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By using a Lyapunov-Krasovskii functional method and the stochastic analysis technique, we
investigate the problem of synchronization for discrete-time stochastic neural networks (DSNNs)
with random delays. A control law is designed, and sufficient conditions are established that
guarantee the synchronization of two identical DSNNs with random delays. Compared with the
previous works, the time delay is assumed to be existent in a random fashion. The stochastic
disturbances are described in terms of a Brownian motion and the time-varying delay is
characterized by introducing a Bernoulli stochastic variable. Two examples are given to illustrate
the effectiveness of the proposed results. The main contribution of this paper is that the obtained
results are dependent on not only the bound but also the distribution probability of the time
delay. Moreover, our results provide a larger allowance variation range of the delay, and are less
conservative than the traditional delay-independent ones.

1. Introduction

Synchronization is one of the most important dynamic behavior of complex networks, which
means if two or more systems have something in common, they will adjust each other
to give rise to a common dynamical behavior. It has been found applications in many
fields such as synchronous information exchange in the Internet WWW, crickets chirping
in synchrony, rhythmic applause, and synchronous transfer of digital or analog signals in the
communication networks.

Since the pioneering works of Pecora and Carroll [1, 2], the control and synchroniza-
tion problems have become an active topic that attracts a lot of researchers’ interest, including
general complex dynamical networks [3–8], and the array of coupled neural networks
with or without delays [6, 9–11]. Several different approaches have been proposed for the
synchronization of chaotic systems, such as linear and nonlinear feedback control [12, 13],
adaptive control [14], impulsive control [15], and intermittent linear state feedback [16].
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Itô-type stochastic systems are well known for their important impact on practical
applications such as chemistry, biology, ecology, control, and information systems. In real
complex networks, the signal transmission could be a noisy process brought by random
fluctuations from the release of probabilistic causes such as neurotransmitters. Stochastic
neural networks, as a special case of complex networks, have gained much more researchers’
interests; see for example, [4, 5, 13, 15, 17, 18] and the references therein.

Discrete-time neural networks play a more and more important role in engineering
application. As pointed out in [19–21], the discretization cannot preserve the dynamics of
continuous-time counterpart even for a small sampling period. Recently, the synchronization
problem for discrete-time networks has received more attention [4, 5, 15, 22].

Time delays occur frequently in practical situations, it can cause undesirable dynamic
network behaviors such as oscillation and instability. Therefore, dynamical behavior [23, 24],
especially synchronization problem for discrete-time neural networks with constant and
time-varying delays has gained interesting research attention; see, for example, [4, 5, 15, 22].
It is worth mentioning that as a particular kind of time delays, random delays have also
received much researchers’ attention [25–31]. This is mainly because in many real systems,
some values of the delay are very large, but the variation range of time delay taking such
large values are very small. In this case, if only the variation range of time delay is employed
to derive the criteria, the results may be somewhat more conservative.

Inspired by the above discussion, the aim of this paper is to study the synchronization
problem for a class of DSNNs with random delay. The effect of both variation range and
distribution probability of the time delay are taken into account in the proposed approach.
The stochastic disturbances are described in terms of a Brownian motion, and the time-
varying delay is characterized by introducing a Bernoulli stochastic variable. By employing
a Lyapunov-Krasovskii functional, sufficient delay-distribution-dependent conditions are
established in terms of linear matrix inequalities (LMIs) that guarantee the exponentially
mean square synchronization of two identical DSNNs with random delays, which can be
checked readily by Matlab toolbox.

This paper is organized as follows. In Section 2, the model formulation and some
preliminaries are given. The main results are stated in Section 3. Two illustrative examples
are given to demonstrate the effectiveness of the proposed results in Section 4. Finally, the
conclusions are made in Section 5.

1.1. Notation

Throughout this paper, R
n and R

n×m, respectively, denote the n-dimensional Euclidean
and the set of all n × m matrices. I is the identity matrix of appropriate dimensions. The
superscript “T” denotes matrix transposition. The notation X > 0 (resp., X ≥ 0), where
X is a real symmetric matrix, means X is positive definite (resp., positive semidefinite).
| · | is the Euclidean norm in R

n. If A is a matrix, ‖A‖ denotes its operator norm. That is,
‖A‖ = sup{|Ax| : |x| = 1} =

√
λmax(ATA), where λmax(A) (resp., λmin(A)) means the

largest (resp., smallest) eigenvalue of A. Z≥0 denotes the set including zero and positive
integers. The asterisk ∗ in a matrix is used to denote term that is induced by symmetry. E{·}
denotes the expectation. Moreover, let (Ω,F, {Ft}t≥0,P) be a complete probability space with
a filtration {Ft}t≥0 satisfying the usual conditions. Denote by L2

F0
([−τ, 0],Rn) the family of all

F0-measurable C([−τ, 0] : R
n)-valued random variables φ = {φ(s),−τ ≤ s ≤ 0}with the norm

‖φ‖ = sup−τ≤s≤0|φ(s)|2 < ∞.
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2. Problem Formulation

Consider the following n-neuron DSNNs with time delay

x(k + 1) = Ax(k) + BF̃(x(k)) +DG̃(x(k − τ(k))), (2.1)

where x(k) = (x1(k), x2(k), . . . , xn(k))
T ∈ R

n is the state vector associated with the n neurons,
A = diag(a1, a2, . . . , an) with |ai| < 1; B = (bij)n×n, D = (dij)n×n denote the connection weights
matrix and the delayed connection weights matrix, respectively, F̃(x(k)) = [f̃1(x1(k)),

f̃2(x2(k)), . . . , f̃n(xn(k))]
T and G̃(x(k)) = [g̃1(x1(k)), g̃2(x2(k)), . . . , g̃n(xn(k))]

T denote the
neuron activation functions; τ(k) denotes the time-varying delay.

In this paper, we consider the model (2.1) as the drive system, and the noise-perturbed
response system is given as

x̂(k + 1) = Ax̂(k) + BF̃(x̂(k)) +DG̃(x̂(k − τ(k))) + u(k) + σ(k, x̂(k) − x(k))ω(k), (2.2)

where u(k) = (u1(k), u2(k), . . . , un(k))
T ∈ R

n is the state feedback controller given to achieve
the global exponental synchronization between the drive-response system; σ : R × R

n → R
n

is a continuous function,ω(k) is a scalar Wiener process on a probability space (Ω,F,P)with

E{ω(k)} = 0, E

{
ω2(k)

}
= 1, E

{
ω(i)ω

(
j
)}

= 0
(
i /= j

)
. (2.3)

Throughout this paper, the following assumptions are made.

Assumption 2.1. For i ∈ {1, 2, . . . , n}, the neuron activation functions f̃i(·) and g̃i(·) are
continuous and bounded and satisfy the following conditions:

li ≤
f̃i(s1) − f̃i(s2)

s1 − s2
≤ Li,

ωi ≤
g̃i(s1) − g̃i(s2)

s1 − s2
≤ Wi, ∀s1, s2 ∈ R(s1 /= s2), i = 1, 2, . . . , n.

(2.4)

As first discussed in [32], for brevity of the following representation, we denote

C1 = diag{l1L1, . . . , lnLn}, C2 = diag
{
− l1 + L1

2
, . . . ,− ln + Ln

2

}
,

H1 = diag{ω1W1, . . . , ωnWn}, H2 = diag
{
−ω1 +W1

2
, . . . ,−ωn +Wn

2

}
.

(2.5)

Assumption 2.2. σ(k, x(k)) is a continuous function satisfying σ(0, 0) = 0 and

σ(k, x(k))Tσ(k, x(k)) ≤ ρx(k)Tx(k), (2.6)

where ρ > 0 is a known constant scalar.
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Assumption 2.3. The time delay τ(k) is bounded, 0 ≤ τm < τ(k) ≤ τM, and its probability
distribution can be observed; that is, suppose that τ(k) takes values in [τm : τ0] or (τ0 : τM]
and Prob{τ(k) ∈ [τm : τ0]} = δ0, where τm ≤ τ0 < τM, and 0 ≤ δ0 ≤ 1.

Remark 2.4. It is noted that the introduction of binary stochastic variable was first introduced
in [25] and then successfully used in [26–31]. Under the Assumption 2.3, we know that δ0 is
dependent on the values of τm, τ0, τM. In addition, Prob{τ(k) ∈ (τ0 : τM]} = 1 − δ0 � δ0.

In order to describe the probability distribution of the time delay, we define two sets

B1 = {k | τ(k) ∈ [τm, τ0]}, B2 = {k | τ(k) ∈ (τ0, τM]}, (2.7)

where τ0 is an integer satisfying τm ≤ τ0 < τM. Define two mapping functions

τ1(k) =

⎧
⎨

⎩

τ(k), k ∈ B1,

τm, else,
τ2(k) =

⎧
⎨

⎩

τ(k), k ∈ B2,

τ0, else.
(2.8)

It follows from (2.7) that B1 ∪ B2 = Z≥0 and B1 ∩ B2 = ∅. From (2.8), it can be seen that k ∈ B1

implies the event τ(k) ∈ [τm : τ0] occurs and k ∈ B2 implies the event τ(k) ∈ (τ0 : τM] occurs.
Defining a stochastic variable as

δ(k) =

⎧
⎨

⎩

1, k ∈ B1,

0, k ∈ B2,
(2.9)

then system (2.1) and (2.2) can be equivalently rewritten as

x(k + 1) = Ax(k) + BF̃(x(k)) + δ(k)DG̃(x(k − τ1(k))) + (1 − δ(k))DG̃(x(k − τ2(k))),

(2.10)

x̂(k + 1) = Ax̂(k) + BF̃(x̂(k)) + δ(k)DG̃(x̂(k − τ1(k))) + (1 − δ(k))DG̃(x̂(k − τ2(k))) + u(k)

+ σ(k, x̂(k) − x(k))ω(k).
(2.11)

It is further assumed that the variables δ(k) and ω(k) are mutually independent.

Remark 2.5. Under the Assumption 2.3 and the definition of δ(k), it can be seen that δ(k) is a
Bernoulli distributed white sequence with Prob{δ(k) = 1} = E{δ(k)} = δ0 and Prob{δ(k) =
0} = δ0. Furthermore, we can show that E{δ(k) − δ0} = 0 and E{(δ(k) − δ0)

2} = δ0δ0.
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Letting e(k) = x̂(k) − x(k) be the synchronization error, we can derive error system as
follows:

e(k + 1) = Ae(k) + BF(e(k)) + δ(k)DG(e(k − τ1(k))) + (1 − δ(k))DG(e(k − τ2(k)))

+ σ(k, e(k))ω(k) + u(k),
(2.12)

where

F(e(k)) =
[
f1(e1(k)), f2(e2(k)), . . . , fn(en(k))

]T = F̃(x̂(k)) − F̃(x(k)),

G(e(k)) =
[
g1(e1(k)), g2(e2(k)), . . . , gn(en(k))

]T = G̃(x̂(k)) − G̃(x(k)).
(2.13)

The initial condition associated with (2.12) is given as

e(s) = φ(s), s ∈ N[−τM, 0], (2.14)

where φ(s) ∈ L2
F0
([−τM, 0],Rn), and N[−τM, 0] = {−τM,−τM + 1, . . . , 0}.

Let e(k, φ) be the state trajectory of system (2.12) under the initial condition. It is
obvious that e(k, 0) = 0 is a trivial solution of DSNNs (2.12).

Definition 2.6. The drive system (2.10) and the response system (2.11) are said to be
exponentially synchronized if, for a suitably designed feedback controller, the trivial solution
of the error system (2.12) is globally exponentially stable in the mean square. That is, there
exist constants ϑ > 0, and ν ∈ (0, 1) such that for sufficiently integer T > 0, the inequality

E|e(k)|2 ≤ ϑνk sup
s∈N[−τM,0]

E|e(s)|2 (2.15)

holds for all k > T .

For brevity of the following analysis, we denote e(k), e(k − τ1(k)), e(k − τ2(k)), δ(k),
1 − δ(k), ω(k) by ek, eτ,1, eτ,2, δk, δk, ωk, respectively. Then, (2.12) can be rearranged as

ek+1 = Aek + BF(ek) + δkDG(eτ,1) + δkDG(eτ,2) + σ(k, ek)ωk + u(k). (2.16)

3. Main Results

In order to realize the synchronization between the drive system (2.10) and the noise-
perturbed response system (2.11) with different initial conditions, we will design a suitable
feedback controller and develop theoretical results of the synchronization scheme. In fact, if
the trivial solution of the controlled error system (2.12) is exponentially stable in the mean
square, (2.10) and (2.11) can achieve globally synchronization.

For the noised-perturbed response system (2.11), the feedback controller u(k) is
designed as

u(k) = Ke(k) + δ0K1e(k − τ1(k)) + (1 − δ0)K1e(k − τ2(k)), (3.1)

where K and K1 are the feedback gains to be determined.
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Theorem 3.1. Suppose that Assumptions 2.1–2.3 hold, and let the state-feedback controller (3.1) be
given. The noised-perturbed response system (2.11) is globally exponentially synchronized with the
drive model (2.10) if there exist three positive definite matrices P , Q1, Q2, three diagonal matrices
Λi = diag(λi1, λi2, . . . , λin) > 0 (i = 1, 2, 3), two real matrices R, R1 and a scalar λ∗ > 0 such that the
following two LMIs hold:

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ1 0 0 −Λ1C2 0 0 ATP + RT

∗ Ξ2 0 0 −Λ2H2 0
√
δ0R

T
1

∗ ∗ Ξ3 0 0 −Λ3H2

√
δ0R

T
1

∗ ∗ ∗ −Λ1 0 0 BTP

∗ ∗ ∗ ∗ −Λ2 0
√
δ0D

TP

∗ ∗ ∗ ∗ ∗ −Λ3

√
δ0D

TP

∗ ∗ ∗ ∗ ∗ ∗ −P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.2)

P < λ∗I, (3.3)

where Ξ1 = −P+λ∗ρI+(τ0−τm+1)Q1+(τM−τ0+2)Q2−Λ1C1, Ξ2 = −Q1−Λ2H1, Ξ3 = −Q2−Λ3H1.
And then the feedback gains can be designed as

K = P−1R, K1 = P−1R1. (3.4)

Proof. See the Appendix B.

Remark 3.2. We would like to point out that there is still enough room to improve the result.
Because of (1) in real-time systems, time delays always exist in a stochastic fashion, so we
also can consider the time delays satisfy other distributions. (2) And we can also extend this
method to the dynamics of discrete-time stochastic complex networks. (3) The results can be
improved by combining with delay-fractioning method to reduce conservatism.

Remark 3.3. Our results are less conservative than some other existed results because they
are dependent on not only the bound but also the distribution probability of the time delays,
and we obtain a larger allowance variation range of the delay, while the delay-fractioning
or delay-partitioning approach [22] can reduce conservatism lie in the methods increase
the number of fraction of the time delay. The delay-fractioning approach is a very effective
approach to reduce conservatism. And we will combine with the free-weighting methods or
delay partitioning approaches to reduce the conservativeness of the results in the future.

Remark 3.4. When δ(k) ≡ 1 (∀k ∈ Z≥0), which means τ1(k) ≡ τ(k), (2.10) reduces to (2.1).
By setting δ0 = 1, Q2 = 0 in Theorem 3.1 and deleting the third and sixth rows and the
corresponding third and sixth columns of (3.2), we can obtain the following results.
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Now, (2.11) reduces to

x̂(k + 1) = Ax̂(k) + BF̃(x̂(k)) +DG̃(x̂(k − τ(k))) + u(k)

+ σ(k, x̂(k) − x(k))ω(k).
(3.5)

Equation (2.16) reduces to

ek+1 = Aek + BF(ek) +DG(eτ) + σ(k, ek)ωk + u(k). (3.6)

Corollary 3.5. Suppose that Assumptions 2.1-2.2 hold, and let the state-feedback controller (3.1) be
given. The noised-perturbed response system (3.5) is globally exponentially synchronized with the
drive model (2.1) if there exist two positive definite matrices P, Q1, two diagonal matrices Λi =
diag(λi1, λi2, . . . , λin) > 0 (i = 1, 2), a real matrix R, and a scalar λ∗ > 0, such that the following two
LMIs hold:

Ω2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ1 0 −ΛC2 0 ATP + RT

∗ Γ2 0 −Λ2H2 RT
1

∗ ∗ −Λ1 0 BTP

∗ ∗ ∗ −Λ2 DTP

∗ ∗ ∗ ∗ −P

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.7)

P < λ∗I, (3.8)

where Γ1 = −P + λ∗ρI + (τ0 − τm + 1)Q1 −Λ1C1, Γ2 = −Q1 −Λ2H1.
And then the feedback gains can be designed as

K = P−1R. (3.9)

Remark 3.6. The model proposed in this paper takes some well-studied models as special
cases such as the model given in [4].

If we neglect the effect of the stochastic term ωk in (2.11), then (2.11) reduces to

x̂(k + 1) = Ax̂(k) + BF̃(x̂(k)) + δ(k)DG̃(x̂(k − τ1(k)))

+ (1 − δ(k))DG̃(x̂(k − τ2(k))) + u(k).
(3.10)

Equation (2.16) reduces to

ek+1 = Aek + BF(ek) + δkDG(eτ,1) + δkDG(eτ,2) + u(k). (3.11)

In this case, we have the following results.
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Corollary 3.7. Suppose that Assumptions 2.1 and 2.3 hold, and let the state-feedback controller
(3.1) be given. The response system (3.10) is globally exponentially synchronized with the drive
model (2.10) if there exist three positive definite matrices P, Q1, Q2, three diagonal matrices Λi =
diag(λi1, λi2, . . . , λin) > 0 (i = 1, 2, 3), two real matrices R, R1, such that the following LMI holds:

Ω3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

Π1 0 0 −Λ1C2 0 0 ATP + RT

∗ Π2 0 0 −Λ2H2 0
√
δ0R

T
1

∗ ∗ Π3 0 0 −Λ3H2

√
δ0R

T
1

∗ ∗ ∗ −Λ1 0 0 BTP

∗ ∗ ∗ ∗ −Λ2 0
√
δ0D

TP

∗ ∗ ∗ ∗ ∗ −Λ3

√
δ0D

TP

∗ ∗ ∗ ∗ ∗ ∗ −P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.12)

whereΠ1 = −P + (τ0 − τm + 1)Q1 + (τM − τ0 + 2)Q2 −Λ1C1,Π2 = −Q1 −Λ2H1,Π3 = −Q2 −Λ3H1.
And then the feedback gains can be designed as

K = P−1R, K1 = P−1R1. (3.13)

4. Two Numerical Examples

Two numerical examples are presented to demonstrate the effectiveness of our results.

Example 4.1. Consider the DSNNs (2.10)with the following parameters:

A =

⎡

⎢⎢
⎣

0.4 0 0

0 0.5 0

0 0 0.4

⎤

⎥⎥
⎦, B =

⎡

⎢⎢
⎣

0.3 −0.1 0.2

0 −0.3 0.2

−0.1 −0.1 −0.2

⎤

⎥⎥
⎦, D =

⎡

⎢⎢
⎣

0.2 0.1 0.1

−0.2 0.3 0.1

0.1 −0.2 0.3

⎤

⎥⎥
⎦,

f1(s) = tanh(0.6s) − 0.2 sin(s), f2(s) = tanh(−0.4s), f3(s) = tanh(−0.2s),
g1(s) = tanh(−0.4s) + 0.2 sin(s), g2(s) = tanh(0.2s), g3(s) = tanh(0.4s),

(4.1)

It is easy to verify that

C1 = diag(−0.08, 0, 0), C2 = diag(0.1, 0.2, 0.1),

H1 = diag(−0.06, 0, 0), H2 = diag(0.06,−0.1,−0.2).
(4.2)
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Setting τm = 1, τ0 = 2, τM = 5, and δ0 = 0.89, ρ = 0.1 in Theorem 3.1, we can verify by Matlab
toolbox that LMIs (3.2) and (3.3) are solved and the solutions are given as follows:

P =

⎡

⎢
⎢
⎣

15.7114 −0.8610 0.1575

−0.8610 11.9585 1.0510

0.1575 1.0510 14.8306

⎤

⎥
⎥
⎦, Q1 =

⎡

⎢
⎢
⎣

1.9720 −0.1597 0.0202

−0.1597 2.0645 0.2055

0.0202 0.2055 2.2099

⎤

⎥
⎥
⎦,

Q2 =

⎡

⎢
⎢
⎣

0.6299 −0.0191 0.0012

−0.0191 0.3460 0.0251

0.0012 0.0251 0.5228

⎤

⎥
⎥
⎦, Λ1 =

⎡

⎢
⎢
⎣

369.9501 0 0

0 369.9501 0

0 0 369.9501

⎤

⎥
⎥
⎦,

Λ2 =

⎡

⎢⎢
⎣

369.9501 0 0

0 369.9501 0

0 0 369.9501

⎤

⎥⎥
⎦, Λ3 =

⎡

⎢⎢
⎣

369.9501 0 0

0 369.9501 0

0 0 369.9501

⎤

⎥⎥
⎦,

R =

⎡

⎢⎢
⎣

−5.7416 0.3131 0.0554

−0.0464 −6.5348 −0.3567
0.0554 −0.3567 −6.4303

⎤

⎥⎥
⎦, R1 =

⎡

⎢⎢
⎣

0.1675 −0.2223 −0.1017
−0.2223 −0.4297 −0.2061
−0.1017 −0.2061 −0.7492

⎤

⎥⎥
⎦, λ∗ = 16.0757,

K = P−1R =

⎡

⎢⎢
⎣

−0.3656 −0.0103 0.0084

−0.0008 −0.5485 0.0089

0.0077 0.0419 −0.4343

⎤

⎥⎥
⎦, K1 = P−1R1 =

⎡

⎢⎢
⎣

0.0098 −0.0160 −0.0067
−0.0174 −0.0361 −0.0134
−0.0057 −0.0112 −0.495

⎤

⎥⎥
⎦.

(4.3)

Therefore, it can be seen from Theorem 3.1, the response system (2.11) is globally
exponentially synchronized with the drive system (2.10). The result is further verified by
the simulation results given by Figures 1 and 2. Figures 1(a), 1(b), and 1(c) represent the
trajectories of x1(k), x̂1(k), x2(k), x̂2(k), and x3(k), x̂3(k), respectively, and the red line
represents the drive system state, the blue line stands for the response system state, and the
initial conditions are taken as x(k) = [1.0, 2.5, 0.5]T , x̂(k) = [−0.5,−0.5,−0.5]T . Figure 2 shows
that the error state goes to zero after a short period time. Furthermore, if we increase δ0, the
maximum allowance value of τM will increase subsequently. Specially, if δ0 = 0.99, we get the
maximum allowance value of τM = 13.

Example 4.2. Consider the DSNNs (2.10)with the following parameters:

A =

[−0.1 0

0 0.4

]

, B =

[
0.1 −0.2
0 −0.1

]

, D =

[
0 0.2

0.2 −0.1

]

, ρ = 0.02,

f1(s) = sin(0.2s) − 0.6 cos(s), f2(s) = tanh(−0.4s),
g1(s) = tanh(0.83s) + 0.6 cos(s), g2(s) = tanh(0.2s).

(4.4)
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Figure 1: State trajectories of x(k), x̂(k).
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Figure 2: Error state trajectories of e(k).

It is easy to verify that

C1 = diag(−0.64, 0), C2 = diag(0, 0.2), H1 = diag(−0.6, 0), H2 = diag(−0.2,−0.1).
(4.5)
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Figure 3: State trajectories of x(k), x̂(k).

Setting τm = 1, τ0 = 2, τM = 3, and δ0 = 0.85 in Theorem 3.1, we can verify by Matlab toolbox
that LMIs (3.2) and (3.3) are solved and the solutions are given below:

P =

[
48.7972 −2.3255
−2.3255 42.7033

]

, Q1 =

[
4.2255 −0.4620
−0.4620 8.3487

]

, Q2 =

[
4.0513 −0.1026
−0.1026 1.8888

]

,

Λ1 =

[
880.7735 0

0 880.7735

]

, Λ2 =

[
880.7735 0

0 880.7735

]

, Λ3 =

[
880.7735 0

0 880.7735

]

,

R =

[
4.8936 −0.7368
−0.7368 −17.8357

]

, R1 =

[
0.0860 −1.2452
−1.2452 0.3222

]

, λ∗ = 49.8783,

K = P−1R =

[
0.0997 −0.0351
−0.0118 −0.4196

]

, K1 = P−1R1 =

[
0.0004 −0.0252
−0.0291 0.0062

]

.

(4.6)

Therefore, it can be seen from Theorem 3.1, the response system (2.11) is globally
exponentially synchronized with the drive system (2.10). The result is further verified by the
simulation results given by Figures 3 and 4. Figures 3(a) and 3(b) represent the trajectories
of x1(k), x̂1(k) and x2(k), x̂2(k), respectively, and the red line represents the drive system
state, the blue line stands for the response system state, the initial conditions are taken as
x(k) = [1.0, 2.5]T , x̂(k) = [−0.5,−0.5]T . Figure 4 shows that the error state goes to zero after a
short period time.
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Figure 4: Error state trajectories of e(k).

5. Conclusions

In recent years, synchronization in networks has become a hot research subject. However,
the corresponding results are none for DSNNs with random delay. This paper has addressed
the problem of exponential synchronization for the drive-response systems, where the drive
system describes a class of discrete-time stochastic neural networks (DSNNs) with random
delays and the response system is disturbed by some stochastic motions. Sufficient conditions
have been established in terms of LMIs, which can be checked readily byMatlab toolbox. Two
examples have been given to illustrate the effectiveness of the proposed results.

It is worth noting that the following two interesting and important issues should be
addressed in our future work. Firstly, within the same LMI framework, it is not difficult to
extend our main results to the synchronization problem for DSNNs with randomly mixed
time-varying delays. Another future work may be how to extend the obtained results to
DSNNs with Markovian jump and so on.

Appendices

A. Preliminary Lemmas

To obtain our main results, we need the following lemmas.

Lemma A.1 (see [33]). Let X ∈ R
n, Y ∈ R

n, ε > 0, then we have

XTY + YTX ≤ εXTX + ε−1YTY. (A.1)

Lemma A.2 (Schur Complement [34]). For a given matrix,

S =

[
S11 S12

ST
12 S22

]

< 0 (A.2)
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is equivalent to any one of the following conditions:

(i) S22 < 0, S11 − S12S
−1
22S

T
12 < 0,

(ii) S11 < 0, S22 − ST
12S

−1
11S12 < 0.

B. Proof of Theorem 3.1

For notation convenience, in the sequel, we denote

Ek =
[
eTk , e

T
k−1, . . . , e

T
k−τ(k)

]
,

ξk =
[
eTk , e

T
τ,1, e

T
τ,2, F

T (ek), GT (eτ,1), GT (eτ,2)
]T
,

Ψ =
[
(A +K),

√
δ0K1,

√
δ0K1, B,

√
δ0D,

√
δ0D

]
.

(B.1)

Now, in order to ensure that (2.11) is globally exponentially synchronized with (2.10),
we just need to show that the error system (2.12) or (2.16) is globally exponentially stable in
the mean square. To this end, we construct the following Lyapunov-Krasovskii functional Vk

by

Vk = Vk,1 + Vk,2 + Vk,3, (B.2)

where

Vk,1 = eTkPek,

Vk,2 =
k−1∑

i=k−τk1
eTi Q1ei +

τ0−1∑

i=τm

k−1∑

j=k−i
eTj Q1ej ,

Vk,3 =
k−1∑

i=k−τk2
eTi Q2ei +

τM−1∑

i=τ0+1

k−1∑

j=k−i
eTj Q2ej ,

(B.3)

where P > 0, Q1 > 0, Q2 > 0.
Calculating the difference of Vk along the solution of DSNN (2.16) and taking the

mathematical expectation, we have

E{ΔVk} = E{ΔVk,1} + E{ΔVk,2} + E{ΔVk,3}, (B.4)
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where

E{ΔVk,1} = E{E{Vk+1,1} | Ek − Vk,1}

= E

{
eTk

(
(A +K)TP(A +K) − P

)
ek + 2eTk (A +K)TPBF(ek)

+ 2δ0eTk (A +K)TPDG(eτ,1) + 2δ0e
T
k (A +K)TPDG(eτ,2)

+ 2δ0eTk (A +K)TPK1eτ,1 + 2δ0e
T
k (A +K)TPK1eτ,2 + FT (ek)BTPBF(ek)

+ 2δ0FT (ek)BTPDG(eτ,1) + 2δ0F
T (ek)BTPDG(eτ,2) + δ0G

T (eτ,1)DTPDG(eτ,1)

+ δ0G
T (eτ,2)DTPDG(eτ,2) + σT (k, ek)Pσ(k, ek)

+ 2δ0FT (ek)BTPK1eτ,1 + 2δ0F
T (ek)BTPK1eτ,2 + 2δ2

0G
T (eτ,1)DTPK1eτ,1

+ δ0δ0G
T (eτ,1)DTPK1eτ,2 + δ0δ0G

T (eτ,2)DTPK1eτ,1

+2δ
2
0G

T (eτ,2)DTPK1eτ,2 + δ2
0e

T
τ,1K

T
1 PK1eτ,1 + δ

2
0e

T
τ,2K

T
1 PK1eτ,2

}
,

(B.5)

E{ΔVk,2} = E{E{Vk+1,2} | Ek − Vk,2}

= E

⎧
⎨

⎩
(τ0 − τm + 1)eTkQ1ek − eTτ,1Q1eτ,1

+

⎛

⎝
k−τm∑

i=k−τk+11 +1

+
k−1∑

i=k−τm+1
−

k−1∑

i=k−τk1 +1
−

k−τm∑

i=k−τ0+1

⎞

⎠eTi Q1ei

⎫
⎬

⎭

≤ E

{
(τ0 − τm + 1)eTkQ1ek − eTτ,1Q1eτ,1

}
,

(B.6)

E{ΔVk,3} = E{E{Vk+1,3} | Ek − Vk,3}

≤ E

{
(τM − τ0 + 2)eTkQ2ek − eTτ,2Q2eτ,2

}
.

(B.7)

It can be easily seen from Assumption 2.2 and (3.3) that

E

{
σT (k, ek)Pσ(k, ek)

}
≤ E

{
λmax(P)σT (k, ek)σ(k, ek)

}

≤ E

{
λ∗ρeTkek

}
.

(B.8)
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Combining (B.4)–(B.8), we obtain

E{ΔVk} ≤ E

{
eTK

(
(A +K)TP(A +K) − P + (τ0 − τm + 1) + (τM − τ0 + 2) + λ∗ρI

)
ek

− eTτ,1Q1eτ,1 − eTτ,2Q2eτ,2 + 2eTk (A +K)TPBF(ek)

+ 2δ0eTk (A +K)TPDG(eτ,1) + 2δ0e
T
k (A +K)TPDG(eτ,2) + 2δ0eTk (A +K)TPK1eτ,1

+ 2δ0e
T
k (A +K)TPK1eτ,2 + FT (ek)BTPBF(ek) + 2δ0FT (ek)BTPDG(eτ,1)

+ 2δ0F
T (ek)BTPDG(eτ,2) + 2δ0FT (ek)BTPK1eτ,1 + 2δ0F

T (ek)BTPK1eτ,2

+ δ0G
T (eτ,1)DTPDG(eτ,1) + δ0G

T (eτ,2)DTPDG(eτ,2) + 2δ2
0G

T (eτ,1)DTPK1eτ,1

+ δ0δ0G
T (eτ,1)DTPK1eτ,2 + δ0δ0G

T (eτ,2)DTPK1eτ,1

+2δ
2
0G

T (eτ,2)DTPK1eτ,2 + δ2
0e

T
τ,1K

T
1 PK1eτ,1 + δ

2
0e

T
τ,2K

T
1 PK1eτ,2

}

= E{ξkΩ0ξk},
(B.9)

where

Ω0=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Θ1 δ0(A+K)TPK1 δ0(A+K)TPK1 (A+K)TPB δ0(A+K)TPD δ0(A+K)TPD

∗ Θ2 δ0δ0K
T
1 PK1 δ0K

T
1 PB δ2

0K
T
1 PD δ0δ0K

T
1 PD

∗ ∗ Θ3 δ0K
T
1 PB δ0δ0K

T
1 PD δ

2
0K

T
1 PD

∗ ∗ ∗ BTPB δ0B
TPD δ0B

TPD

∗ ∗ ∗ ∗ δ0D
TPD 0

∗ ∗ ∗ ∗ ∗ δ0D
TPD

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

<0,

(B.10)

whereΘ1 = (A +K)TP(A+K)−P+λ∗ρI+(τ0−τm+1)Q1+(τM−τ0+2)Q2,Θ2 = −Q1+δ2
0K

T
1 PK1,

Θ3 = −Q2 + δ
2
0K

T
1 PK1.

From (2.4), we can conclude that

[
fi(ei(k)) − liei(k)

] × [fi(ei(k)) − Liei(k)
] ≤ 0, (B.11)

[
gi(ei(k − τ1(k))) −ωiei(k − τ1(k))

] × [gi(ei(k − τ1(k))) −Wiei(k − τ1(k))
] ≤ 0, (B.12)

[
gi(ei(k − τ2(k))) −ωiei(k − τ2(k))

] × [gi(ei(k − τ2(k))) −Wiei(k − τ2(k))
] ≤ 0. (B.13)
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It can be conclude from (B.11) that there exists Λ1 = diag(λ11, λ12, . . . , λ1n) > 0,

n∑

i=1

λ1i

⎡

⎣
ek

F(ek)

⎤

⎦

T
⎡

⎢
⎢
⎣

liLiαiα
T
i − l1 + Li

2
αiα

T
i

− l1 + Li

2
αiα

T
i αiα

T
i

⎤

⎥
⎥
⎦

⎡

⎣
ek

F(ek)

⎤

⎦

=

[
ek

F(ek)

]T[
Λ1C1 Λ1C2

Λ1C2 Λ1

][
ek

F(ek)

]

≤ 0,

(B.14)

where αi denote a column vector having “1” element on its ith row and zeros elsewhere. In a
similar way, from (B.12) and (B.13), we get

[
eτ,1

G(eτ,1)

]T[
Λ2H1 Λ2H2

Λ2H2 Λ2

][
eτ,1

G(eτ,1)

]

≤ 0, (B.15)

[
eτ,2

G(eτ,2)

]T[Λ3H1 Λ3H2

Λ3H2 Λ3

][
eτ,2

G(eτ,2)

]

≤ 0, (B.16)

where Λ2 = diag(λ21, λ22, . . . , λ2n) > 0, Λ3 = diag(λ31, λ32, . . . , λ3n) > 0.
Since Ω0 < 0 implies Ω1 + ΨTPΨ < 0, combing (B.10) and (B.14)–(B.16), we can

deduce

E{ΔVk} ≤ E

⎧
⎨

⎩
ξTkΩ0ξk −

[
ek

F(ek)

]T[Λ1C1 Λ1C2

Λ1C2 Λ1

][
ek

F(ek)

]

−
[

eτ,1

G(eτ,1)

]T[
Λ2H1 Λ2H2

Λ2H2 Λ2

][
eτ,1

G(eτ,1)

]

−
[

eτ,2

G(eτ,2)

]T[Λ3H1 Λ3H2

Λ3H2 Λ3

][
eτ,2

G(eτ,2)

]⎫⎬

⎭

≤ E

{
ξTk

(
Ω1 + ΨTPΨ

)
ξk
}

� E

{
ξTk Ψ̃ξk

}
,

(B.17)
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where

Ω1 =

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ1 0 0 −Λ1C2 0 0

∗ Ξ2 0 0 −Λ2H2 0

∗ ∗ Ξ3 0 0 −Λ3H2

∗ ∗ ∗ −Λ1 0 0

∗ ∗ ∗ ∗ −Λ2 0

∗ ∗ ∗ ∗ ∗ −Λ3

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (B.18)

By applying Lemma A.2 (in the Appendix A) to (3.2), we get Ψ̃ < 0. Let c0 = λmax(Ψ̃), then
c0 < 0, and from (B.17), we get

E{ΔVk} = E{E{Vk+1 | Ek} − Vk} ≤ c0E|ek|2. (B.19)

From the definition of Vk, it can be easily derived that

EVk ≤ η1E|ek|2 + η2
k−1∑

i=k−τM
E|ei|2, (B.20)

where η1 = λmax(P), η2 = (τ0 − τm + 1)λmax(Q1) + (τM − τ0 + 2)λmax(Q2). For any scalar μ > 1,
(B.20) together with (B.19), implies that

E

{
μk+1Vk+1 − μkVk

}
= μk+1

E{ΔVk} + μk(μ − 1
)
EVk

≤ h1
(
μ
)
μk

E|ek|2 + h2
(
μ
) k−1∑

i=k−τM
μk

E|ei|2,
(B.21)

where h1(μ) = μc0 + (μ − 1)η1, h2(μ) = (μ − 1)η2. Furthermore, for any integer N ≥ τM + 1,
summing up both sides of (B.21) from 0 to N − 1 with respect to k, we get

E

{
μNVN

}
− EV0 ≤ h1

(
μ
)N−1∑

k=0

μk
E|ek|2 + h2

(
μ
)N−1∑

k=0

k−1∑

i=k−τM
μk

E|ei|2. (B.22)
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Note that for τm ≥ 1,

N−1∑

k=0

k−1∑

i=k−τM
μk

E|ei|2≤
( −1∑

i=−τM

i+τM∑

k=0

+
N−1−τM∑

i=0

i+τM∑

k=i+1

+
N−1∑

i=N−τM

N−1∑

k=i+1

)

μk
E|ei|2

≤τM
−1∑

i=−τM
μi+τME|ei|2+τM

N−1−τM∑

i=0

μi+τME|ei|2+τM
N−1∑

i=N−1−τM
μi+τME|ei|2

≤ τMμτM max
−τM≤i≤0

E|ei|2 + τMμτM
N−1∑

i=0

μi
E|ei|2.

(B.23)

Then, from (B.22) and (B.23) we have

E

{
μNVN

}
≤ EV0 +

[
h1
(
μ
)
+ τMμτMh2

(
μ
)]N−1∑

k=0

μk
E|ek|2 + τMμτMh2

(
μ
)
max

−τM≤i≤0
E|ei|2. (B.24)

Let η0 = λmin(P), and η = max{η1, η2}. Obviously, we have

EVN ≥ η0E|eN |2. (B.25)

It also follows easily from (B.20) that

EV0 ≤ η max
−τM≤i≤0

E|ei|2. (B.26)

In addition, we can verify that there exists a scalar μ0 > 1 such that

h1
(
μ0
)
+ τMμτM

0 h2
(
μ0
)
= 0. (B.27)

Substituting (B.25)–(B.27) into (B.24), we obtain

E|eN |2 ≤ 1
μ0

(
η + τMμτM

0 h2
(
μ0
))
(

1
μ0

)N

max
−τM≤i≤0

E|ei|2. (B.28)

Since N is an any positive integer, it can be concluded from (B.28) and Definition 2.6 that
the response system (2.11) can be globally exponentially synchronized with the drive model
(2.10), and this completes the proof of the theorem.
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