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It is of vital importance to exactly estimate the unknown parameters of chaotic systems in chaos
control and synchronization. In this paper, we present a method for estimating one-dimensional
discrete chaotic system based on mean value method (MVM). It is proposed by exploiting the
ergodic and synchronization features of chaos. It can effectively estimate the parameter value, and
it is more exact than MVM. Finally, numerical simulations on Chebyshev map and Tent map show
that the proposed method has better performance of parameter estimation than MVM.

1. Introduction

Chaos phenomena have been widely found in physical and communication systems [1–8].
The parameters of these systems provide insight into their complex behaviors. However,
direct measurement of system parameters is often difficult. So it is necessary to have robust
and efficient algorithms for estimating the parameters of chaotic system.

Several approaches have been proposed for estimating the parameters of chaotic sys-
tem [5–17]. In [5], an adaptive scheme for synchronization-based parameter estimation of
continuous chaotic system was performed. It could estimate all the parameters of the re-
sponse system using the driving signal only. In [6], a method for estimating continuous
chaotic system parameters by optimizing synchronization with a genetic algorithm is pro-
posed. It can effectively find the actual parameter value from a rugged fitness landscape, even
with strong measurement noise. In [7], a method, which can detect the dynamical structure
from short hiding behind complex chaotic series by comparing prediction performance of
trial functions, is proposed. This method is valid for chaotic parameter estimation even when
the original system is contaminated with noise. In [8], a method, which is very useful in
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validating the global models, is proposed. It is focused on the dynamical properties of the
model, and it can estimate the parameters of the system based on the dynamical features of
the model. In [9], a method, which builds polynomial models from data on a Poincaré section
and prior knowledge about the first period doubling bifurcation, is proposed. Similar to [8],
it is also useful for the parameter estimation of the discrete chaotic system from the suitable
models. In [9, 10], a method called mean value method (MVM) for estimating the parameters
of discrete chaotic system was proposed. It exploited the ergodic properties of chaotic
sequence and got the estimated parameter based on the monotonic character of the mean
value function of the parameter. But usually the monotonic is not strict. Thus MVM is not
quite suitable for exact estimation though it is accomplished easily. Since chaos is sensitive
to the parameter, a small change, for example, 10−6 change of the parameter, two chaotic
sequences will diverge from each other rapidly; even the two chaotic sequences have the
same initial condition. So a more exact estimation method for discrete chaotic sequence is
needed.

In this paper, a method for estimating one-dimensional discrete chaotic system based
on mean value method (MVM) is proposed. It is by exploiting the ergodicity and synchro-
nization features of chaos. It can effectively estimate the parameter value. Our attention
herein is focused on estimating the parameters of one-dimensional (1-D) discrete chaotic
sequence, since the 1-D map is potentially useful and well understood. However, the pro-
posed method is not restricted to 1-D systems, the method in this paper can still be extended.

This paper is organized as follows. In Section 2, the brief introduction of mean value
method (MVM) for Parameter Estimation is introduced. In Section 3, the improved MVM is
proposed, which is based on the ergodic property and synchronization property of chaos. In
Section 4, numerical simulations have been done to verify the effectiveness of the proposed
method in this paper. Brief conclusion of this paper is drawn in Section 5.

2. The Mean Value Method for Parameter Estimation

The proposed method is based on the mean value method (MVM); thus we introduce the
MVM in this section briefly.

Before illustrating the MVM, some notation should be introduced. Let f(·) be a chaotic
map defined on some certain closed interval and let the parameter θ of the chaotic map lie
between [θa, θb]. Let {xθ(n)} be a chaotic sequence generated by f(·); that is

xθ(n) = f(θ, xθ(n − 1)), (2.1)

where xθ(n − 1) = [xθ(n − 1), xθ(n − 2), . . . , xθ(n − d)]T is the d-dimensional state vector.
In [8], the authors consider that f(θ, xθ(n−1)) has a unique invariant ergodic measure,

and the mean value function M(θ) of the chaotic map is monotonic for many chaotic maps,
where M(θ) is defined by.

M(θ) =
1
N

N∑

n=1

xθ(n). (2.2)
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Figure 1: Mean value estimation M(θ) of chaotic sequence generated by Chebyshev map with different
parameters (parameter sampling length is 0.05).

Since M(θ) is monotonic, the existence of M−1 is guaranteed, and the estimated parameter θ̂
could be got by

θ̂ = M−1(M(θ)). (2.3)

However, after experiments we find that M(θ) is not strictly monotonic, and this can
be illustrated by Figures 1 and 2 using Chebyshev chaotic map. Figure 1 shows that the mean
value function M(θ) is monotone increasing when the parameter sampling interval is large.
But M(θ) is not strictly monotone increasing when the parameter sampling interval is small
which can be seen in Figure 2. Thuswhen the parameter sampling interval is small, we cannot
use (2.3), since θ̂ is not unique. Because (2.3) is the base of MVM, thus the accuracy of MVM
is not high though it is easy to be accomplished.

3. The Improved Mean Value Method

In order to get a more accurate estimation method for 1-D discrete chaotic sequences, in this
section we offer an improved method based on MVM.

According to the character that the mean value functions of discrete chaotic maps are
nearly monotonic, we can get the small interval l which includes the value of the unknown
parameter. First, we compute the mean value of the observation chaotic sequence M(θ0) by
(3.1) (M(θ0) is a constant if the observation chaotic sequence is certain). Then, we compute
the mean value of different parameters M(θi), respectively, by (3.2). M(θi) is variable with
different θi. Herein, the initial value of chaotic map is random selected in the range value
when using (3.2). Finally, let M(θ0) intersect with M(θi), and their intersection is defined as
the required interval l. These three steps can be illustrated by Figure 3. The left dotted line is
the lower bound of the interval l and the right dotted line upper bound of that.
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Figure 2: Mean value estimation M(θ) of chaotic sequence generated by Chebyshev map with different
parameters (parameter sampling length is 0.001).
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Figure 3:M(θ0) intersects withM(θi) to define the needed interval which is between the two dot lines for
Chebyshev map with θ0 = 1.7527.

The aforementioned way is the difference to MVM. In MVM, they use (2.3) to get es-
timation value. Here, we do not need an approximate estimation value by using (2.3) but use
(3.1) and (3.2) together to get the required small interval l:

M(θ0) =
(

1
N

) N∑

n=1

xθ0(n), (3.1)

M(θi) =
(

1
N

) N∑

n=1

xθi(n), (3.2)

where θi is a sample value in the parameter range.
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When l is got, we can get the more accurate estimation value according to the character
that the synchronization error of the discrete chaotic systems is sensitive to the parameters.
Next, we will describe how to use chaotic synchronization way to estimate parameter.

Consider two maps. One is the master system with the unknown parameter θ0. The
other is the slave system with the parameter θ̂ ∈ l. The master system is defined by (3.3), and
the slave system is defined by (3.4):

xθ0(n) = f(θ0, xθ0(n − 1)), (3.3)

yθ̂(n) = fθ̂

(
θ̂,yθ̂(n − 1)

)
. (3.4)

We assume that the obtained chaotic sequence is generated by the master system. In
order to make the two system synchronization we should add a controller u(n) to slave
system:

yθ̂(n) = fθ̂

(
θ̂,yθ̂(n − 1)

)
+ u(n), (3.5)

where u(n) is given by

u(n) = k
∣∣yθ̂(n − 1) − xθ0(n − 1)

∣∣, (3.6)

k is the coupling coefficient. In order to get a more accurate estimation, we pick up the esti-
mation value θ̂0 in l according to

θ̂0 = arg inf
θ̂0∈l

∥∥∥xθ0(n) − yθ̂0(n)
∥∥∥, (3.7)

where inf(f(x)) denotes the infimum of f(x) and ‖x(n)‖ =
√
〈x(n), x∗(n)〉. The reason of

using (3.7) is according to the feature that synchronization error of the discrete chaotic sys-
tems is sensitive to the parameters. That means, only when the estimated parameter value ap-
proaches the real parameter value, can the synchronization error e which is defined by (3.8)
approach zero in the improved MVM in this paper. In essence, the estimated parameter is
chosen in the interval l. The rule is the following: choose the estimated parameter value which
can make least the synchronization error by (3.7).

e = xθ0(n) − yθ̂0(n). (3.8)

The proposed method is summarized as follows.

(1) Compute the mean value function M(θ) of the chaotic sequence {x(n)} using time
average, that is, M(θi) = (1/N)

∑N
n=1 x(n), i = 1, 2, . . . , T , where T is the total para-

meter sampling number.

(2) Compute the mean value of the estimated chaotic sequence {xθ0(n)} by using time
average in (3.1).
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Figure 4: Comparison of improved MVMwith and without the knowledge of initial condition, the chaotic
map is the Chebyshev map.

(3) Get the required small interval by using the (3.2).

(4) Use the synchronization way to get the θ̂0 in the small interval by using (3.7).

4. Numerical Simulation

In order to verify the effectiveness of the proposed parameter estimation method in this
paper, simulations on Chebyshev map and Tent map have been done.

Chebyshev map is given by x(n) = cos(θcos−1(x(n − 1))), and Tent map is given by
x(n) = θ − 1 − θ|x(n − 1)|, where x(n) ∈ (−1, 1]. We letN = 2000, parameter sampling interval
10−6, and coupling coefficient k = −1 for both maps. Figures 4 and 5 show the estimation
performance of proposed method with and without the knowledge of initial condition, re-
spectively. See from Figures 4 and 5, the estimation performance of the improved MVM is
independent of the initial condition. One reason is that the MVM is independent of the initial
condition, which has been proved in [8]. The other reason is that the chaotic synchronization
is independent of the initial condition. Thus the proposed method is also independent of the
initial condition.

The estimation error of the improved MVM in this paper and the estimation error of
MVM are shown in Figures 6 and 7, respectively. We can see that the estimation error of
improved MVM is less than that of MVM.

5. Conclusion

In summary, in this paper we have developed an improvedmean valuemethod for parameter
estimation of a class of chaotic sequences derived from the one-dimensional nonlinear map.
Based on the ergodic theory and monotone property of MVM, we can get the small interval
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Figure 5: Comparison of improved MVMwith and without the knowledge of initial condition; the chaotic
map is the Tent map.
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Figure 6: The estimation error of MVM in [8] and the improved MVM proposed in this paper for
Chebyshev map.

that contains the real parameter value. In the interval we use chaotic synchronization way
to get the more accurate estimation. The simulation of Chebyshev map and Tent map
confirms that the estimation performance of the proposed method is better than that of
MVM.
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Figure 7: The estimation error of MVM in [8] and the improvedMVMproposed in this paper for Tent map.

Notice that if the unknown parameters are more than one, for example, if the para-
meters are two dimensional, the required interval, which has been obtained based on MVM,
is changed to a two-dimensional zone. When using (3.7), the parameters’ values are chosen
in the required two-dimensional zone. However, this makes a large computational cost. How
to use optimization algorithm to reduce the large computational is our future work. What is
more is that in the proposed method we do not consider the infection of noise. The reason is
that the noise may be reduced by the method in [13]. In further work, we will do the research
on the parameter estimation in the background of noise by using the noise reduction method
such as [13].
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