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The fundamental aim of this paper is to construct (h, q)-Genocchi numbers and polynomials with
weight α. We shall obtain some interesting relations by using p-adic q-integral on Zp in the sense of
fermionic. Also, we shall derive the (h, q)-extensions of zeta type functions with weight α from the
Mellin transformation of this generating function which interpolates the (h, q)-Genocchi numbers
and polynomials with weight α at negative integers.

1. Introduction, Definitions, and Notations

Let p be a fixed odd prime number. Throughout this paper we use the following notations.
Zp denotes the ring of p-adic rational integers, Q denotes the field of rational numbers, Qp

denotes the field of p-adic rational numbers, and Cp denotes the completion of algebraic
closure of Qp. Let N be the set of natural numbers and N

∗ = N ∪ {0}. The p-adic absolute
value is defined by |p|p = 1/p. In this paper, we assume |q − 1|p < 1 as an indeterminate. In
[1–3], Kim defined the fermionic p-adic q-integral on Zp as follows:

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

f(x)
(−q)x. (1.1)
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[x]q is a q-extension of x which is defined by

[x]q =
1 − qx

1 − q
, (1.2)

see [1–15].
Note that limq→ 1[x]q = x.
Let fn(x) = f(x + n). By the definition (1.1) we easily get

−qI−q
(
f1
)
= lim

N→∞
1

[
pN
]
−q

pN−1∑

x=0

f(x + 1)
(−q)x+1

= lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

f(x)
(−q)x − (1 + q

)
lim

N→∞
f
(
pN
)
qp

N
+ f(0)

1 + qp
N

= I−q
(
f
) − [2]qf(0).

(1.3)

Continuing this process, we obtain easily the relation

qnI−q
(
fn
)
+ (−1)n−1I−q

(
f
)
= [2]q

n−1∑

l=0

(−1)n−l−1qlf(l), (1.4)

(h, q)-Genocchi numbers are defined as follows:

G
(h)
0,q = 0, qh−2

(
qG

(h)
q + 1

)n
+G

(h)
n,q =

⎧
⎨

⎩

[2]q, if n = 1,

0, if n > 1,
(1.5)

with the usual convention about replacing (G(h)
q )

n
by G

(h)
n,q (see [6]).

In this paper, we constructed (h, q)-Genocchi numbers and polynomials with weight
α. By using fermionic p-adic q-integral equations on Zp, we investigated some interesting
identities and relations on the (h, q)-Genocchi numbers and polynomials with weight α.
Furthermore, we derive the q-extensions of zeta type functions with weight α from the
Mellin transformation of this generating function which interpolates the (h, q)-Genocchi
polynomials with weight α.

2. On the Weighted (h, q)-Genocchi Numbers and Polynomials

In this section, by using fermionic p-adic q-integral equations on Zp, some interesting
identities and relation on the (h, q)-Genocchi numbers and polynomials with weight α are
shown.

Definition 2.1. Let α, n ∈ N
∗ and h ∈ N. Then the (h, q)-Genocchi numbers with weight α

defined by as follows:

G̃
(α,h)
n+1,q

n + 1
= [2]q

∞∑

m=0
(−1)mqmh[m]nqα . (2.1)
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If we take h = 1 to (2.1), then we have, G̃(α,1)
n+1,q = G̃

(α)
n+1,q (see [5]).

From (2.1), we obtain

G̃
(α,h)
n+1,q

n + 1
=

[2]q
(
1 − qα

)n
∞∑

m=0
(−1)mqmh(1 − qmα)n

=
[2]q

(
1 − qα

)n

[ ∞∑

m=0
(−1)mqmh

n∑

l=0

(
n

l

)

(−1)l(qmα)l
]

=
[2]q

(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l
∞∑

m=0
(−1)mqmαl+mh

=
[2]q

(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l 1
1 + qαl+h

(2.2)

Therefore, we obtain the following theorem.

Theorem 2.2. For α, n ∈ N
∗ and h ∈ N. Then

G̃
(α,h)
n+1,q

n + 1
=

[2]q
(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l 1
1 + qαl+h

. (2.3)

In (1.1), one takes f(x) = q(h−1)x[x]nqα ,

∫

Zp

q(h−1)x[x]nqαdμ−q(x) =
1

(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l
∫

Zp

qx(αl+h−1)dμ−q(x)

=
1

(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

(
−qαl+h

)x

=
1

(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l
(
1 + q

)

1 + qαl+h
lim

N→∞
1 +
(
qαl+h

)pN

1 + qp
N

=
[2]q

(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)l 1
1 + qαl+h

=
G̃

(α,h)
n+1,q

n + 1
.

(2.4)

From [12], we obtain (h, q)-Genocchi numbers with weight α witt’s type formula as
follows.
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Theorem 2.3. For α, n ∈ N
∗ and h ∈ N. Then

G̃
(α,h)
n+1,q

n + 1
=
∫

Zp

q(h−1)x[x]nqαdμ−q(x). (2.5)

From (2.1), one easily gets

∫

Zp

q(h−1)xet[x]qα dμ−q(x) = t[2]q
∞∑

m=0
(−1)mqmhet[m]qα . (2.6)

By (2.6), one has

∞∑

n=0

G̃
(α,h)
n,q

tn

n!
= t[2]q

∞∑

m=0
(−1)mqmhet[m]qα . (2.7)

Therefore, we obtain the following corollary.

Corollary 2.4. If G̃(α,h)
0,q = 0. Let D(α,h)

q (t) =
∑∞

n=0 G̃
(α,h)
n,q (tn/n!). Then

D
(α,h)
q (t) = t[2]q

∞∑

m=0
(−1)mqmhet[m]qα . (2.8)

Now, one considers the (h, q)-Genocchi polynomials with weight α as follows:

G̃
(α,h)
n+1,q(x)

n + 1
=
∫

Zp

q(h−1)y
[
x + y

]n
qαdμ−q

(
y
)
, n ∈ N, α ∈ N

∗. (2.9)

From (2.9), one sees that

G̃
(α,h)
n+1,q(x)

n + 1
=

[2]q
(
1 − qα

)n
n∑

l=0

(
n

l

)

(−1)lqαlx 1
1 + qαl+h

= [2]q
∞∑

m=0
(−1)mqmh[m + x]nqα . (2.10)

Let D(α,h)
q (t, x) =

∑∞
n=0 G̃

(α,h)
n,q (x)(tn/n!). Then, one has

D
(α,h)
q (t, x) = t[2]q

∞∑

m=0
(−1)mqmhet[m+x]qα =

∞∑

n=0

G̃
(α,h)
n,q (x)

tn

n!
. (2.11)

By (1.4), one sees that

qhn
G̃

(α,h)
m+1,q(n)

m + 1
+ (−1)n−1

G̃
(α,h)
m+1,q

m + 1
= [2]q

n−1∑

l=0

(−1)n−l−1qhl[l]mqα . (2.12)
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Therefore, we obtain the following theorem.

Theorem 2.5. For m,h ∈ N, and α, n ∈ N
∗, one has

qhn
G̃

(α,h)
m+1,q(n)

m + 1
+ (−1)n−1

G̃
(α,h)
m+1,q

m + 1
= [2]q

n−1∑

l=0

(−1)n−l−1qhl[l]mqα . (2.13)

In (1.3), it is known that

qI−q
(
f1
)
+ I−q

(
f
)
= [2]qf(0). (2.14)

If we take f(x) = q(h−1)xet[x]qα , then one has

[2]q = q

∫

Zp

q(h−1)(x+1)et[x+1]qα dμ−q(x) +
∫

Zp

q(h−1)xet[x]qα dμ−q(x)

=
∞∑

m=0

⎛

⎝qh
G̃

(α,h)
m+1,q(1)

m + 1
+
G̃

(α,h)
m+1,q

m + 1

⎞

⎠ tm

m!
.

(2.15)

Therefore, by (2.15), we obtain the following theorem.

Theorem 2.6. For α ∈ N
∗ and m,h ∈ N, one has

G̃
(α,h)
0,q = 0, qh

G̃
(α,h)
m+1,q(1)

m + 1
+
G̃

(α,h)
m+1,q

m + 1
=

⎧
⎨

⎩

[2]q, if m = 0,

0, if m/= 0.
(2.16)

From (2.9), one can easily derive the following:

∫

Zp

q(h−1)y
[
x + y

]n
qαdμ−q

(
y
)
=

[d]nqα

[d]−q

d−1∑

a=0
(−1)aqha

∫

Zp

qdy(h−1)
[x + a

d
+ y
]n

qdα
dμ(−q)d

(
y
)

=
[d]nqα

[d]−q

d−1∑

a=0
(−1)aqha

G̃
(α,h)
n+1,qd((x + a)/d)

n + 1
.

(2.17)

Therefore, by (2.17), we obtain the following theorem.

Theorem 2.7. For d ≡ 1(mod 2), n ∈ N
∗ and α, h ∈ N

G̃
(α,h)
n+1,q(x) =

[d]nqα

[d]−q

d−1∑

a=0
(−1)aqhaG̃(α,h)

n+1,qd

(x + a

d

)
. (2.18)
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3. Interpolation Function of the Polynomials G̃
(α,h)
n,q (x)

In this section, we give interpolation function of the generating functions of (h, q)-Genocchi
polynomials with weight α. For s ∈ C and h ∈ N, by applying the Mellin transformation to
(2.11), we obtain

I
(α,h)
q (s, x) =

1
Γ(s)

∫∞

0
ts−2
(
−D(α,h)

q (−t, x)
)
dt = [2]q

∞∑

m=0
(−1)mqmh 1

Γ(s)

∫∞

0
ts−1e−t[m+x]qα dt, (3.1)

so we have

I
(α,h)
q (s, x) = [2]q

∞∑

m=0

(−1)mqmh

[m + x]sqα
. (3.2)

We define q-extension zeta type function as follows.

Theorem 3.1. For s ∈ C, h ∈ N, and α ∈ N
∗. One has

I
(α,h)
q (s, x) = [2]q

∞∑

m=0

(−1)mqmh

[m + x]sqα
. (3.3)

I
(α,h)
q (s, x) can be continued analytically to an entire function.

By subsituting s = −n into (3.3) one easily gets

I
(α,h)
q (−n, x) =

G̃
(α,h)
n+1,q(x)

n + 1
. (3.4)

We obtain the following theorem.

Theorem 3.2. For h ∈ N and q, s ∈ C, |q| < 1. Then one defines

I
(α,h)
q (−n, x) =

G̃
(α,h)
n+1,q(x)

n + 1
. (3.5)
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