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The homotopy perturbation method is employed to obtain approximate analytical solutions of the
wave-like nonlinear equations with initial-boundary conditions. An efficient way of choosing the
auxiliary operator is presented. The results demonstrate reliability and efficiency of the method.

1. Introduction

In this paper, we consider the equation

utt − c2uxx = f
(
x, t, u, ux, uy, uxt

)
+ g(x, t), 0 < x <∞ (1.1)

with initial conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (1.2)

and boundary condition

u(0, t) = h(t), (1.3)

where f , g, ϕ, ψ, and h are known functions.
Problems like (1.1)-(1.2)-(1.3) model many problems in classical and quantum

mechanics, solitons, and matter physics [1, 2]. If f is a function of u only, we obtain a Klein-
Gordon or sine-Gordon-type equations.
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In the last decade, some various approximate methods have been developed, such as
the homotopy perturbation method (HPM) [3–13] and Adomian’s decomposition method
(ADM) [14–20] to solve linear and nonlinear differential equations.

Unlike the various approximation techniques for solving nonlinear wave type
problems, which are usually valid for initial value problems (without boundary conditions)
or some special type of problems (homogenous, etc.), our technique is applicable for all
initial-boundary problems of type (1.1)-(1.2)-(1.3). Chowdhury and Hashim [9] applied the
HPM for solving Klein-Gordon and sine-Gordon equations, with initial conditions (1.2).
El-Sayed [19] and Wazwaz and Gorguis [20] used ADM for solving wave-like and heat-
like problems. Their approaches cannot be applied for all wave-like equations with initial-
boundary conditions since the operator L = utt cannot control the boundary condition (1.3)—
see Example 2.1 below.

The central idea here is that the problem

utt − c2uxx = g(x, t),

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), u(0, t) = h(t),
(1.4)

has a unique solution (see, e.g., [21]) and therefore there exists an inverse of the operator
L = utt − c2uxx.

The main idea of HPM is to introduce a homotopy parameter, say p, which takes
values from 0 to 1. When p = 0 the equation usually reduces to a sufficiently simplified form
(linear or very easy nonlinear). As p increases to 1, the equation goes through a sequence of
“deformations” (homotopics) and at p = 1 takes the original form of the equation.

We rewrite (1.1) as

Lu = f
(
x, t, u, ux, uy, uxy

)
+ g(x, t), (1.5)

and construct the following homotopy:

Lu − Lv0 + p
[
Lv0 − f

(
x, t, u, ux, uy, uxy

) − g(x, t)] = 0. (1.6)

Usually we take v0 as a solution of the problem (1.1)-(1.2)-(1.3) with f = 0 or simply v0 = 0.
Assume that the solution of (1.6) is in the form

u = u0 + pu1 + pu2 + · · · , (1.7)

and substituting (1.7) into (1.6) and equating terms of the same powers of p we obtain a
system of equations for u0, u1, u2, . . .. Solving these system of equations we obtain a solution
in the form

u = u0 + u1 + u2 + · · · . (1.8)



Discrete Dynamics in Nature and Society 3

2. Applications

The HPM and ADM offer excellent choices for obtaining the closed-form analytical solutions
of wave-like equations. Chowdhury and Hashim [9], El-Sayed [19], and Wazwaz and
Gorguis [20] recently showed how the HPM and ADM can be applied to find an analytic
approximate solution of wave-like equations with initial conditions (1.2). They mainly used
the operator L = utt for solving the wave-like problems. But in case of inhomogeneous
nonlinear or even linear equations with initial-boundary conditions, these approaches have
some difficulties. If we construct the standard homotopy with L = utt, for solving wave-like
equations with initial-boundary conditions, usually in the second or even in the first stage of
HPM, we obtain an “overdetermined” or very difficult problem. To explain these difficulties
we consider the following example.

Example 2.1. Consider the linear problem

utt − uxx = 6x,

u(x, 0) = −x3, ut(x, 0) = 0, u(0, t) = sin2t.

(2.1)

The exact solution is

u = −x3 + sin2(t − x) for x < t

= −x3 for x > t.
(2.2)

Using our HPM technique we can easily find this solution. Indeed, let us take L = utt − uxx,
v0 = 0 and construct the homotopy

Lu − Lv0 + p[Lv0 − 6x] = 0. (2.3)

Now substituting (1.7) into u and equating the coefficients of like powers of p, we get a system
of linear equations

Lu0 = 0, u0(x, 0) = −x3, u0t(x, 0) = 0, u0(0, t) = sin2t,

Lu1 = 6x, u1(x, 0) = 0, u1t(x, 0) = 0, u1(0, t) = 0,

Lu2 = 0, u2(x, 0) = 0, u2t(x, 0) = 0, u2(0, t) = 0, . . . .

(2.4)
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Solving correspondingly we obtain

u0 = −1
2

(
(x + t)3 + (x − t)3

)
= −3t2x − x3 for x ≥ t

= −3t2x − x3 + sin2(t − x) for x < t,

u1 =
1
2

∫ t

0

∫x+t−s

x−t+s
6y dy ds = 3t2x, for x > t,

u1 =
1
2

∫ t−x

0

∫x+t−s

t−x−s
6y dy ds +

1
2

∫ t

t−x

∫x+t−s

x−t+s
6ydy ds = 3t2x, for x < t.

(2.5)

u2 = 0, . . .. Thus we obtain an exact solution uexact = u1 + u2.

Now let us show that this problem can not be solved when L is taken as L = utt.
Indeed if we choose v0 = 0 or v0 = −x3 (which seems most natural and appropriate)

and L = utt and construct the homotopy

Lu − Lv0 + p[Lv0 − uxx − 6x] = 0, (2.6)

we obtain an overdetermined problem for u0 in the form

Lu0 = 0, u0(x, 0) = −x3, u0t(x, 0) = 0, u0(0, t) = sin2t (2.7)

which has no solution.
If in the first stage we consider the boundary conditions u0(x, 0) = −x3, u0t(x, 0) = 0,

u0(0, t) = 0, we obtain u0 = −x3 and in the second stage we need to solve the problem

Lu1 = u0xx + 6x, u1(x, 0) = 0, u1t(x, 0) = 0, u1(0, t) = sin2t, (2.8)

which is overdetermined again and has no solution.

Example 2.2. Consider the problem

utt − uxx = uxu − e2tx + etx,

u(x, 0) = x, ut(x, 0) = x, u(0, t) = 0.
(2.9)

The exact solution is u = etx. We take again L = utt − uxx, v0 = 0, and construct the homotopy

Lu − Lv0 + p
[
Lv0 − uxu + e2tx − etx

]
= 0. (2.10)
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Substituting (1.7) into (2.10) we obtain

L
(
u0 + pu1 + p2u2 + · · ·

)
− Lv0

+ p
[
Lv0 −

(
u0x + pu1x + p2u2x + · · ·

)(
u0 + pu1 + · · · ) + e2tx − etx

]
= 0,

(2.11)

and equating terms of the coefficients of like powers of p gives

Lu0 = Lv0, u0(x, 0) = x, u0t(x, 0) = x, u0(0, t) = 0,

Lu1 + Lv0 − u0xu0 + e2tx − etx = 0, u1(x, 0) = 0, u1t(x, 0) = 0, u1(0, t) = 0,

Lu2 − u0xu1 − u1xu0 = 0, u2(x, 0) = 0, u2t(x, 0) = 0, u2(0, t) = 0,

Lu3 − u2xu0 − u1xu1 − u0xu2 = 0, u3(x, 0) = 0, u3t(x, 0) = 0, u3(0, t) = 0, . . . .

(2.12)

Solving these equations we obtain (see [21, Chapter 3.4])

u0 =
1
2
[(x + t) + (x − t)] + 1

2

∫x+t

x−t
y dy = x +

(x + t)2

4
− (x − t)2

4
= x(t + 1),

u1 =
1
2

∫ t

0

∫x+t−s

x−t+s

(
y(s + 1)2 − e2sy + esy

)
dy ds =

x

12

(
t4 + 4t3 + 6t2 − 6t − 3e2t + 12et − 9

)
,

(2.13)

for x > t and

u1 =
1
2

∫ t−x

0

∫x+t−s

t−x−s
g
(
y, s

)
dy ds +

1
2

∫ t

t−x

∫x+t−s

x−t+s
g
(
y, s

)
dy ds

= x2et−x − 1
4
xe2t−2x − 3

4
x +

1
2
t2x − tx3 +

1
3
t3x +

2
3
tx4 +

1
12
t4x − 1

2
x2e2t−2x

+ xet−x − 1
2
t2x3 − 1

2
tx − 1

2
x3 +

2
3
x4 − 1

4
x5 + tx3 − 2

3
tx4 − 1

4
xe2t +

1
2
t2x3

+ xet +
1
2
x3 − 2

3
x4 +

1
4
x5 +

1
2
x2 e

2t

e2x
− x e

t

ex
− x2 e

t

ex
+
1
4
x
e2t

e2x

=
1
12
xt4 +

1
3
xt3 +

1
2
xt2 − 1

2
xt − 1

4
xe2t + xet − 3

4
x,

(2.14)
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Table 1:Maximum errors for Example 2.2.

t \ x 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9
0.1 1 × 10−9 3 × 10−9 4 × 10−9 6 × 10−9 7 × 10−9 9 × 10−9 10−8 10−8

0.2 3 × 10−9 2 × 10−7 3 × 10−7 4 × 10−7 5 × 10−7 6 × 10−7 8 × 10−7 9 × 10−7

0.4 6 × 10−9 4 × 10−7 5 × 10−6 3 × 10−5 4 × 10−5 4 × 10−5 6 × 10−5 7 × 10−5

0.5 7 × 10−9 5 × 10−7 6 × 10−6 4 × 10−5 10−4 2 × 10−4 2 × 10−4 3 × 10−4

0.7 10−8 7 × 10−7 9 × 10−6 5 × 10−5 2 × 10−4 7 × 10−4 2 × 10−3 2 × 10−3

0.8 7 × 10−4 10−3 2 × 10−3 3 × 10−3 3 × 10−3 4 × 10−3 5 × 10−3 6 × 10−3

1.0 3 × 10−3 6 × 10−3 9 × 10−3 10−2 10−2 0.018 4 2 × 10−2 3 × 10−2

for x < t. In a similar manner we have

Lu2 = u0xu1 + u1xu0 = (t + 1)
1
12
x
(
t4 + 4t3 + 6t2 − 6t − 3e2t + 12et − 9

)

+
1
12

(
t4 + 4t3 + 6t2 − 6t − 3e2t + 12et − 9

)
(t + 1)x

=
1
6
x(t + 1)

(
t4 + 4t3 + 6t2 − 6t − 3e2t + 12et − 9

)
,

(2.15)

and therefore

u2 = L−1
(
1
6
x(t + 1)

(
t4 + 4t3 + 6t2 − 6t − 3e2t + 12et − 9

))

=
1
2

∫ t

0

∫x+t−s

x−t+s

(
1
6
y(s + 1)

(
s4 + 4s3 + 6s2 − 6s − 3e2s + 12es − 9

))
dy ds

=
x

504

(
2t7 + 14t6 + 42t5 − 210t3 − 378t2 − 63te2t + 1008tet + 63t − 1008et + 1008

)
,

(2.16)

for x > t. In a similar manner we obtain

Lu2 = u0xu1 + u1xu0 =
xt5

6
+
5
6
xt4 +

5
3
xt3 − xte2t

2
+ 2xtet − 5xt

2
− xe2t

2
+ 2xet − 3x

2
,

u2 =
1
2

∫ t−x

0

∫x+t−s

t−x−s
g
(
y, s

)
dy ds +

1
2

∫ t

t−x

∫x+t−s

x−t+s
g
(
y, s

)
dy ds,

(2.17)

for x < t, where g(y, s) = (1/6)ys5 + (5/6)ys4 + (5/3)ys3 − (1/2)yse2s + 2yses − (5/2)ys −
(1/2)ye2s + 2yes − (3/2)y and so

u2 =
1
252

xt7 +
1
36
xt6 +

1
12
xt5 − 5

12
xt3 − 3

4
xt2 − 1

8
xte2t + 2xtet +

1
8
xt − 2xet + 2x. (2.18)

The absolute errors between the exact and three term approximation of the series solution for
some values of (x, t) ∈ [0, 1] × [0, 1] are shown in Table 1.
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Example 2.3. Now we consider the problem

utt − uxx = u2xt − 16t2x2 + 16t2x − 2t2 − 2x2 + 2x,

u(x, 0) = x, ut(x, 0) = 0, u(0, t) = 0.
(2.19)

The exact solution is u = x + t2x − t2x2. We take v0 = 0, and construct the homotopy

Lu − Lv0 + p
[
Lv0 − u2xt + 16t2x2 − 16t2x + 2t2 + 2x2 − 2x

]
= 0. (2.20)

Now substituting (1.7) into (2.20) and equating terms of the coefficients of like powers of p,
we obtain

Lu0 = 0, u0(x, 0) = x, u0t(x, 0) = u0(0, t) = 0,

Lu1 + Lv0 − u20xt + 16t2x2 − 16t2x + 2t2 + 2x2 − 2x = 0, u1(x, 0) = u1t(x, 0) = u1(0, t) = 0,

Lu2 − 2u0xtu1xt = 0, u2(x, 0) = u2t(x, 0) = u2(0, t) = 0,

Lu3 − (u1xt)2 − 2u0xtu2xt = 0, u3(x, 0) = u3t(x, 0) = u3(0, t) = 0.
(2.21)

Solving equations yields

u0 =
1
2
(x + t + x − t) = x,

u1 =
1
2

∫ t

0

∫x+t−s

x−t+s

(
−16s2y2 + 16s2y − 2s2 − 2y2 + 2y

)
dy ds

= − 4
45
t6 − 4

3
t4x2 +

4
3
t4x − 1

3
t4 − t2x2 + t2x for x > t.

(2.22)

In a similar manner we get

u1 =
1
2

∫ t−x

0

∫x+t−s

t−x−s

(
−16s2y2 + 16s2y − 2s2 − 2y2 + 2y

)
dy ds

+
1
2

∫ t

t−x

∫x+t−s

x−t+s

(
−16s2y2 + 16s2y − 2s2 − 2y2 + 2y

)
dy ds = − 8

15
t5x − 4

3
t4x

− 16
9
t3x3 − 4

3
t3x +

4
3
t2x4 + t2x2 + t2x − 8

15
tx5 − 4

3
tx3 +

4x6

45
+
x4

3
,

(2.23)
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Table 2:Maximum errors for Example 2.3.

t \ x 0.1 0.2 0.4 0.5 0.7 0.8 0.9

0.1 2 × 10−5 10−5 10−6 9 × 10−8 5 × 10−6 10−5 2 × 10−5

0.2 3 × 10−4 2 × 10−4 2 × 10−5 5 × 10−6 9 × 10−5 2 × 10−4 3 × 10−4

0.4 3 × 10−3 3 × 10−3 7 × 10−4 3 × 10−4 2 × 10−3 3 × 10−3 6 × 10−3

0.5 6 × 10−3 6 × 10−3 2 × 10−3 1 × 10−3 4 × 10−3 9 × 10−3 10−2

0.7 10−2 10−2 10−2 9.9 × 10−3 2 × 10−2 4 × 10−2 6 × 10−2

0.8 2 × 10−2 2 × 10−2 2 × 10−2 2 × 10−2 4 × 10−2 7 × 10−2 0.110 6

0.9 2 × 10−2 3 × 10−2 3 × 10−2 4 × 10−2 8 × 10−2 0.12594 0.1862

for x < t. Taking only two-term approximation for uwe have

u = u0 + u1 = x − 4
45
t6 − 4

3
t4x2 +

4
3
t4x − 1

3
t4 − t2x2 + t2x for x > t,

u = x − 8
15
t5x +

4
3
t4x − 16

9
t3x3 − 4

3
t3x +

4
3
t2x4

+ t2x2 + t2x − 8
15
tx5 − 4

3
tx3 +

4
45
x6 +

1
3
x4,

(2.24)

for x < t. The absolute errors between the exact and two-term approximation of the series
solution for some values of (x, t) ∈ [0, 1]× [0, 1] are shown in Table 2. A higher accuracy level
can be attained by evaluating some more terms.

Example 2.4. Now we consider the problem

utt − uxx = ux + ut − 2x − 2,

u(x, 0) = x2, ut(x, 0) = 0, u(0, t) = sin2t.
(2.25)

It is easy to show that the HPM can not be applied if L is taken as utt. The exact solution is

u = x2 + sin2(t − x) for x < t

= x2 for x ≥ t.
(2.26)

We construct the homotopy

Lu − Lv0 + p[Lv0 − ux − ut + 2x + 2] = 0, (2.27)



Discrete Dynamics in Nature and Society 9

with L = utt − uxx. Substituting (1.7) into u and equating the coefficients of like powers of p,
we get a system of linear equations

Lu0 = 0, u0(x, 0) = x2, u0t(x, 0) = 0, u0(0, t) = sin2t,

Lu1 = u0x + u0t − 2x − 2, u1(x, 0) = 0, u1t(x, 0) = 0, u1(0, t) = 0,

Lu2 = u1x + u1t, u2(x, 0) = 0, u2t(x, 0) = 0, u2(0, t) = 0, . . . .

(2.28)

Solving we obtain

u0 =
1
2

(
(x + t)2 − (t − x)2

)
+ sin2(t − x) = 2tx + sin2(t − x) for x < t,

u0 =
1
2

(
(x + t)2 + (x − t)2

)
= x2 + t2 for x > t,

Lu1 = u0x + u0t − 2x − 2 = 2t + 2x − 2x − 2 = 2t − 2,

u1 =
1
2

∫ t−x

0

∫x+t−s

t−x−s
(2s − 2)dy ds +

1
2

∫ t

t−x

∫x+t−s

x−t+s
(2s − 2)dy ds

= t2x − tx2 − 2tx +
1
3
x3 + x2 for x < t,

Lu1 = u0x + u0t − 2x − 2 = 2t − 2,

u1 =
1
2

∫ t

0

∫x+t−s

x−t+s
(2s − 2)dy ds =

1
3
t2(t − 3) for x > t.

(2.29)

Continuing we obtain

Lu2 = u1x + u1t = t2 − 2tx − 2t + x2 + 2x + 2tx − x2 − 2x = t2 − 2t,

u2 =
1
2

∫ t−x

0

∫x+t−s

t−x−s

(
s2 − 2s

)
dy ds +

1
2

∫ t

t−x

∫x+t−s

x−t+s

(
s2 − 2s

)
dy ds

=
7
3
t3x − 5

2
t2x2 − 5t2x +

4
3
tx3 + 3tx2 − 1

4
x4 − 2

3
x3 for x < t,

u2 =
1
2

∫ t

0

∫x+t−s

x−t+s

(
s2 − 2s

)
dy ds =

1
12
t4 − 1

3
t3 for x > t.

(2.30)

Thus the three-term approximation is

u = sin2(t − x) + x2 +
7
3
t3x − 5

2
t2x2 − 4t2x +

4
3
tx3 + 2tx2 − x4

4
− x3

3
for x < t,

u = x2 +
1
12
t4 for x > t,

(2.31)

and the error is less than (1/12)t4 for x > t.



10 Discrete Dynamics in Nature and Society

3. Conclusion

Homotopy perturbation method has been successful for solving many linear and nonlinear
wave-type problems. However, it has difficulties in dealing with initial boundary problems,
namely, in including all initial and boundary conditions together into the process of
homotopy perturbation and computation. Our main goal is to construct the homotopy
perturbation scheme containing all initial and boundary conditions together. The goal is
achieved by involving an auxiliary operator which includes both variables x and t.
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