 0

0 1 0

0 0 0

⎤

⎥⎥
⎦, A =

⎡

⎢⎢
⎣

−2 0 0.5

0.1 −0.9 0.2

0 0.5 0.3

⎤

⎥⎥
⎦, Aτ =

⎡

⎢⎢
⎣

0.2 0.1 0

0.2 0 0.15

0.1 −0.23 0.1

⎤

⎥⎥
⎦,

B =

⎡

⎢⎢
⎣

0.2 0 0

0 0.2 0

0 0 0.2

⎤

⎥⎥
⎦, C =

[
1 0 0

]
, G =

[
1 0.7 0.8

]
.

(4.1)
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Figure 1: State responses x(t) of the original system.
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Figure 2: State responses x̂(t) of the filter system.
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Figure 4: Singular value curve of the filtering error system.
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By Theorem 3.2, for τ = 2 and γ = 1, after 10 iterations, the corresponding filter is obtained
with the following parameters:

Af =

⎡

⎢
⎢
⎣

−0.9429 −0.0102 0.3206

−0.1042 −0.8493 0.1904

0.3750 0.4870 0.3369

⎤

⎥
⎥
⎦, Aτf =

⎡

⎢
⎢
⎣

0.0983 0.0960 0.0046

0.1248 −0.0071 0.1461

0.0749 −0.2438 0.0966

⎤

⎥
⎥
⎦,

Bf =

⎡

⎢
⎢
⎣

0.6224

−0.2077
0.4488

⎤

⎥
⎥
⎦, Cf =

[−0.8379 −0.7382 −0.9940].

(4.2)

With this filter, Figures 1, 2, and 3 show the state responses x(t) of the original system, the
state responses x̂(t) of the filter system, and the error estimation signal z̃(t) = z(t) − ẑ(t)with
the initial condition φ(t) = [1 1 − 1.425]T , ψ(t) = [1 1 − 2.6341]T for t ∈ [−2, 0] and
the exogenous disturbance inputw(t)=diag{e−0.5t, e−0.5t, e−0.5t}. By connecting the filter to the
original system, the singular value curve of the resulting filtering error system is also plotted
in Figure 4. We can see that all the maximum singular values are less than 1, which illustrate
the effectiveness of the proposed method in this paper.

5. Conclusions and Future Works

In this paper, we have studied the H∞ filtering problem for singular system with a constant
discrete delay. Based on an improved BRL, a delay-dependent sufficient condition for
the existence of the H∞ filter with delay is obtained. Then, by using LMIs and the
cone complementarity linearization iterative algorithm, the H∞ filter is designed, which
guarantees that the resulting error system is regular, impulse-free, internally stable, and the
L2-induced norm from the disturbance input to the filtering error output satisfies a prescribed
H∞ performance level. It can be seen that the designed filter in this paper is a full-order filter,
that is, the finite mode of the filter is equal to rank E. To study the delay-dependent reduced-
orderH∞ filtering problem for singular time-delay systems is the key research in the future.
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