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This paper is concerned with the design of a field programmable gate arrays- (FPGAs-) based
digital proportional-integral-derivative (PID) controller for synchronization of a continuous
chaotic model. By using the evolutionary programming (EP) algorithm, optimal control gains
in PID-controlled chaotic systems are derived such that a performance index of integrated
absolute error (IAE) is as minimal as possible. To verify the system performance, basic electronic
components, including OPA resistor and capacitor elements, were used to implement the chaotic
Sprott circuits, and FPGA technology was used to implement the proposed digital PID controller.
Numerical and experimental results confirmed the effectiveness of the proposed synchronization
procedure.

1. Introduction

In recent years, chaos synchronization has attracted the interest of researchers in various
fields [1]. Chaos synchronization has many potential applications in physics and engineering
and particularly in secure communication [2]. The idea of synchronizing two identical chaotic
systems was first introduced by Pecora and Carroll [3]. In continuous-time chaotic systems,
synchronization is usually achieved by a master-slave or drive-response approach. Given
a master (drive) and slave (response) in a chaotic system, the goal is synchronizing the
behavior of the slave (response) system to that of the master (drive) system. To achieve the
synchronization, a nonlinear controller must be designed to obtain signals from the master
and slave systems and to manipulate the slave system. Recently developed control methods
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can achieve chaos synchronization between two identical chaotic systems with different
initial conditions [1]. However, none of the proposed methods in our surveyed papers can
obtain an optimal or near-optimal digital controller for synchronizing continuous chaotic
systems according to a performance index specified by an FPGA chip.

Conversely, evolutionary programming (EP) algorithms have proven effective and
easy to implement for global optimization of complex functions and for solving complex
control problems in engineering [4, 5]. Generally, the four steps in the global optimization
algorithm are initialization, mutation, competition, and reproduction. Furthermore, Cao [4]
also developed a quasirandom sequence (QRS) for generating an initial EP population that
avoids formulating clusters around an arbitrary local optimal.

In fact, implementing this technique in digital electronic devices such as field
programmable gate arrays (FPGAs) can accelerate the development of prototype circuits
such as control and real-time simulation circuits [6]. The FPGA comprises thousands of logic
gates, some of which are grouped into a configurable logic block (CLB) to simplify higher-
level circuit design. Because of its simplicity and programmability, the FPGA is the preferred
option for chip prototype design.

The main objective of this work was to develop an EP-based digital PID control
scheme for solving synchronization problems in FPGA-based chaotic systems. The EP
algorithm derived optimal control gains in PID-controlled chaotic systems such that the
performance index of integrated absolute error (IAE) was minimized and the master and
slave chaotic systems were synchronized. The optimal architecture for digital controller was
then implemented and simulated by very high-speed description language (VHDL) and
ModelSim. The developed architectures for each component were then implemented and
tested under the Xilinx Spartan-3 FPGA. Finally, simulation and experimental results were
compared to confirm the effectiveness of the proposed EP-based digital PID scheme for chaos
synchronization.

2. System Description and Problem Formulation

First, consider two single-input single-output (SISO) master and slave systems described by
the following differential equations:

Master system:

ẋm(t) = f(t, xm),

ym(t) = Cxm.
(2.1)

Slave system:

ẋs(t) = f(t, xs) + Bu(t),

ys(t) = Cxs,
(2.2)

where xm(t) = [xm1, xm2, . . . , xmn] ∈ Rn and xs(t) = [xs1, xs2, . . . , xsn] ∈ Rn are the state vectors
of master and slave systems, respectively. The f : R × Rn → Rn is a given nonlinear function.
The ym(t) ∈ R and ys(t) ∈ R are the outputs of the master and slave systems, respectively. The
B ∈ Rn×1 and C ∈ R1×n are the system matrices. The u(t) ∈ R is the control input included in
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the slave system (2.2) to synchronize the master and slave systems. Generally, many chaotic
systems can be expressed by (2.1). For example, the Sprott circuit, themodified Chua’s circuit,
the Duffing-Holmes system, the Lorenz system, and the Lu system all belong to the class
defined by (2.1).

Let the error states be e1 = xm1 − xs1, e2 = xm2 − xs2, . . . , en = xmn − xsn. The objective
of this study was to use the EP algorithm to design a simple but effective PID controller u(t)
that can synchronize coupled systems (2.1) and (2.2) under different initial conditions such
that

lim
t→∞

‖xm(t) − xs(t)‖ −→ 0. (2.3)

The procedure for determining the PID controller u is to first define the output error
signal ye = ym−ys and then to define the continuous form of a PID controller with input ye(·)
and output u(·). The conventional equation is

u(t) = Kp

[
ye(t) +

1
Ti

∫ t

0
ye(t)dt + Td

d

dt
ye(t)

]
, (2.4)

where Kp is the proportional gain constant, Ti is the integral time constant, and Td is
the derivative time constant. When using the FPGA chip to implement this controller, the
continuous-type PID controller (2.4) is reformulated as a digital-type PID controller as shown
below:

u(k) = Kp

[
ye(k) +

1
Ti
S(k) +

Td
T

[
ye(k) − ye(k − 1)

]]
. (2.5)

Here, u(k) is the kth sampling output data of the PID controller, S(k) =
∑

ye(k) is the
error sum, and T is the sampling time constant. Therefore, (2.5) can be rewritten as

u(k) = Kpye(k) +KiS(k) +Kd

[
ye(k) − ye(k − 1)

]
, (2.6)

where Ki = Kp1/Ti is the integral gain constant and Kd = KpTd/T is the derivative gain
constant.

The performance criterion or objective function of a controller design can generally be
defined according to the desired specifications. The two performance criteria typically con-
sidered in the EP algorithm are the integrated squared error (ISE) and the integrated absolute
error (IAE). This study uses the IAE index as the objective function (OF), which is given as

OF = IAE =
kf∑
k=1

‖E(k)‖, (2.7)

where E(k) = [e1, e2, . . . , en], ‖ · ‖ is the Euclidean norm of a vector, k is the sampling time
point, and kf is the total number of samples. Below, the EP algorithm is used to minimize
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Figure 1: Block diagram of chaos synchronization system.

the objective function score (2.7) by tuning the digital PID controller and optimizing the gain
parameters.

3. Evolutionary Programming (EP) Algorithm for Solving
the Optimization Problem

Since the EP algorithm is considered an easily implemented and promising technique for the
global optimization of complex functions, this study introduces an EP algorithm for solving
this problem. Figure 1 shows the proposed EP-based PID control system includes synchro-
nized master and slave chaotic systems, a PID controller, and an EP algorithm. The ym is the
output of the master system, ys is the output of the slave system, and u is the control input
generated by the PID controller as defined in (2.5). The parameters of the proposed PID con-
troller are derived by the EP algorithm such that the value of IAE given in (2.7) is minimized.

This section proposes an extended EP algorithm for obtaining the digital PID controller
with optimal gain parameters to minimize the following objective function (OF) score (2.6).
Let g be the continuously differentiable matrix-valued function defined for g ∈ S, where
S = {g ∈ R3 | 0 ≤ gi ≤ Mi, i = 1, 2, 3} and Mi is the bounded search space. The optimization
problem is to find g∗ = [K∗

p,K
∗
i , K

∗
d
] ∈ S such that the OF performance index of the system is

minimized. Mathematically, the optimization problem (P1) can be formulated as follows.

(P1): To find g∗ ∈ S such that

OF = IAE =
kf∑
k=1

‖E(k)‖, for g∗ ∈ S (3.1)

is minimized.

Based on the simulation results obtained in [4], an extended EP algorithm for solving
the above optimization problem is applied as follows.

Step 1. Generate an initial population P0 = [p1, p2, . . . , pN] of size N by randomly initializing
each 3-dimensional solution vector pi ∈ S, i = 1, 2, . . . ,N according to the quasirandom
sequence (QRS).
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Figure 2: Convergence curve of IAE.

Step 2. Calculate the fitness score (objective function) fi = f(pi) for each pi, i = 1, 2, . . . ,N,
where

fi
(
pi
)
= OF =

kf∑
k=1

|E(kT)|. (3.2)

Step 3. Mutate each pi, i = 1, 2, . . . ,N, based on the statistical data to double the population
size fromN to 2N, and generate pi+N by using

pi+N,j = pi,j +N

(
0, β

fi
fΣ

)
, ∀j = 1, 2, 3, (3.3)

where pi,j denotes the jth element of the ith individual, N(0, βfi/fΣ) represents a Gaussian
random variable with a mean zero and variance βfi/fΣ, fΣ is the sum of all fitness scores, and
β is a parameter to scale fi/fΣ.

Step 4. Use (3.2) to calculate the fitness score fi+N for every pi+N, i = 1, 2, . . . ,N. In the
stochastic competition process, pi, i = 1, 2, . . . ,N randomly competes with pj , j = N +
1, . . . , 2N. If fi < fj , pi wins; otherwise, pj wins, and pi is replaced by pj . After completing
the competition process, selectN winners for the next generation, and let the individual with
the minimum objective function in the winners be p1.

Step 5. If the value fΣ converges to a minimum value, then let g∗ = p1 be the global optimum
value and g∗ = [K∗

p,K
∗
i , K

∗
d] such that the OF performance index of the system is minimized.

Otherwise, return to Step 3.
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Figure 3: Iteration response of Kp,Ki,Kd.

4. Simulation and Experimental Results

This section describes the proposed EP-based digital PID controller design for synchronizing
Sprott circuits, which are the chaotic systems typically studied in the literature [7, 8]. Now
consider the following Sprott circuits:

Master:

ẋm1 = xm2,

ẋm2 = xm3,

ẋm3 = −1.2xm1 − xm2 − 0.6xm3 + 2 · sign(xm1).

(4.1)

Slave:

ẋs1 = xs2,

ẋs2 = xs3 + u(t),

ẋs3 = −1.2xs1 − xs2 − 0.6xs3 + 2 · sign(xs1),

(4.2)

where ẋm and ẋs denote the derivatives of xm and xs, respectively, with respect to time t.
In this example, the initial conditions for master and slave are [xm1(0), xm2(0), xm3(0)] =
[0.1 0.1 0.1] and [xs1(0), xs2(0), xs3(0)] = [−1 −1 −1], respectively. Matlab and Simulink are
used to solve the optimization problem (P1), where N = 30 and β = 0.001. The proposed EP
algorithm generates P0 = [p1, p2, . . . , p30] according to the QRS. Several manipulations of the
EP algorithm gets the convergence curve of IAE value versus iteration depicted in Figure 2.
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Figure 4: Time responses using the EP-based PID controller. (a) xm1 versus xs1. (b) xm2 versus xs2. (c)
xm3 versus xs3. (d) The error states e1, e2, e3. (e) The control input. (The control u(t) is activated at t =
20 sec.).
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Figure 5: Electronic implementations of Sprott circuits. (a) master system; (b) slave system.
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Figure 6: The Black diagram (a) and the photograph (b) of the proposed chaos synchronization system.

Figure 2 clearly shows that convergence occurs after about 170 iterations, and the final value
of IAE is f(g∗) = 0.7592. The corresponding PID control gains are g∗ = [K∗

p,K
∗
i , K

∗
d
] =

[20 0.0018 20]. Figure 3 also shows the Kp, Ki, and Kd trajectories during the evolutionary
procedure. Figure 4 shows the output response when using the resulting PID control gain z∗.
The simulation results confirm that the EP algorithm and proposed PID controller effectively
synchronize Sprott chaotic systems.

The proposed PID controller was then tested in an actual system. Figure 5 [8] shows
the experimental results when (4.1) and (4.2) were applied in a circuit connected in a
master/slave configuration. Figure 6 shows how the controller was implemented with Xilinx
Spartan-3 FPGA and AD/DA converters and a 1289 kHz sampling rate. Figure 7 shows that
the slave circuit response was synchronized to the master circuit response after the control
was activated at t = 20 second. The experimental results of error dynamics in Figure 7(d)
show the convergence to a very small synchronization error.

5. Conclusions

A simple and successful digital PID controller for an FPGA chip was proposed for using
an evolutionary programming algorithm to synchronize two chaotic systems. The derived
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Figure 7: Experimental results of synchronization. (a) xm1 versus xs1. (b) xm2 versus xs2. (c) xm3 versus
xs3. (d) The error states e1, e2, e3.

EP algorithm efficiently obtains the gains for three PID controllers by solving specified
optimization problems. Moreover, the effectiveness of the proposed EP-based PID scheme
was then demonstrated in a chaotic circuit system. The simulation and experimental results
confirm that the proposedmethods are effective and practical. Compared to existingmethods
of chaotic synchronization, the proposed FPGA-based optimal PID controller is not only
effective, but also simple in terms of design and implementation.
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