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A delayed HIV-1 infection model with CTL immune response is investigated. By using suitable
Lyapunov functionals, it is proved that the infection-free equilibrium is globally asymptotically
stable if the basic reproduction ratio for viral infection is less than or equal to unity; if the basic
reproduction ratio for CTL immune response is less than or equal to unity and the basic repro-
duction ratio for viral infection is greater than unity, the CTL-inactivated infection equilibrium is
globally asymptotically stable; if the basic reproduction ratio for CTL immune response is greater
than unity, the CTL-activated infection equilibrium is globally asymptotically stable.

1. Introduction
Recently, many mathematical models have been developed to describe the infection with
HIV-1 (human immunodeficiency virus 1). By investigating these models, researchers have
gained much important knowledge about the HIV-1 pathogenesis and have enhanced
progress in the understanding of HIV-1 infection (see, e.g., [1–4]). It is pointed out by
the work of [5] that immune response is universal and necessary to eliminate or control
the disease during viral infections. In particular, as a part of innate response, cytotoxic T
lymphocytes (CTLs) play a particularly important role in antiviral defense by attacking
infected cells. Thus, many authors have studied the mathematical modelling of viral
dynamics with CTL immune response (see, e.g., [5–9]). In [7], Nowak and Bangham
considered an HIV-1 infection model with CTL immune response which is described by the
following differential equations:

ẋ(t) = λ − dx(t) − βx(t)v(t),

ẏ(t) = βx(t)v(t) − ay(t) − py(t)z(t),

v̇(t) = ky(t) − uv(t),

ż(t) = cy(t)z(t) − bz(t),

(1.1)
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where x(t), y(t), v(t), and z(t) represent the densities of uninfected target cells, infected cells,
virions, and CTL cells at time t, respectively. Uninfected cells are produced at rate λ, die at rate
d, and become infected cells at rate βxv. Infected cells are produced from uninfected cells at
rate βxv and die at rate a. The parameter p accounts for the strength of the lytic component.
Free virions are produced from uninfected cells at rate ky and are removed at rate u. The
parameter b is the death rate for CTLs, and cyz describes the rate of CTL immune response
activated by the infected cells.

Moreover, infection rate plays an important role in the modelling of epidemic
dynamics. Holling type-II functional response seems more reasonable than the bilinear
incidence rate (see, [10]). In [11], by stability analysis, Song and Avidan obtained that the
systemwith the bilinear incidence rate was an extreme case of the model with Holling type-II
functional response term.

In [3, 4, 7], the researchers used ordinary differential equations to describe different
aspects of the dynamics of the viral infections. However, in the real virus dynamics, infection
processes are not instantaneous. Time delays are usually introduced for the purpose of
accurate representations of this phenomena (see, e.g., [6, 12–17]). As pointed out in [12], there
is a time delay between initial viral entry into a cell and subsequent viral production, and the
effect of saturation infection of an HIV-1 model was studied. By using the Lyapunov-LaSalle
type theorem, sufficient conditions were derived for the global stability of the infection-free
equilibrium and the chronic-infection equilibrium. In addition, there is also a period between
virions that have created within a cell, and the new virions are released from the cell (see, e.g.,
[6, 13, 17]). In [13], Zhu and Zou studied an HIV-1 model with discrete delays and found that
large delays can help eliminate the virus. To the best of our knowledge, there are few works
on the dynamics of HIV-1 system with CTL immune response, Holling type-II functional
response, and two kinds of discrete delays. Therefore, we are concerned with the effect of the
above factors on system (1.1).

Motivated by the works of Nowak and Bangham [7], Song and Avidan [11], in the
present paper, we consider the following delay differential equations:

ẋ(t) = λ − dx(t) − βx(t)v(t)
1 + αv(t)

,

ẏ(t) =
βx(t − τ1)v(t − τ1)

1 + αv(t − τ1)
− ay(t) − py(t)z(t),

v̇(t) = ky(t − τ2) − uv(t),

ż(t) = cy(t)z(t) − bz(t),

(1.2)

where the parameters have the same meanings as in system (1.1), τ1 represents the time
between viral entry into a target cell and the production of new virus particles and τ2 stands
for a virus production period for new virions to be produced within and released from the
infected cells.

The initial conditions for system (1.2) take the form

x(θ) = φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ), z(θ) = φ4(θ),

φi(θ) ≥ 0, θ ∈ [−τ, 0], φi(0) > 0 (i = 1, 2, 3, 4),
(1.3)
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where (φ1(θ), φ2(θ), φ3(θ), φ4(θ)) ∈ C([−τ, 0],R4
+0), the Banach space of continuous functions

mapping the interval [−τ, 0] into R
4
+0, where τ = max{τ1, τ2}, R4

+0 = {(x1, x2, x3, x4) : xi ≥ 0, i =

1, 2, 3, 4}.
It is well known by the fundamental theory of functional differential equations [18]

that system (1.2) has a unique solution (x(t), y(t), v(t), z(t)) satisfying the initial conditions
(1.3). It is easy to show that all solutions of system (1.2) with initial conditions (1.3) are
defined on [0,+∞) and remain positive for all t > 0.

This paper is organized as follows. In Section 2, by analyzing the basic reproduction
ratio for viral infection and CTL immune response, the existence of three equilibria
is established. Moreover, the ultimate boundedness of the solutions for system (1.2) is
presented. In Section 3, by means of suitable Lyapunov functionals and LaSalle’s invariant
principle, we discuss the global stability of the infection-free equilibrium, the CTL-inactivated
infection equilibrium, and the CTL-activated infection equilibrium, respectively. In Section 4,
we carry out some numerical examples to illustrate the theoretical results. Finally, a
discussion is given in Section 5 to end this work.

2. Preliminary Results

In this section, we discuss the existence of three equilibria and prove that all the solutions are
positive and bounded.

Clearly, system (1.2) always has an infection-free equilibrium E0 = (x0, 0, 0, 0) =
(λ/d, 0, 0, 0).

Denote

R0 =
kλβ

adu
, R1 =

ckλβ

a
(
bkβ + cdu + bdkα

) . (2.1)

Here, R0 and R1 are called the basic reproduction ratios for viral infection and CTL immune
response of system (1.2), respectively. It is easy to see that R0 > R1 always holds. If R0 >
1, system (1.2) has a CTL-inactivated infection equilibrium E1 = (x1, y1, v1, z1) besides the
equilibrium E0, where

x1 =
au

kβ
(1 + αv1), y1 =

u

k
v1, v1 =

d

β + dα
(R0 − 1), z1 = 0. (2.2)

If R1 > 1, system (1.2) has a CTL-activated infection equilibrium E2 = (x2, y2, v2, z2)
besides the equilibrium E0 and E1, where

x2 =
λ(1 + αv2)

βv2 + d(1 + αv2)
, y2 =

b

c
, v2 =

bk

cu
, z2 =

a

p
(R1 − 1). (2.3)

Theorem 2.1. Supposing that (x(t), y(t), v(t), z(t)) is a solution of system (1.2) with initial
conditions (1.3), then there exists M > 0, such that all the solutions satisfy x(t) < M, y(t) < M,
v(t) < M, z(t) < M for sufficiently large time t.

Proof. Let

N(t) = x(t − τ1) + y(t) +
a

2k
v(t + τ2) +

p

c
z(t), δ = min

{
d,

a

2
, u, b

}
. (2.4)
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Since all solutions of system (1.2) are positive, simple calculation leads to

d

dt
N(t) = λ − dx(t − τ1) −

βx(t − τ1)
1 + αv(t − τ1)

+
βx(t − τ1)

1 + αv(t − τ1)
− ay(t) − py(t)z(t)

+
a

2k
(
ky(t) − uv(t + τ2)

)
+
p

c

(
cy(t)z(t) − bz(t)

)

= λ − dx(t − τ1) − a

2
y(t) − au

2k
v(t + τ2) −

bp

c
z(t)

≤ λ − δN(t).

(2.5)

Therefore, we get N(t) < (λ/δ) + ε � M for sufficiently large time t, where ε is an arbitrarily
small positive constant. Finally, all the solutions of system (1.2) are ultimately bounded by
some positive constant. This completes the proof.

3. Global Stability

In this section, we study the global stability of each equilibrium of system (1.2) by using
suitable Lyapunov functionals which are inspired by Xu [12] and McCluskey [19] and
LaSalle’s invariant principle.

Define the following function:

g(x) = x − 1 − lnx. (3.1)

Clearly, for x ∈ (0,+∞), g(x) has the minimum at x = 1 and g(1) = 0.

Theorem 3.1. If R0 ≤ 1, the infection-free equilibrium E0 = (x0, 0, 0, 0) of system (1.2) is globally
asymptotically stable.

Proof. Let (x(t), y(t), v(t), z(t)) be any positive solution of system (1.2)with initial conditions
(1.3). Define the following Lyapunov functional:

V0(t) = x(t) − x0 ln
x(t)
x0

+ y(t) +
a

k
v(t) +

p

c
z(t) + β

∫ t

t−τ1

x(θ)v(θ)
1 + αv(θ)

dθ + a

∫ t

t−τ2
y(θ)dθ. (3.2)

Calculating the derivative of V0(t) along positive solutions of system (1.2), it follows that

d

dt
V0(t) =

(
1 − x0

x(t)

)(
λ − dx(t) − βx(t)v(t)

1 + αv(t)

)
+
βx(t − τ1)v(t − τ1)

1 + αv(t − τ1)
− ay(t)

− py(t)z(t) +
a

k

(
ky(t − τ2) − uv(t)

)
+
p

c

(
cy(t)z(t) − bz(t)

)

+
βx(t)v(t)
1 + αv(t)

− βx(t − τ1)v(t − τ1)
1 + αv(t − τ1)

+ ay(t) − ay(t − τ2)

=
(
1 − x0

x(t)

)(
dx0 − dx(t) − βx(t)v(t)

1 + αv(t)

)
+
βx(t)v(t)
1 + αv(t)

− au

k
v(t) − bp

c
z(t)

= − d

x(t)
(x(t) − x0)2 −

bp

c
z(t) −

(
au

k
− βx0

1 + αv(t)

)
v(t).

(3.3)
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Noting thatR0 ≤ 1, we obtain (au/k)−(βx0/(1+αv(t))) ≥ (au/k)−(βλ/d) = (au/k)(1−
R0) ≥ 0. Hence, from (3.3), we have V ′

0(t) ≤ 0. By Theorem 5.3.1 in [18], solutions limit toM0,
the largest invariant subset of {V ′

0(t) = 0}. Let (x(t), y(t), v(t), z(t)) be the solution with initial
function in M0. Then, from the invariance of M0, we obtain x(t) = x0, v(t) = 0, and z(t) = 0
for any t. Further, from the third equation of system (1.2), we obtain y(t) = 0. Accordingly, it
follows from LaSalle’s invariance principal that the infection-free equilibrium E0 is globally
asymptotically stable for any positive time delays. This completes the proof.

Theorem 3.2. If R1 ≤ 1 < R0, the CTL-inactivated infection equilibrium E1 of system (1.2) is
globally asymptotically stable.

Proof. Let (x(t), y(t), v(t), z(t)) be any positive solution of system (1.2)with initial conditions
(1.3). Define the following Lyapunov functional:

V1(t) = x1g

[
x(t)
x1

]
+ y1g

[
y(t)
y1

]
+

βx1v
2
1

ky1(1 + αv1)
g

[
v(t)
v1

]
+
p

c
z(t) + V11(t) + V12(t), (3.4)

where

V11(t) =
βx1v1

1 + αv1

∫ t

t−τ2
g

[
y(θ)
y1

]
dθ,

V12(t) =
βx1v1

1 + αv1

∫ t

t−τ1
g

[
x(θ)v(θ)(1 + αv1)
x1v1(1 + αv(θ))

]
dθ.

(3.5)

For clarity, we will calculate the derivatives of g[x(t)/x1], g[y(t)/y1], g[v(t)/v1], z(t),
V11(t), and V12(t) along positive solutions of system (1.2), respectively.

Since λ = dx1 + βx1v1/(1 + αv1) holds, it follows that

d

dt

[
g

(
x(t)
x1

)]
=

1
x1

(
1 − x1

x(t)

)[
λ − dx(t) − βx(t)v(t)

1 + αv(t)

]

=
(
1 − x1

x(t)

)[
dx1 − dx(t) +

βx1v1

1 + αv1
− βx(t)v(t)

1 + αv(t)

]

= −dx(t)
x1

(
1 − x1

x(t)

)2

+
1
x1

(
1 − x1

x(t)

)[
βx1v1

1 + αv1
− βx(t)v(t)

1 + αv(t)

]

= −dx(t)
x1

(
1 − x1

x(t)

)2

+
1
x1

βx1v1

1 + αv1

(
1 − x1

x(t)

)[
1 − x(t)v(t)

1 + αv(t)
1 + αv1

x1v1

]

= −dx(t)
x1

(
1 − x1

x(t)

)2

+
1
x1

βx1v1

1 + αv1

[
1 − x1

x(t)
− x(t)v(t)
1 + αv(t)

1 + αv1

x1v1
+

v(t)
1 + αv(t)

1 + αv1

v1

]
.

(3.6)
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Noting that a = βx1v1/y1(1 + αv1), we get that

d

dt

[
g

(
y(t)
y1

)]
=

1
y1

(
1 − y1

y(t)

)[
βx(t − τ1)v(t − τ1)

1 + αv(t − τ1)
− ay(t) − py(t)z(t)

]

=
1
y1

(
1 − y1

y(t)

)[
βx(t − τ1)v(t − τ1)

1 + αv(t − τ1)
− βx1v1

1 + αv1

y(t)
y1

− py(t)z(t)
]

=
1
y1

(
1 − y1

y(t)

)[
βx(t − τ1)v(t − τ1)

1 + αv(t − τ1)
− βx1v1

1 + αv1

y(t)
y1

]
− py(t)z(t)

y1

(
1 − y1

y(t)

)

=
1
y1

βx1v1

1 + αv1

[
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv1

x1v1
− y(t)

y1

− y1

y(t)
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv1

x1v1
+ 1

]
− py(t)z(t)

y1
+ pz(t).

(3.7)

Since u = ky1/v1 holds, it follows that

d

dt

[
g

(
v(t)
v1

)]
=

1
v1

(
1 − v1

v(t)

)
[
ky(t − τ2) − uv(t)

]

=
1
v1

(
1 − v1

v(t)

)[
ky(t − τ2) −

ky1

v1
v(t)

]

=
ky1

v1

(
1 − v1

v(t)

)[
y(t − τ2)

y1
− v(t)

v1

]

=
ky1

v1

[
y(t − τ2)

y1
− v1

v(t)
y(t − τ2)

y1
− v(t)

v1
+ 1

]
.

(3.8)

Calculating the derivatives of V11(t) and V12(t) shows that

d

dt
V11(t) =

βx1v1

1 + αv1

[
y(t)
y1

− y(t − τ2)
y1

+ ln
y(t − τ2)

y1
− ln

y(t)
y1

]
,

d

dt
V12(t) = β

[
x(t)v(t)
1 + αv(t)

− x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

+
x1v1

1 + αv1
ln

x(t − τ1)v(t − τ1)(1 + αv(t))
x(t)v(t)(1 + αv(t − τ1))

]
.

(3.9)
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We therefore derive from (3.6)–(3.9) that

d

dt
V1(t) = −dx(t)

(
1 − x1

x(t)

)2

− βx1v1

1 + αv1

[
x1

x(t)
− 1 − ln

x1

x(t)

]

− βx1v1

1 + αv1

[
1 + αv(t)
1 + αv1

− 1 − ln
1 + αv(t)
1 + αv1

]

− βx1v1

1 + αv1

[
v1

v(t)
y(t − τ2)

y1
− 1 − ln

v1

v(t)
y(t − τ2)

y1

]

− βx1v1

1 + αv1

[
y1

y(t)
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv1

x1v1
− 1

− ln
(

y1

y(t)
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv1

x1v1

)]

− αβx1(v(t) − v1)2

(1 + αv1)2(1 + αv(t))
+ p

(
y1 − b

c

)
z(t)

= −dx(t)
(
1 − x1

x(t)

)2

− αβx1(v(t) − v1)2

(1 + αv1)2(1 + αv(t))
+ p

(
y1 − b

c

)
z(t)

− βx1v1

1 + αv1
g

[
v1y(t − τ2)
y1v(t)

]
− βx1v1

1 + αv1
g

[
x1

x(t)

]
− βx1v1

1 + αv1
g

[
1 + αv(t)
1 + αv1

]

− βx1v1

1 + αv1
g

[
y1

y(t)
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv1

x1v1

]
.

(3.10)

Noting thatR1 ≤ 1, we derive that y1−b/c = ((bkβ+cdu+bdkα)/ck(β+dα))(R1−1) ≤ 0.
Hence, from (3.10), we have V ′

1(t) ≤ 0. Similar to Theorem 3.1, solutions limit to M1, the
largest invariant subset of {V ′

1(t) = 0}. Let (x(t), y(t), v(t), z(t)) be the solution with initial
function in M1. Then, we obtain that

x(t) = x1, v(t) = v1, z(t) = 0,
v1y(t − τ2)
y1v(t)

=
y1

y(t)
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv1

x1v1
= 1.

(3.11)

It is readily to show that x(t) = x(t − τ1) = x1, y(t) = y(t − τ2) = y1, v(t) = v(t − τ1) = v1, and
z(t) = 0 for any t. Thus, it follows from LaSalle’s invariance principal that the CTL-inactivated
infection equilibrium E1 is globally asymptotically stable for any positive time delays. This
completes the proof.

Theorem 3.3. If R1 > 1, the CTL-activated infection equilibrium E2 of system (1.2) is globally
asymptotically stable.

Proof. Let (x(t), y(t), v(t), z(t)) be any positive solution of system (1.2)with initial conditions
(1.3). We construct the following Lyapunov functional:

V2(t) = x2g

[
x(t)
x2

]
+ y2g

[
y(t)
y2

]
+

βx2v
2
2

ky2(1 + αv2)
g

[
v(t)
v2

]
+
pz2
c

g

[
z(t)
z2

]
+ V21(t) + V22(t),

(3.12)
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where

V21(t) =
βx2v2

1 + αv2

∫ t

t−τ2
g

[
y(θ)
y2

]
dθ,

V22(t) =
βx2v2

1 + αv2

∫ t

t−τ1
g

[
x(θ)v(θ)(1 + αv2)
x2v2(1 + αv(θ))

]
dθ.

(3.13)

Next, we will calculate the derivatives of g[x(t)/x2], g[y(t)/y2], g[v(t)/v2],
g[z(t)/z2], V21(t), and V22(t) along positive solutions of system (1.2), respectively.

Similar to (3.6), we derive that

d

dt

[
g

(
x(t)
x2

)]
= −dx(t)

x2

(
1 − x2

x(t)

)2

+
1
x2

βx2v2

1 + αv2

[
1 − x2

x(t)
− x(t)v(t)
1 + αv(t)

1 + αv2

x2v2
+

v(t)
1 + αv(t)

1 + αv2

v2

]
.

(3.14)

Noting that a = βx2v2/y2(1 + αv2) − pz2, it follows that

d

dt

[
g

(
y(t)
y2

)]
=

1
y2

(
1 − y2

y(t)

)[
βx(t − τ1)v(t − τ1)

1 + αv(t − τ1)
− ay(t) − py(t)z(t)

]

=
1
y2

(
1 − y2

y(t)

)[
βx(t − τ1)v(t − τ1)

1 + αv(t − τ1)
− βx2v2

1 + αv2

y(t)
y2

+ pz2y(t) − py(t)z(t)
]

=
1
y2

βx2v2

1 + αv2

(
1 − y2

y(t)

)[
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv2

x2v2
− y(t)

y2

]

+
py(t)
y2

(
1 − y2

y(t)

)
(z2 − z(t))

=
1
y2

βx2v2

1 + αv2

[
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv2

x2v2
− y(t)

y2

− y2

y(t)
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv2

x2v2
+ 1

]
+

p

y2

(
y(t) − y2

)
(z2 − z(t)).

(3.15)

Similar to (3.8), we get that

d

dt

[
g

(
v(t)
v2

)]
=

ky2

v2

[
y(t − τ2)

y2
− v2

v(t)
y(t − τ2)

y2
− v(t)

v2
+ 1

]
. (3.16)
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Calculating the derivative of g[z(t)/z2] shows that

d

dt

[
g

(
z(t)
z2

)]
=

1
z2

(
1 − z2

z(t)

)
(
cy(t)z(t) − bz(t)

)

=
1
z2

(
1 − z2

z(t)

)
(
cy(t)z(t) − cy2z(t)

)

=
c

z2
(z(t) − z2)

(
y(t) − y2

)
.

(3.17)

Similar to (3.9), it follows that

d

dt
V21(t) =

βx2v2

1 + αv2

[
y(t)
y2

− y(t − τ2)
y2

+ ln
y(t − τ2)

y2
− ln

y(t)
y2

]
,

d

dt
V22(t) = β

[
x(t)v(t)
1 + αv(t)

− x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

+
x2v2

1 + αv2
ln

x(t − τ1)v(t − τ1)(1 + αv(t))
x(t)v(t)(1 + αv(t − τ1))

]
.

(3.18)

We therefore derive from (3.14)–(3.18) that

d

dt
V2(t) = −dx(t)

(
1 − x2

x(t)

)2

− αβx2(v(t) − v2)2

(1 + αv2)2(1 + αv(t))

− βx2v2

1 + αv2
g

[
y2

y(t)
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv2

x2v2

]

− βx2v2

1 + αv2
g

[
x2

x(t)

]
− βx2v2

1 + αv2
g

[
1 + αv(t)
1 + αv2

]

− βx2v2

1 + αv2
g

[
v2y(t − τ2)
y2v(t)

]
.

(3.19)

Hence, from (3.19), we get V ′
2(t) ≤ 0. Similar to Theorem 3.1, solutions limit toM2, the

largest invariant subset of {V ′
2(t) = 0}. Let (x(t), y(t), v(t), z(t)) be the solution with initial

function in M2. Then, it holds that

x(t) = x2, v(t) = v2,
y2

y(t)
x(t − τ1)v(t − τ1)
1 + αv(t − τ1)

1 + αv2

x2v2
=

v2y(t − τ2)
y2v(t)

= 1. (3.20)

It is easy to show that x(t) = x(t−τ1) = x2, y(t) = y(t−τ2) = y2, and v(t) = v(t−τ1) = v2 for any
time t. Moreover, from the second equation of system (1.2), we obtain z(t) = z2. Therefore, it
follows from LaSalle’s invariance principal that the CTL-activated infection equilibrium E2 is
globally asymptotically stable for any positive time delays. This completes the proof.

4. Numerical Simulations

In the following, we give three examples to illustrate the main theoretical results above. All
the parameters were obtained from [9, 16, 20].
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Figure 1: The infection-free equilibrium E0 of system (1.2) is globally asymptotically stable. Here τ1 = 10,
τ2 = 10, and the initial value is (x0 = 1, y0 = 1, v0 = 5, z0 = 1).

Example 4.1. In system (1.2), we choose λ = 1, d = 0.1, β = 0.0005, α = 0.000001, a = 0.3, p = 1,
k = 200, u = 8, c = 0.2, b = 0.15, and τ1 = 10, τ2 = 10. It is easy to show that R0 = 0.833 < 1,
and that system (1.2) has an infection-free equilibrium E0 = (10, 0, 0, 0). By Theorem 3.1, we
get that the infection-free equilibrium E0 of system (1.2) is globally asymptotically stable.
Numerical simulation illustrates this fact (see Figure 1).

Example 4.2. In system (1.2), we set λ = 2, d = 0.09, β = 0.0006, α = 0.000001, a = 0.3,
p = 1, k = 240, u = 8, c = 0.1, b = 0.3, and τ1 = 5, τ2 = 9. It is easy to show
that 0.8333 = R1 ≤ 1 < R0 = 1.3333, and that system (1.2) has a CTL-inactivated
infection equilibrium E1 = (16.6675, 1.6664, 49.9925, 0). By Theorem 3.2, we obtain that the
CTL-inactivated infection equilibrium E1 of system (1.2) is globally asymptotically stable.
Numerical simulation illustrates our result (see Figure 2).

Example 4.3. In system (1.2), let λ = 5, d = 0.02, β = 0.009, α = 0.000001, a = 0.25, p = 1, k =
240, u = 5, c = 0.1, b = 0.15, and τ1 = 4, τ2 = 2. It is easy to show thatR1 = 12.9341 > 1, and then
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Figure 2: The CTL-inactivated infection equilibrium E1 of system (1.2) is globally asymptotically stable.
Here τ1 = 5, τ2 = 9, and the initial value is (x0 = 10, y0 = 1, v0 = 50, z0 = 2).

system (1.2) has a CTL-activated infection equilibrium E2 = (7.4856, 1.5000, 72.0000, 2.9835).
By Theorem 3.3, we get that the CTL-activated infection equilibrium E2 of system (1.2) is
globally asymptotically stable. Numerical simulation illustrates this fact (see Figure 3).

5. Discussion

In this paper, we have studied the global dynamics of a delayed HIV-1 infection model with
CTL immune response. By constructing suitable Lyapunov functionals, sufficient conditions
have been derived for the global stability of three equilibria. It is easy to show that if the
basic reproduction ratio for viral infection R0 � 1, infection-free equilibrium E0 is globally
asymptotically stable, and the virus is cleared up; if the basic reproduction ratio for CTL
immune response R1 satisfies R1 ≤ 1 < R0, the equilibrium E1 is globally asymptotically
stable, and the infection becomes chronic but without CTL immune response; if R1 > 1,
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Figure 3: The CTL-activated infection equilibrium E2 of system (1.2) is globally asymptotically stable. Here
τ1 = 4, τ2 = 2, and the initial value is (x0 = 1, y0 = 1, v0 = 50, z0 = 4).

system (1.2) has a CTL-activated infection equilibrium E2 besides E0 and E1, which is globally
asymptotically stable, and the infection turns to chronic with CTL immune response.

From Theorems 3.1, 3.2, and 3.3, we see that the delays τ1 and τ2 do not affect the
global stability of the feasible equilibria and therefore do not induce periodic oscillations,
and the possibility of Hopf bifurcations is therefore ruled out. On the other hand, if the basic
reproduction ratio for CTL immune response R1 > 1, we can get

y1 − y2 =
kbβ + cdu + kbdα

ck
(
β + dα

) (R1 − 1) > 0, v1 − v2 =
kbβ + cdu + kbdα

cu
(
β + dα

) (R1 − 1) > 0, (5.1)

which shows that the number of infected cells and virions of the equilibrium E1 is greater
than the number of those of the equilibrium E2. Hence, the CTL immune response plays an
important role in the reduction of the infected cells and the free virions.
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