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Stability of reaction-diffusion recurrent neural networks (RNNs) with continuously distributed
delays and stochastic influence are considered. Some new sufficient conditions to guarantee the
almost sure exponential stability and mean square exponential stability of an equilibrium solution
are obtained, respectively. Lyapunov’s functional method, M-matrix properties, some inequality
technique, and nonnegative semimartingale convergence theorem are used in our approach. The
obtained conclusions improve some published results.

1. Introduction

For decades, studies have been intensively focused on recurrent neural networks (RNNs)
because of the successful hardware implementation and their various applications such as
classification, associative memories, parallel computation, optimization, signal processing
and pattern recognition, see, for example, [1–3]. These applications rely crucially on the
analysis of the dynamical behavior of neural networks. Recently, it has been realized that
the axonal signal transmission delays often occur in various neural networks and may cause
undesirable dynamic network behaviors such as oscillation and instability. Consequently, the
stability analysis problems resting with delayed recurrent neural networks (DRNNs) have
drawn considerable attention. To date, a great deal of results on DRNNs have been reported
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in the literature, see, for example, [4–9] and references therein. To a large extent, the existing
literature on theoretical studies of DRNNs is predominantly concerned with deterministic
differential equations. The literature dealing with the inherent randomness associated with
signal transmission seems to be scarce; such studies are, however, important for us to
understand the dynamical characteristics of neuron behavior in random environments for
two reasons: (i) in real nervous systems and in the implementation of artificial neural
networks, synaptic transmission is a noisy process brought on by random fluctuations from
the release of neurotransmitters and other probabilistic causes; hence, noise is unavoidable
and should be taken into consideration in modeling [10]; (ii) it has been realized that a neural
network could be stabilized or destabilized by certain stochastic effects [11, 12].

Although systems are often perturbed by various types of environmental “noise”,
it turns out that one of the reasonable interpretation for the “noise” perturbation is the
so-called white noise dω(t)/dt, where ω(t) is the Brownian motion process, also called as
Wiener process [12, 13]. More detailed mechanism of the stochastic effects on the interaction
of neurons and analog circuit implementing can be found in [13, 14]. However, because
the Brownian motion ω(t) is nowhere differentiable, the derivative of Brownian motion
dω(t)/dt can not be defined in the ordinary way, the stability analysis for stochastic
neural networks is difficult. Some initial results have just appeared, for example, [11, 15–
23]. In [11, 15], Liao and Mao discussed the exponentially stability of stochastic recurrent
neural networks (SRNNs); in [16], the authors continued their research to discuss almost
sure exponential stability for a class of stochastic CNN with discrete delays by using
the nonnegative semimartingale convergence theorem; in [18], exponential stability of
SRNNs via Razumikhin-type was investigated; in [17], Wan and Sun investigated mean
square exponential stability of stochastic delayed Hopfield neural networks(HNN); in [19],
Zhao and Ding studied almost sure exponential stability of SRNN; in [20], Sun and Cao
investigated pth moment exponential stability of stochastic recurrent neural networks with
time-varying delays.

The delays in all above-mentioned papers have been largely restricted to be discrete.
As is well known, the use of constant fixed delays in models of delayed feedback provides
of a good approximation in simple circuits consisting of a small number of cells. However,
neural networks usually have a spatial extent due to the presence of a multitude of parallel
pathways with a variety of axon sizes and lengths. Thus there will be a distribution of
conduction velocities along these pathways and a distribution of propagation delays. In
these circumstances, the signal propagation is not instantaneous and cannot be modeled with
discrete delays and a more appropriate way is to incorporate continuously distributed delays.
For instance, in [24], Tank and Hopfield designed an analog neural circuit with distributed
delays, which can solve a general problem of recognizing patterns in a time-dependent
signal. A more satisfactory hypothesis is that to incorporate continuously distributed delays,
we refer to [5, 25, 26]. In [27], Wang et al. developed a linear matrix inequality (LMI)
approach to study the stability of SRNNs with mixed delays. To the best of the authors’
knowledge, few authors investigated the convergence dynamics of SRNNs with unbounded
distributed delays. On the other hand, if the RNNs depend on only time or instantaneously
time and time delay, the model is in fact an ordinary differential equation or a functional
differential equation. In the factual operations, however, the diffusion phenomena could not
be ignored in neural networks and electric circuits once electrons transport in a nonuniform
electromagnetic field. Hence, it is essential to consider the state variables varying with
the time and space variables. The neural networks with diffusion terms can commonly be
expressed by partial differential equations [28–30].
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Keeping this in mind, in this paper, we consider the SRNNs described by the following
stochastic reaction-diffusion RNNs

dyi(t, x) =
m∑

k=1

∂

∂xk

(
Dik

∂yi
∂xk

)
dt

+

⎡

⎣−cihi
(
yi(t, x)

)
+

n∑

j=1

aijfj
(
yj(t, x)

)
+

n∑

j=1

bij

∫ t

−∞
Kij(t − s)gj

(
yj(s, x)

)
ds

⎤

⎦dt

+
∞∑

l=1

σil
(
yi(t, x)

)
dωil(t), x ∈ X,

∂yi

∂n
:=

(
∂yi

∂x1
, . . . ,

∂yi

∂xm

)T

= 0, t ≥ 0, i = 1, . . . , n, x ∈ ∂X,

yi = yi(s, x) = ξi(s, x), −∞ < s ≤ 0, x ∈ X.
(1.1)

In the above model, n ≥ 2 is the number of neurons in the network, xi is space variable,
yi(t, x) is the state variable of the ith neuron at time t and in space variable x, fj(yj(t, x)),
and gj(yj(t, x)) denote the output of the jth unit at time t and in space variable x; ci, aij ,
bij are constants: ci represents the rate with which the ith unit will reset its potential to the
resting state in isolation when disconnected from the network and the external stochastic
perturbation, and is a positive constant; aij and bij weight the strength of the jth unit on the
ith unit at time t. Moreover, {wil(t): i = 1, . . . , n, l ∈ N} are independent scalar standard
Wiener processes on the complete probability space (Ω,F,P) with the natural filtration
{Ft}t≥0 generated by the standard Wiener process {w(s): 0 ≤ s ≤ t} which is independent
of wil(t), where we associate Ω with the canonical space generated by w(t), and denote by F
the associated σ-algebra generated by w(t) with the probability measure P ; Furthermore, we
assume the following boundary condition

(A0) smooth function Dik = Dik(t, x, y) ≥ 0 is a diffusion operator, X is a compact set
with smooth boundary ∂X and measure mesX > 0 in Rm. ∂yi/∂n|∂X = 0, t ≥ 0 and
ξi(s, x) are the boundary value and initial value, respectively.

For the sake of convenience, some of the standing definitions and assumptions are
formulated below:

(A1) hi : R → R is differentiable and γi = infx∈R{h′i(x)} > 0, hi(0) = 0 for i ∈ {1, . . . , n},

(A2) fj , gj , and σil are Lipschitz continuous with positive Lipschitz constants αj , βj , Lil,
respectively, and fj(0) = gj(0) = σil(0) = 0,

∑∞
l=1 Lil <∞ for i, j ∈ {1, . . . , n}, l ∈ �,

(A3) For i, j ∈ {1, . . . , n}, there is a positive constant μ, such that

∫∞

0
Kij(s)ds = 1,

∫∞

0
Kij(s)eμsds <∞. (1.2)
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Remark 1.1. The authors in [28] (see (H1), (H2), (H3)) and [30] (see (H1), (H2), (H ′
3)) also

studied the convergence dynamics of (1.1) under the following foundational conditions:

(H1) the kernels Kij , i, j = 1, . . . , n are real-valued nonnegative piecewise continuous
functions defined on [0,∞) and satisfy:

∫∞
0 Kij(t)dt = 1,

(H2) for each i, j, we have
∫∞

0 tKij(t)dt <∞,

(H3) for each i, j, there is a positive constant μ such that

∫∞

0
teμtKij(t)dt = 1 (1.3)

(H ′
3) for each i, j, there is a positive constant μ such that

∫∞

0
teμtKij(t)dt < ∞. (1.4)

Just take the widely applied delay kernels as mentioned in [31–33] as an example, which
given by Kij(s) = (sr/r!)γr+1

ij e−γij s for s ∈ [0,∞), where γij ∈ [0,∞), r ∈ {0, 1, . . . , n}. One can
easy to find out that the conditions about the kernels in [28, 30] are not satisfy at the same
time. Therefore, the applications of the main results in [28, 30] appears to be somewhat certain
limits because of the obviously restrictive assumptions on the kernels. The main purpose of
this paper is to further investigate the convergence of stochastic reaction-diffusion RNNs with
more general kernels.

2. Preliminaries

Let u = (u1, . . . , un)T and L2(X) is the space of scalar value Lebesgue measurable functions on
X which is a Banach space for the L2-norm: ‖ν‖2 = (

∫
X |ν(x)|

2dx)1/2, ν ∈ L2(X), then we define
the norm ‖u‖ as ‖u‖ = (

∑n
i=1 ‖ui‖2

2)
1/2. Assume ξ = {(ξ1(s, x), . . . , ξn(s, x))T : −∞ < s ≤ 0} ∈

C((−∞, 0];L2(X,Rn)) be an F0-measurable Rn valued random variable, where, for example,
F0 = Fs restricted on (−∞, 0], and C((−∞, 0];L2(X,Rn)) is the space of all continuous Rn-
valued functions defined on (−∞, 0] × X with a norm ‖ξ‖c = sup−∞<s≤0{‖ξ(s, x)‖2}. Clearly,
(1.1) admits an equilibrium solution x(t) ≡ 0.

Definition 2.1. Equation (1.1) is said to be almost surely exponentially stable if there exists a
positive constant λ such that for each pair of t0 and ξ, such that

lim sup
t→∞

1
t

ln
∥∥y(t; to, ξ)

∥∥ < −λ. (2.1)

Definition 2.2. Equation (1.1) is said to be exponentially stable in mean square if there exists
a pair of positive constants λ and K such that

E
∥∥y(t; t0, ξ)

∥∥2 ≤ K‖ξ‖2e−λ(t−t0), on t ≥ t0. (2.2)
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Lemma 2.3 (semimartingale convergence theorem [12]). Let A(t) and U(t) be two continuous
adapted increasing processes on t ≥ 0 withA(0) = U(0) = 0 a.s. LetM(t) be a real-valued continuous
local martingale withM(0) = 0 a.s. Let ξ be a nonnegative F0-measurable random variable. Define

X(t) = ξ +A(t) −U(t) +M(t), for t ≥ 0. (2.3)

If X(t) is nonnegative, then

{
lim
t→∞

A(t) <∞
}
⊂
{

lim
t→∞

X(t) < ∞
}
∩
{

lim
t→∞

U(t) < ∞
}
, a.s., (2.4)

where B ⊂ D a.s. means P(B ∩ Dc) = 0. In particular, If limt→∞A(t) < ∞ a.s., then for almost all
ω ∈ Ω

lim
t→∞

X(t) <∞, lim
t→∞

U(t) <∞, (2.5)

that is both X(t) and U(t) converge to finite random variables.

Lemma 2.4 (see [34]). A nonsingularM-matrixA = (aij) is equivalent to the following properties:
there exists rj > 0, such that

∑n
j=1 aijrj > 0, 1 ≤ i ≤ n.

Furthermore, an M-matrix is a Z-matrix with eigenvalues whose real parts are
positive. In mathematics, the class ofZ-matrices are those matrices whose off-diagonal entries
are less than or equal to zero, that is, a Z-matrix Z satisfies

Z =
(
zij

)
, zij ≤ 0, for i /= j. (2.6)

3. Main Results

Theorem 3.1. Under the assumptions (A0), (A1), (A2), (A3), and (A4), Cγ − C −A+α − B+β is a
nonsingularM-matrix, where

C = diag(c1, . . . , cn), γ = diag
(
γ1, . . . , γn

)
, A+ =

(∣∣aij
∣∣)
n×n,

α = diag(α1, . . . , αn), β = diag
(
β1, . . . , βn

)
, B+ =

(∣∣bij
∣∣)
n×n,

C = diag(c1, . . . , cn), ci := ciγi +
n∑

j=1

∣∣aij
∣∣αj +

n∑

j=1

∣∣bij
∣∣βj +

∞∑

l=1

L2
il,

(3.1)

then the trivial solution of system (1.1) is almost surely exponentially stable and also is exponential
stability in mean square.

Proof. From (A4) and Lemma 2.4, there exist constants qi > 0, 1 ≤ i ≤ n such that

qi
(
ciγi − ci

)
−

n∑

j=1

∣∣aji
∣∣αiqj −

n∑

j=1

∣∣bji
∣∣βiqj > 0. (3.2)
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That also can be expressed as follows:

2ciγiqi >
n∑

j=1

∣∣aij
∣∣αjqi +

n∑

j=1

∣∣aji
∣∣αiqj +

n∑

j=1

∣∣bij
∣∣βjqi +

n∑

j=1

∣∣bji
∣∣βiqj +

∞∑

l=1

L2
ilqi. (3.3)

From the assumption (A3), one can choose a constant 0 < λ� μ such that

∫∞

0
Kji(s)eλssds <∞, (3.4)

2ciγiqi − 2λqi >
n∑

j=1

∣∣aij
∣∣αjqi +

n∑

j=1

∣∣aji
∣∣αiqj +

n∑

j=1

∣∣bij
∣∣
∫∞

0
Kij(s)eλsdsβjqi

+
n∑

j=1

∣∣bji
∣∣
∫∞

0
Kji(s)eλsdsβiqj +

∞∑

l=1

L2
ilqi.

(3.5)

Consider the following Lyapunov functional:

V
(
t, y(t, x)

)
= e2λt

n∑

i=1

qiy
2
i (t, x) +

n∑

i=1

n∑

j=1

∣∣bij
∣∣qiβj

∫∞

0

[
Kij(s)eλs

∫ t

t−s
e2λξy2

j (ξ, x)dξ

]
ds. (3.6)

From the boundary condition (A0), we get

m∑

k=1

∫

X

yi
∂

∂xk

(
Dik

∂yi
∂xk

)
dx = −

m∑

k=1

∫

X

Dik

(
∂yi
∂xk

)2

dx < 0. (3.7)

Using the Itô formula, for T > 0, we have

V
(
T, y(T, x)

)
− V

(
0, y(0, x)

)

=
∫T

0
2λe2λt

n∑

i=1

qiy
2
i (t, x)dt +

∫T

0

n∑

i=1

n∑

j=1

∣∣bij
∣∣qiβj

∫∞

0
Kij(s)eλs

×
[
e2λty2

j (t, x) − e
2λ(t−s)y2

j (t − s, x)
]
dsdt +

∫T

0
2e2λt

n∑

i=1

qiyi(t, x)

×

⎧
⎨

⎩

m∑

k=1

∂

∂xk

(
Dik

∂yi

∂xk

)
− cihi

(
yi(t, x)

)
+

n∑

j=1

aijfj
(
yj(t, x)

)

+
n∑

j=1

bij

∫ t

−∞
Kij(t − s)gj

(
yj(s, x)

)
ds

⎫
⎬

⎭dt
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+
∫T

0
2e2λt

n∑

i=1

∞∑

l=1

qiyi(t, x)σil
(
yi(t, x)

)
dωil(t)

+
∫T

0
e2λt

n∑

i=1

∞∑

l=1

qiσ
2
il

(
yi(t, x)

)
dt

(
using inequality (3.7)

)

≤
∫T

0
2λe2λt

n∑

i=1

qiy
2
i (t, x)dt +

∫T

0
e2λt

n∑

i=1

n∑

j=1

∣∣bij
∣∣qiβj

∫∞

0
Kij(s)eλs

×
[
y2
j (t, x) − e

−2sy2
j (t − s, x)

]
dsdt +

∫T

0
2e2λt

×
n∑

i=1

qiyi(t, x)

⎧
⎨

⎩−cihi
(
yi(t, x)

)
+

n∑

j=1

aijfj
(
yj(t, x)

)

+
n∑

j=1

bij

∫ t

−∞
Kij(t − s)gj

(
yj(s, x)

)
ds

⎫
⎬

⎭dt

+
∫T

0
2e2λt

n∑

i=1

∞∑

l=1

qiyi(t, x)σil
(
yi(t, x)

)
dωil(t)

+
∫T

0
e2λt

n∑

i=1

∞∑

l=1

qiσ
2
il

(
yi(t, x)

)
dt

(
using assumptions (A1), (A2), (A4)

)

≤
∫T

0
2λe2λt

n∑

i=1

qiy
2
i (t, x)dt +

∫T

0
e2λt

n∑

i=1

n∑

j=1

∣∣bij
∣∣qiβj

∫∞

0
Kij(s)

×
[
eλsy2

j (t, x) − e
−sy2

j (t − s, x)
]
dsdt +

∫T

0
2eλt

×
n∑

i=1

qi

⎧
⎨

⎩−2ciγiy2
i (t, x) +

n∑

j=1

2
∣∣aij

∣∣αj
∣∣yi(t, x)yj(t, x)

∣∣

+
n∑

j=1

∣∣bij
∣∣βj

∫ t

−∞
2Kij(t − s)

∣∣yi(t, x)yj(s, x)
∣∣ds

⎫
⎬

⎭dt

+
∫T

0
2e2λt

n∑

i=1

∞∑

l=1

qiyi(t, x)σil
(
yi(t, x)

)
dωil(t)dt +

∫T

0
e2λt

n∑

i=1

∞∑

l=1

qiL
2
ily

2
i (t, x)dt.

(3.8)

Notice that

∫ t

−∞
2Kij(t − s)

∣∣yi(t, x)yj(s, x)
∣∣ds

=
∫ t

−∞
Kij(t − s)2

∣∣∣yi(t, x)eλ(t−s)/2
∣∣∣
∣∣∣yj(s, x)e−λ(t−s)/2

∣∣∣ds
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≤
∫ t

−∞
Kij(t − s)y2

i (t, x)e
λ(t−s)ds +

∫ t

−∞
Kij(t − s)y2

j (s, x)e
−λ(t−s)ds

= y2
i (t, x)

∫ t

−∞
Kij(t − s)eλ(t−s)ds +

∫ t

−∞
Kij(t − s)y2

j (s, x)e
−λ(t−s)ds

= y2
i (t, x)

∫∞

0
Kij(s)eλsds +

∫∞

0
Kij(s)y2

j (t − s, x)e
λsds.

(3.9)

Submitting inequality (3.9) to (3.8), it is easy to calculate that

V
(
T, y(T, x)

)
− V

(
0, y(0, x)

)

≤
∫T

0
e2λt

n∑

i=1

⎧
⎨

⎩2λqiy2
i (t, x) +

n∑

j=1

∣∣bji
∣∣qjβiy2

i (t, x)
∫∞

0
Kji(s)eλsds

−
n∑

j=1

∣∣bji
∣∣qjβi

∫∞

0
Kji(s)e−λsy2

i (t − s, x)ds − 2ciγiqiy2
i (t, x)

+
n∑

j=1

∣∣aij
∣∣αjqiy2

i (t, x) +
n∑

j=1

∣∣aji
∣∣αiqjy2

i (t, x)

+
n∑

j=1

∣∣bij
∣∣βjqiy2

i (t, x)
∫∞

0
Kij(s)eλsds +

∞∑

l=1

qiL
2
ily

2
i (t, x)

+
n∑

j=1

∣∣bij
∣∣qjβiy2

i (t, x)
∫∞

0
Kji(s)eλsds

⎫
⎬

⎭dt

+
∫T

0
2e2λt

n∑

i=1

∞∑

l=1

qiyi(t, x)σil
(
yi(t, x)

)
dωil(t)

=
∫T

0
e2λt

n∑

i=1

y2
i (t, x)

×

⎧
⎨

⎩

⎡

⎣
n∑

j=1

∣∣aij
∣∣αjqi +

n∑

j=1

∣∣aji
∣∣αiqj +

n∑

j=1

∣∣bij
∣∣
∫∞

0
Kij(s)eλsdsβjqi

+
n∑

j=1

∣∣bji
∣∣
∫∞

0
Kji(s)eλsdsβiqj +

∞∑

l=1

L2
ilqi

⎤

⎦ −
[
2ciγiqi − 2λqi

]
⎫
⎬

⎭dt

+
∫T

0
2e2λt

n∑

i=1

∞∑

l=1

qiyi(t, x)σil
(
yi(t, x)

)
dωil(t)

(
using inequality (3.5)

)

≤
∫T

0
2e2λt

n∑

i=1

∞∑

l=1

qiyi(t, x)σil
(
yi(t, x)

)
dωil(t).

(3.10)
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On the other hand, we observe that

V
(
0, y(0, x)

)
=

n∑

i=1

qiy
2
i (0, x) +

n∑

i=1

n∑

j=1

∣∣bij
∣∣qiβj

∫∞

0

[
Kij(s)eλs

∫0

−s
e2λξy2

j (ξ, x)dξ

]
ds

≤

⎡

⎣qi +
n∑

j=1

∣∣bji
∣∣qjβi

∫∞

0
Kji(s)seλs

⎤

⎦ds sup
−∞≤ξ≤0

{
y2
i (ξ, x)

}
.

(3.11)

From inequality (3.4), we have

qi +
n∑

j=1

∣∣bji
∣∣qjβi

∫∞

0
Kji(s)seλs <∞. (3.12)

Hence, V (0, u(0)) is bounded. Integrate both sides of (3.10) with respect to x, we have

∫

X

V
(
T, y(T, x)

)
dx ≤

∫

X

V
(
0, y(0, x)

)
dx +

∫T

0
2e2λt

n∑

i=1

∞∑

l=1

∫

X

qiyi(t, x)σil
(
yi(t, x)

)
dxdωil(t).

(3.13)

Therefore, we have

min
1≤i≤n

{
qi
}
e2λt∥∥y(T, x)

∥∥2
2

≤
n∑

i=1

qi
∥∥yi(0, x)

∥∥2
2 +

∫T

0
2e2λt

n∑

i=1

∞∑

l=1

∫

X

qiyi(t, x)σil
(
yi(t, x)

)
dxdωil(t).

(3.14)

It is obvious that the right-hand side of (3.14) is a nonnegative martingale, From Lemma 2.3,
it can be easily seen that

lim
T→∞

(
eλt

n∑

i=1

∥∥y(T, x)
∥∥
)
< ∞ a.s., (3.15)

that is

lim sup
T→∞

1
T

ln
∥∥y(T, x)

∥∥ < −λ. (3.16)

On the other hand, since E(
∫T

0 2e2λt∑n
i=1

∑∞
l=1

∫
X qiyi(t, x)σil(yi(t, x))dxdωil(t)dt) = 0, taking

expectation on both sides of the equality (3.14) yields

E
∥∥y(t; t0, x)

∥∥2 ≤ K‖x‖2e−2λt, on t ≥ 0, K =
max1≤i≤n

{
qi
}

min1≤i≤n
{
qi
} . (3.17)
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From (3.16) and (3.17), the trivial solution of system (1.1) is almost surely exponentially
stable, which is also exponential stability in mean square. This completes the proof.

Removing the reaction-diffusion term from the system (1.1), we investigate the
following stochastic recurrent neural networks with unbounded distributed delays:

dyi(t) =

⎡

⎣−cihi
(
yi(t)

)
+

n∑

j=1

aijfj
(
yj(t)

)
+

n∑

j=1

bij

∫ t

−∞
Kij(t − s)gj

(
yj(s)

)
ds

⎤

⎦dt

+
∞∑

l=1

σil
(
yi(t)

)
dωil(t).

(3.18)

We have the following Corollary 3.2 for system (3.18). The derived conditions for almost
surely exponentially stable and exponential stability in mean square can be viewed as
byproducts of our results from Theorem 3.1, so the proof is trivial, we omit it.

Corollary 3.2. Under the assumptions (A1), (A2), (A3), and (A4), Cγ − C − A+α − B+β is a
nonsingularM-matrix, where

C = diag(c1, . . . , cn), γ = diag
(
γ1, . . . , γn

)
, A+ =

(∣∣aij
∣∣)
n×n,

α = diag(α1, . . . , αn), β = diag
(
β1, . . . , βn

)
, B+ =

(∣∣bij
∣∣)
n×n,

C = diag(c1, . . . , cn), ci := ciγi +
n∑

j=1

∣∣aij
∣∣αj +

n∑

j=1

∣∣bij
∣∣βj +

∞∑

l=1

L2
il,

(3.19)

then the trivial solution of system (3.18) is almost surely exponentially stable and also is exponential
stability in mean square.

Furthermore, if we remove noise from the system, then system (3.18) turns out to be
system as the following:

dyi(t) =

⎡

⎣−cihi
(
yi(t)

)
+

n∑

j=1

aijfj
(
yj(t)

)
+

n∑

j=1

bij

∫ t

−∞
Kij(t − s)gj

(
yj(s)

)
ds

⎤

⎦dt. (3.20)

To investigate the stability of model (3.20), we should modify the assumption (A′2) as follows:

(A′2) fj , gj , and ωil are Lipschitz continuous with positive Lipschitz constants αj , βj ,
respectively, and fj(0) = gj(0) = 0, for i, j ∈ {1, . . . , n}, l ∈ �.
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The derived conditions for exponential stability of system (3.20) can be obtained
directly from of our results from Corollary 3.2.

Corollary 3.3. Under the assumptions (A1), (A′2), (A3), and (A4), Cγ − C̃ − A+α − B+β is a
nonsingularM-matrix, where

C = diag(c1, . . . , cn), γ = diag
(
γ1, . . . , γn

)
, A+ =

(∣∣aij
∣∣)
n×n,

α = diag(α1, . . . , αn), β = diag
(
β1, . . . , βn

)
, B+ =

(∣∣bij
∣∣)
n×n,

C̃ = diag(c1, . . . , cn), c̃i := ciγi +
n∑

j=1

∣∣aij
∣∣αj +

n∑

j=1

∣∣bij
∣∣βj ,

(3.21)

then the trivial solution of system (3.20) is exponentially stable.

4. An Illustrative Example

In this section, a numerical example is presented to illustrate the correctness of our main
result.

Example 4.1. Consider a two-dimensional stochastic reaction-diffusion recurrent neural
networks with unbounded distributed delays as follows:

dyi(t, x) =
2∑

k=1

∂

∂xk

(
Dik

∂yi

∂xk

)
dt

+

⎡

⎣−cihi
(
yi(t, x)

)
+

2∑

j=1

aijfj
(
yj(t, x)

)
+

2∑

j=1

bij

∫ t

−∞
Kij(t − s)gj

(
yj(s, x)

)
ds

⎤

⎦dt

+
∞∑

l=1

σil
(
yi(t, x)

)
dωil(t), x ∈ X,

∂yi
∂n

:=
(
∂yi
∂x1

,
∂yi
∂x2

)T

= 0, t ≥ 0, i = 1, 2, x ∈ ∂X,

yi = yi(s, x) = ξi(s, x), −∞ < s ≤ 0, x ∈ X,
(4.1)

where, c1 = 10, c2 = 15; h1(y) = h2(y) = y; a11 = 1/5, a12 = 2/5, a21 = 3/5, a22 = 1;
b11 = 4/5, b12 = 1/5, b21 = 1, b22 = 2/5; f1(u) = f2(u) = tanh(u); g1(u) = g2(u) = 1/2(|u −
1| − |u + 1|)k11(s) = 2e−2s, k12(s) = 4e−4s, k21(s) = 3e−3s, k22(s) = 5e−5s; σ11(y) = y, σ12(y) =
y/2,σ21(y) = σ22(y) = 3y/2, σij(y) = 0 for i, j /= 1, 2. In the example, let Dik is a positive
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Figure 1: Numerical simulation for y1(t).

constant, according to Theorem 3.1, by simple computation, we get

∫

Ω
Dik

(
∂yi

∂xk

)2

k=1
· ∇y2−1

i dx =
2∑

k=1

∫

Ω
Dik

(
∂yi

∂xk

)2

dx > 0,

C = diag(10, 15), γ = diag(1, 1), A+ =
(∣∣aij

∣∣)
2×2,

α = diag(1, 1), β = diag(1, 1), B+ =
(∣∣bij

∣∣)
2×2,

C = diag(7.85, 13.5).

(4.2)

Therefore,

Q = Cγ − C −A+α − B+β =

(
q11, q12

q21, q22

)
=

(
1.15, −0.6

−1.6, 2.1

)
. (4.3)

With the help of Matlab, one can get the eigenvalues of matrix Q quickly, which are λ1 =
0.5361, λ2 = 2.7139, by Lemma 2.4, Q is a nonsingular M-matrix, therefore, all conditions
in Theorem 3.1 are hold, that is to say, the trivial solution of system (4.1) is almost surely
exponentially stable and also is exponential stability in mean square. Just choose x ≡ constant,
then these conclusions can be verified by the following numerical simulations (Figures 1–4).
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Figure 2: Numerical simulation for y2(t).

E(y2
1)

95% confidence interval

76543210

Time t

−10

−5

0

5

10

15

20

E
(y

2 1
)

Figure 3: Numerical simulation for the mean square of y1(t).

5. Conclusions

In this paper, stochastic recurrent neural networks with unbounded distributed delays
and reaction-diffusion have been investigated. All features of stochastic systems, reaction-
diffusion systems have been taken into account in the neural networks. The proposed results
generalized and improved some of the earlier published results. The results obtained in this
paper are independent of the magnitude of delays and diffusion effect, which implies that
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Figure 4: Numerical simulation for the mean square of y2(t).

strong self-regulation is dominant in the networks. If we remove the noise and reaction-
diffusion terms from the system, the derived conditions for stability of general deterministic
neural networks can be viewed as byproducts of our results.
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