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Let T > 5 be an integer, T = {1, 2, . . . , T}. We are concerned with the global structure of positive
solutions set of the discrete second-order boundary value problems Δ2u(t − 1) + rm(t)f(u(t)) =
0, t ∈ T, u(0) = u(T + 1) = 0, where r ∈ R is a parameter, m : T → R changes its sign and
m(t)/= 0 for t ∈ T.

1. Introduction

Let T > 5 be an integer, T = {1, 2, . . . , T}. In this paper, we are concerned with the global
structure of positive solutions set of the discrete second-order boundary value problems

Δ2u(t − 1) + rm(t)f(u(t)) = 0, t ∈ T, (1.1)

u(0) = u(T + 1) = 0, (1.2)

where r ∈ R is a parameter,m : T → R changes its sign, andm(t)/= 0 for t ∈ T.
The boundary value problems with sign-changing weight arise from a selection-

migration model in population genetics, see Fleming [1]. m changes sign corresponds to the
fact that an allele A1 holds an advantage over a rival allele A2 at the same points and is at
a disadvantage at others. The parameter r corresponds to the reciprocal of the diffusion. So,
the existence and multiplicity of positive solutions with sign-changing weight in continuous
case has been studied by many authors, see, for example, [2–8] and the references therein.
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For the discrete case, there are many literature dealing with difference equations
similar to (1.1) subject to various boundary value conditions. We refer to [9–17] and the
references therein. However, there are few papers to discuss the existence of positive solutions
to (1.1) and (1.2) if m(t) changes sign on T. Maybe the main reason is the spectrum of the
following linear eigenvalue problems

Δ2u(t − 1) + λm(t)u(t) = 0, t ∈ T,

u(0) = u(T + 1) = 0
(1.3)

is not clear whenm changes its sign on T.
In 2008, Shi and Yan [18] investigated the spectrum of the second-order boundary

value problems of difference equations

−Δ[p(t − 1)Δu(t − 1)
]
+ q(t)u(t) = λm(t)u(t), t ∈ T,

(
p(0)Δu(0)

−p(T)Δu(T)

)

= K

(
u(0)

u(T)

)

,
(1.4)

where K =
(
k11 k12
k21 k22

)
is a symmetric and positive definite 2 × 2 matrix. p : {0, 1, . . . , T} → R,

q : T → R, andm : T → R satisfy

(A1) m : T → R changes its sign, andm(t)/= 0 for t ∈ T.

(A2) p(t − 1) ≥ 0, q(t) ≥ 0, p(t − 1) + q(t) > 0, for t ∈ T, and p(0) + k11 /= 0, p(T) > 0.

They proved that (1.4) has T eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λT which have T correspond-
ing linearly independent and orthogonal eigenfunctions.

However, it’s easy to see that (1.3) is not included in (1.4) under the condition (A2).
Also, Shi and Yan [18] provided no information about the sign of the eigenvalues and no
information about the corresponding eigenfunctions.

In this paper, we will show that (1.3) has two principal eigenvalues λm,− < 0 < λm,+,
and the corresponding eigenfunctions we denote by ψm,− and ψm,+ don’t change their sign on
T̂ := {0, 1, . . . , T, T + 1}. Based on this result, using Rabinowitz’s global bifurcation theorem
[19], we will discuss the global structure of positive solutions set of (1.1) and (1.2).

The assumptions we are interested in this paper are as follows:

(H1) f ∈ C(R,R) with sf(s) > 0 for s /= 0;

(H2) f0 = lim|s|→ 0(f(s)/s) ∈ (0,∞);

(H3) f∞ = lim|s|→+∞(f(s)/s) = 0;

(H3’) f∞ = ∞.

Our main result is the following.

Theorem 1.1. Assume that (H1), (H2) hold.

(i) If (H3) holds, then there exist 0 < λ∗ ≤ λm,+/f0 and λm,−/f0 ≤ λ∗ < 0 such that (1.1),
(1.2) has at least one positive solution for r ∈ (−∞, λ∗) ∪ (λ∗,∞).

(ii) If (H3’) holds, then there exist ρ∗ ≤ λm,−/f0 < 0 and ρ∗ ≥ λm,+/f0 > 0 such that (1.1),
(1.2) has at least one positive solution for r ∈ (ρ∗, 0) ∪ (0, ρ∗).
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The rest of the paper is arranged as follows. In Section 2, the existence of two principal
eigenvalues of (1.3), and some properties of these two eigenvalues will be discussed. In
Section 3, we will prove our main result.

2. Existence of Two Principal Eigenvalues to (1.3)

Recall that T = {1, 2, . . . , T} and T̂ = {0, 1, . . . , T +1}. LetX = {u : T̂ → R | u(0) = u(T +1) = 0}.
ThenX is a Banach space under the norm ‖u‖X = maxt∈T̂

|u(t)|. Let Y = {u | u : T → R}. Then
Y is a Banach space under the norm ‖u‖Y = maxt∈T|u(t)|.

It’s well known that the operator χ : X → Y ,

χ(0, u(1), u(2), . . . , u(T), 0) = (u(1), u(2), . . . , u(T)) (2.1)

is a homomorphism.
Define the operator L : X → Y by

Lu(t) = −Δ2u(t − 1), t ∈ T. (2.2)

In this section, we will discuss the existence of principal eigenvalues for (1.3) with
m : T → R that changes its sign. The main idea we will use aries from [20, 21].

Theorem 2.1. Equation (1.3) has two principal eigenvalues λm,+ and λm,− such that λm,− < 0 < λm,+,
and the corresponding eigenfunctions, we denoted by ψm,+ and ψm,− do not change sign on T̂.

Proof. Consider, for fixed λ, the eigenvalue problems

Lu − λm(t)u(t) = μu(t), t ∈ T,

u(0) = u(T + 1) = 0.
(2.3)

By Kelley and Peterson [22, Theorem 7.6], for fixed λ, (2.3) has T -simple eigenvalues

μm,1(λ) < μm,2(λ) < · · · < μm,T (λ), (2.4)

and the corresponding eigenfunction ψm,k(λ, t) has exactly k − 1 simple generalized zeros.
Thus, λ is a principal eigenvalue of (1.3) if and only if μm,1(λ) = 0.
On the other hand, let

Sm,λ =

{
T∑

t=0

∣∣Δφ(t)
∣∣2 − λ

T∑

t=1

m(t)φ(t)2 : φ ∈ X,
T∑

t=1

φ(t)2 = 1

}

. (2.5)

Clearly, Sm,λ is bounded below. Then μm,1(λ) = infSm,λ.
For fixed φ ∈ X, λ → ∑T

t=0 |Δφ(t)|2 − λ
∑T

t=1m(t)φ2(t) is an affine and so concave
function. As the infimum of any collection of concave functions is concave, it follows that
λ → μm,1(λ) is a concave function. Also, by considering test functions φ1, φ2 ∈ X such that
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∑T
t=1m(t)φ2

1(t) < 0 and
∑T

t=1m(t)φ2
2(t) > 0, it is easy to see that μm,1(λ) → −∞ as λ → ±∞.

Thus, λ → μm,1(λ) is an increasing function until it attains its maximum and is a decreasing
function thereafter.

Since μ1(0) > 0, λ → μm,1(λ) must have exactly two zeros. Thus, (1.3) has exactly
two principal eigenvalues, λm,+ > 0 and λm,− < 0, and the corresponding eigenfunctions we
denoted by ψm,+ and ψm,− don’t change sign on T̂.

Remark 2.2. From the proof of Theorem 2.1, it is not difficult to see that the following results
hold.

(i) If m(t) ≥ 0 on T and there exist at least one point t0 ∈ T such that m(t0) > 0, then
(1.3) has only one principal eigenvalue λm,+ > 0.

(ii) If m(t) ≤ 0 on T and there exist at least one point t0 ∈ T such that m(t0) < 0, then
(1.3) has only one principal eigenvalue λm,− < 0.

Now, we give some properties for the above principal eigenvalue(s).

Theorem 2.3. Let m : T → R change its sign. Assume that there exists m′ : T → R such that
m(t) ≤ m′(t) for t ∈ T. Then the followings hold.

(i) Ifm′ changes sign on T, then λm′,− ≤ λm,−, λm′,+ ≤ λm,+;
(ii) Ifm′ ≥ 0, then 0 < λm′,+ ≤ λm,+.

Proof. For convenience, we only prove the case (i). It can be seen that for λ > 0, Sm,λ ≥ Sm′,λ,
which implies μm,1(λ) ≥ μm′,1(λ) and consequently, λm,+ ≥ λm′,+.

On the other hand, for λ < 0, Sm,λ ≤ Sm′,λ, which implies μm,1(λ) ≤ μm′,1(λ) and
consequently, λm,− ≥ λm′,−.

Suppose that T0 = {a + 1, a + 2, . . . , b − 1} is a strict subset of T, and mT0 denote the
restriction ofm on T0. Consider the linear eigenvalue problems

Δ2u(t − 1) + λm(t)u(t) = 0, t ∈ T0,

u(a) = u(b) = 0.
(2.6)

Then we get the following result.

Theorem 2.4. (i) If m(t) > 0 for t ∈ T0, then (2.6) has only one positive principal eigenvalue λmT0 ,+

such that 0 < λm,+ < λmT0 ,+.
(ii) If m(t) < 0 for t ∈ T0, then (2.6) has only one principal eigenvalue λmT0 ,− such that

λmT0 ,− < λm,−.
(iii) If m changes its sign on T0, then (2.6) has two principal eigenvalue λmT0 ,− < 0 and

λmT0 ,+ > 0 such that

λm,+ < λmT0 ,+, λmT0 ,− < λm,−. (2.7)

Proof. Consider the following problems:

−Δ2u(t − 1) − λm(t)u(t) = μu(t), t ∈ T0,

u(a) = u(b) = 0.
(2.8)
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Let μmT0 ,k
denote the kth eigenvalue of (2.8), and ψmT0 ,k

the corresponding eigenfunction
which has exactly k − 1 generalized zeros in (a, b). Let E = {u : {a, . . . , b} → R | u(a) =
u(b) = 0} be a Banach space under the norm ‖u‖E = max{|u(t)| : t ∈ {a, a + 1, . . . , b − 1, b}}.
Let

SmT0 ,λ
=

{
b−1∑

t=a

∣∣Δφ(t)
∣∣2 − λ

b−1∑

t=a+1

m(t)φ(t)2 : φ ∈ E,
b−1∑

t=a+1

φ(t)2 = 1

}

. (2.9)

We get μmT0 ,1 = infSmT0 ,λ
. Similar to the proof of Theorem 2.1, we get the following assertions.

(i) Ifm(t) > 0 for t ∈ T0, then (2.6) has only one principal eigenvalue λmT0 ,+ > 0.

(ii) Ifm(t) < 0 for t ∈ T0, then (2.6) has only one negative principal eigenvalue λmT0 ,− <
0.

(iii) If m changes its sign on T0, then (2.6) has two principal eigenvalue λmT0 ,− < 0 and
λmT0 ,+ > 0.

Now, we prove that the inequalities in (i), (ii), and (iii) hold. For convenience, suppose
that

∑b−1
t=a+1 ψ

2
mT0 ,1

(λ, t) = 1.
Let ψ̃mT0 ,1 denote the extension of ψmT0 ,1 by zero on T, that is,

ψ̃mT0 ,1(λ, t) =

⎧
⎪⎨

⎪⎩

ψmT0 ,1(λ, t), t ∈ T0,

0, t ∈ T \ T0.

(2.10)

Then,

μmT0 ,1(λ) =
b−1∑

t=a

∣∣∣ΔψmT0 ,1(λ, t)
∣∣∣
2 − λ

b−1∑

t=a+1

m(t)ψ2
mT0 ,1

(λ, t)

=
T∑

t=1

∣∣∣Δψ̃mT0 ,1
(λ, t)

∣∣∣
2 − λ

T∑

t=1

m(t)ψ̃2
mT0 ,1

(λ, t)

> inf
v∈X

{
T∑

t=1

|Δv(λ, t)|2 − λ
T∑

t=1

m(t)v2(λ, t),
T∑

t=1

v2(λ, t) = 1

}

= μm,1(λ),

(2.11)

which implies the desired results.

3. The Proof of the Main Result

First, we deal with the case r > 0.
Recall that L : X → Y ,

Lu(t) = −Δ2u(t − 1). (3.1)
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Let ζ, ξ ∈ C(R,R) be such that

f(u) = f0u + ζ(u), f(u) = f∞u + ξ(u). (3.2)

Clearly,

lim
|u|→ 0

ζ(u)
u

= 0, lim
|u|→∞

ξ(u)
u

= 0. (3.3)

Let

ξ̃(u) = max
0≤s≤u

|ξ(s)|. (3.4)

Then, ξ̃ is nondecreasing and

lim
|u|→∞

ξ̃(u)
u

= 0. (3.5)

Let us consider

Lu − λm(t)rf0u − λm(t)rζ(u) = 0, (3.6)

as a bifurcation problem from the trivial solution u ≡ 0.
Equation (3.6) can be converted to the equivalent equation

u(t) = λL−1[m(·)rf0u(·) +m(·)rζ(u(·))](t). (3.7)

Further, we note that ‖L−1[m(·)ζ(u(·))]‖ = o(‖u‖) for u near 0 in X, since

∥∥∥L−1[m(·)ζ(u(·))]
∥∥∥ = max

t∈T

∣∣∣∣∣

T∑

s=1

G(t, s)m(s)ζ(u(s))

∣∣∣∣∣

≤ C ·max
s∈T

|m(s)|‖ζ(u(·))‖,
(3.8)

where

G(t, s) =
1

T + 1

⎧
⎪⎨

⎪⎩

(T + 1 − t)s, 0 ≤ s ≤ t ≤ T + 1,

(T + 1 − s)t, 0 ≤ t ≤ s ≤ T + 1.
(3.9)

The results of Rabinowitz [19] for (3.6) can be stated as follows: from (λm,+/rf0, 0),
there emanates an unbounded continua C+ of positive solutions in R ×X.

It is clear that any solution of (3.6) of the form (1, u) yields a solution u of (1.1) and
(1.2). So, we focus on the shape of C+ under the conditions (H1)–(H3) or (H1)–(H3’), and we
will show that C+ crosses the hyperplane {1} ×X in R ×X.
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Lemma 3.1. Suppose that (H1)–(H3) hold. Let J = [a, b] be a given compact interval in (0,∞). Then
for all r ∈ J , there exists MJ > 0 such that all possible positive solution u of (1.1) and (1.2) satisfy
‖u‖X ≤MJ .

Proof. Suppose on the contrary that there exists a sequence {yn} of positive solutions for (3.6)
with {μn} ⊂ J and ‖yn‖X → ∞. Let α ∈ (0, 1/bQ), where Q =

∑T
s=1G(s, s)|m(s)|. Then, by

(H3), there exists uα > 0 such that u > uα implies f(u) < αu.
LetKα = maxu∈[0,uα]f(u) and letAn = {t ∈ T̂ | yn(t) ≤ uα} and Bn = {t ∈ T̂ | yn(t) > uα}.

Then we have

yn(t) = μn
T∑

s=1

G(t, s)m(s)f
(
yn(s)

)

= μn
∑

An

G(t, s)m(s)f
(
yn(s)

)
+ μn

∑

Bn

G(t, s)m(s)f
(
yn(s)

)

≤ μnKαQ + μn
∑

Bn

G(t, s)m(s)f
(
yn(s)

)

(3.10)

for t ∈ T̂. Thus,

1
μn

≤ KαQ∥∥yn
∥∥
X

+
∑

Bn

G(t, s)m(s)
f
(
yn(s)

)

∥∥yn
∥∥
X

. (3.11)

On Bn, yn(s) > uα implies f(yn(s))/‖yn‖X < f(yn(s))/yn(s) < α. Thus,

1
μn

≤ KαQ∥∥yn
∥∥
X

+ α
∑

Bn

G(s, s)|m(s)| ≤ KαQ∥∥yn
∥∥
X

+ αQ. (3.12)

Since 0 < a ≤ μn ≤ b for all n, we have 1/μn ≥ 1/b for all n, and, thus,

1
b
≤ KαQ∥∥yn

∥∥
X

+ αQ. (3.13)

By the fact ‖yn‖X → ∞ as n → ∞, we get

1
b
≤ αQ <

1
b
. (3.14)

This contradiction completes the proof.

Lemma 3.2. Suppose that (H1)–(H3) hold. Then Proj
R
C+ ⊃ [λm,+/rf0,+∞).

Proof. Assume on the contrary that sup{λ | (λ, y) ∈ C+} < ∞, then, there exists a sequence
{(μn, yn)} ∈ C+ such that

lim
n→∞

∥∥yn
∥∥
X = ∞, μn < C0 (3.15)
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for some positive constant C0 independent of n, since C+ is unbounded. On the other hand,
μn > 0 for all n ∈ N, since (0, 0) is the only solution of (3.6) for λ = 0 and C+ ∩ ({0} × X) = ∅.
Meanwhile, {(μn, yn)} satisfy

Δ2yn(t − 1) + μnm(t)
f
(
yn(t)

)

yn(t)
yn(t) = 0, t ∈ T,

yn(0) = yn(T + 1) = 0.

(3.16)

By (H3), there exist a positive constant Lf > 0 such that f(u) ≤ Lfu. Define a function χ :
T → [0,∞) by

χ(t) =

⎧
⎨

⎩

Lf , m(t) > 0,

0, m(t) < 0.
(3.17)

Then,m(t)(f(yn(t))/yn(t)) ≤ χ(t)m(t). Let γ+ be the principal eigenvalue of linear eigenvalue
problem

Δ2v(t − 1) + γχ(t)m(t)v(t) = 0, t ∈ T,

v(0) = v(T + 1) = 0.
(3.18)

Then, by Remark 2.2, γ+ > 0. Subsequently, by Theorem 2.3, we know that

γ+ ≤ μn. (3.19)

This combine with Lemma 3.1, limn→∞μn = ∞, which contradicts (3.15). Thus,

Proj
R
C+ ⊃

[
λm,+
rf0

,∞
)
. (3.20)

Now, by Lemma 3.2, C+ crosses the hyperplane {1} × X in R × X, and, then,
Theorem 1.1(i) holds. To obtain Theorem 1.1(ii), we need to prove the following Lemma.

Lemma 3.3. Suppose that (H1), (H2), and (H3’) hold. Then Proj
R
C+ ⊃ (0, λm,+/rf0).

Proof. Let {(μn, yn)} ⊂ C+ be such that |μn| + ‖yn‖X → ∞ as n → ∞. Then,

Δ2yn(t − 1) + μnm(t)f
(
yn(t)

)
= 0, t ∈ T,

yn(0) = yn(T + 1) = 0.
(3.21)
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If {‖yn‖} is bounded, say, ‖yn‖ ≤ M1, for some M1 independent of n, then we may assume
that

lim
n→∞

μn = ∞. (3.22)

Note that

f
(
yn(t)

)

yn(t)
≥ inf

{
f(s)
s

| 0 < s ≤M1

}
> 0. (3.23)

Then, there exist two constantsM3 > 0, M2 > 0 such that

0 < M2 <
f
(
yn(t)

)

yn(t)
< M3. (3.24)

Define two functions χ1, χ2 : T → (0,∞) by

χ1 =

{
M2, m(t) > 0,
M3, m(t) < 0.

χ2 =

{
M3, m(t) > 0,
M2, m(t) < 0.

(3.25)

Let η∗, η∗ be the positive principal eigenvalue of the linear eigenvalue problems

Δ2v(t − 1) + ηχ2(t)m(t)v(t) = 0, t ∈ T, (3.26)

v(0) = v(T + 1) = 0, (3.27)

Δ2v(t − 1) + ηχ1(t)m(t)v(t) = 0, t ∈ T, (3.28)

v(0) = v(T + 1) = 0, (3.29)

respectively.
Combining (3.22) and (3.24)with the relation

Δ2yn(t − 1) + rμnm(t)
f
(
yn(t)

)

yn(t)
yn(t) = 0, t ∈ T,

yn(0) = yn(T + 1) = 0,

(3.30)

using Theorem 2.3, we get

η∗
r

≤ μn ≤ η∗

r
. (3.31)

This contradicts (3.22). So, {‖yn‖X} is bounded uniformly for all n ∈ N.
Now, taking {(μn, yn)} ⊂ C+ be such that

∥∥yn
∥∥
X −→ +∞, as n −→ +∞. (3.32)

We show that limn→∞μn = 0.
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Suppose on the contrary that, choosing a subsequence and relabeling if necessary, μn ≥
b0 for some constant b0 > 0. By (3.32), there exists t0 ∈ T such that yn(t0) = ‖yn‖X and
yn(t0) → +∞ as n → +∞. Thus,

μn
f
(
yn(t0)

)

yn(t0)
−→ +∞, as n −→ +∞. (3.33)

Now, the proof can be divided into two cases.

Case 1 (m(t0) > 0). Consider the following linear eigenvalue problems

Δ2v(t − 1) + αm(t)v(t) = 0, t = t0,

v(t0 − 1) = v(t0 + 1) = 0.
(3.34)

By Theorem 2.4, (3.34) has a positive principal eigenvalue α+, and

μn
f
(
yn(t0)

)

yn(t0)
≤ α+, (3.35)

which contradicts (3.33).

Case 2 (m(t0) < 0). Since (μn, yn) is a solution of (3.7), we get

0 ≥ Δ2yn(t0 − 1) = −μnrm(t0)f
(
yn(t0)

)
> 0. (3.36)

This is a contradiction.
Thus, limn→∞μn = 0.

At last, we deal with the case r < 0.
Let us consider

Lu − λrm(t)f0u − λrm(t)ζ(u) = 0 (3.37)

as a bifurcation problem from the trivial solution u ≡ 0. The results of Rabinowitz [19] for
(3.37) can be stated as follows: from (λm,−/−rf0, 0), there emanates an unbounded continua
C− of positive solutions in R ×X.

It is clear that any solution of (3.37) of the form (−1, u) yields a solution u of (1.1) and
(1.2). Now, our proofs focus on the shape of C−. It will be proved that when (H1)–(H3) hold,
then ProjRC− ⊃ (−∞, λm,−/−rf0), and when (H1)–(H3’) hold, ProjRC− ⊃ (λm,−/−rf0, 0), that
is, C− crosses the hyperplane {−1} ×X in R×X. Since the proof is similar to the case r > 0, we
omit it.

Remark 3.4. As an application of Theorem 1.1, let us consider nonlinear discrete problemwith
indefinite weight

Δ2u(t − 1) + rm̂(t)f̂(u(t)) = 0, t ∈ T,

u(0) = 0, u(3) = 0,
(3.38)
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where T = {1, 2}, m̂ : T → R with m̂(1) = 1 and m̂(2) = −1, and

f̂(s) =

⎧
⎨

⎩

s, s ∈ [−1, 1],
2s

1 + s4
, s ∈ (−∞,−1) ∪ (1,∞).

(3.39)

Then,

f̂0 = 1, f̂∞ = 0. (3.40)

To find the principal eigenvalues of linear eigenvalue problem

Δ2u(t − 1) + λm̂(t)u(t) = 0, t ∈ T, (3.41)

u(0) = 0, u(3) = 0, (3.42)

we rewrite (3.41) to the recursive sequence

u(t + 1) = [2 − λm̂(t)]u(t) − u(t − 1). (3.43)

This together with the initial value condition

u(0) = 0, u(1) = 1 (3.44)

imply that

u(2) = [2 − λm̂(1)]u(1) − u(0) = 2 − λ,

u(3) = [2 − λm̂(2)]u(2) − u(1) = 3 − λ2.
(3.45)

The last equation together with the boundary value condition u(3) = 0 imply that

λm̂,− = −
√
3, λm̂,+ =

√
3. (3.46)

Thus by Theorem 1.1(i), (3.38), has a positive solution if r ∈ (−∞,−√3) ∪ (
√
3,∞).
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