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Numerical solution differential equation of Lane-Emden type is considered by Padé approxima-
tion. We apply these method to two examples. First differential equation of Lane-Emden type has
been converted to power series by one-dimensional differential transformation, then the numerical
solution of equation was put into Padé series form. Thus, we have obtained numerical solution
differential equation of Lane-Emden type.

1. Introduction

Lane-Emden equations have the following form [1–4]:

y′′ +
k

x
y′ + f

(
x, y

)
= g(x), 0 ≤ x ≤ 1, k ≥ 0,

y(0) = A, y′(0) = B,

(1.1)

where A and B are constants, f(x, y) is a continuous real-valued function, and g(x) ∈
C[0, 1]. Lane-Emden equations are singular initial value problems relating to second-order
ordinary differential equations (ODEs) which have been used to model several phenomena in
mathematical physics and astrophysics such as thermal explosions [5], the thermal behavior
of a spherical cloud of gas, isothermal gas spheres, and thermionic currents [5]. Several
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methods for the solutions of Lane-Emden equations have been presented. Wazwaz [6]
has given a general way to construct exact and series solutions to Lane-Emden equations
by employing the Adomian decomposition method. A numerical solution of Lane-Emden
equations is given based on the Legendre wavelets methods [4]. The variational iteration
method is used to solve differential equations arising in astrophysics including the Lane-
Emden equation [7, 8]. The homotopy perturbation method and the integral operator method
were suggested in [9–11].

In this paper, we apply these method to two examples. First, differential equation
of Lane-Emden type has been converted to power series by one-dimensional differential
transformation; differential transformation was introduced first by Zhou [12]. Then the
numerical solution of equation was put into Padé series form [13]. The Padé approximation
method was used to accelerate the convergence of the power series solution. Thus, we obtain
numerical solution differential equation of Lane-Emden type.

2. One-Dimensional Differential Transform

Differential transform of function y(x) is defined as follows:

Y(k) =
1
k!

[
dky(x)
dxk

]

x=0

. (2.1)

In (2.1), y(x) is the original function and Y(k) is the transformed function, which is called the
T-function. Differential inverse transform of Y(k) is defined as

y(x) =
∞∑

k=0

xkY(k). (2.2)

From (2.1) and (2.2), we obtain

y(x) =
∞∑

k=0

xk

k!

[
dky(x)
dxk

]

x=0

. (2.3)

Equation (2.3) implies that the concept of differential transform is derived from Taylor series
expansion, but the method does not evaluate the derivatives symbolically.

However, relative derivatives are calculated by an iterative way which is described by
the transformed equations of the original functions. In this study, we use the lower case letter
to represent the original function, and upper case letter represent the transformed function.

From the definitions of (2.1) and (2.2), it is easily proven that the transformed
functions comply with the basic mathematics operations shown in Table 1.
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Table 1: The fundamental operations of one-dimensional differential transform method.

Original function Transformed function

y(x) = u(x) ± v(x) Y (k) = U(k) ± V (k)

y(x) = cw(x) Y (k) = cW(k)

y(x) = dw/dx Y (k) = (k + 1)W(k + 1)

y(x) = djw/dxj Y (k) = (k + 1)(k + 2) · · · (k + j)W(k + j)

y(x) = u(x)v(x) Y (k) =
∑k

r=0 U(r)V (k − r)

y(x) = xj Y (k) = δ(k − j) =
{ 1, k=j

0, k /= j

In actual applications, the function y(x) is expressed by a finite series and (2.2) can be
written as

y(x) =
m∑

k=0

xkY(k). (2.4)

Equation (2.3) implies that
∑∞

k=m+1 x
kY(k) is negligibly small. In fact, m is decided by the

convergence of natural frequency in this study.

Definition 2.1. If y(x) = u(x)v(x), u(x) = D−1[U(k)], v(x) = D−1[V (k)], and ⊗ denote convo-
lution. Then [y(x)] = D[u(x)v(x)] = U(k) ⊗ V (k) =

∑k
r=0 U(r)V (k − r).

3. Padé Approximation

Suppose that we are given a power series
∑∞

i=0 aix
i, representing a function f(x), so that

f(x) =
∞∑

i=0

aix
i. (3.1)

A Padé approximation is a rational fraction

[
L

M

]
=

p0 + p1x + · · · + pLxL

q0 + q1x + · · · + qMxM
, (3.2)

which has a Maclaurin expansion which agrees with (3.1) as much as possible. Notice that in
(3.2), there areL+1 numerator coefficients andM+1 denominator coefficients. There is a more
or less irrelevant common factor between them, and for definiteness, we take q0 = 1. This
choice turns out to be an essential part of the precise definition, and (3.2) is our conventional
notation with this choice for q0. So, there are L + 1 independent numerator coefficients and
M independent numerator coefficients, making L +M + 1 unknown coefficients in all. This
number suggests that normally the [L/M] ought to fit the power series (3.1) through the
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orders 1, x, x2, . . . , xL+M in the notation of formal power series

∞∑

i=0

aix
i =

p0 + p1x + · · · + pLxL

q0 + q1x + · · · + qMxM
+O

(
xL+M+1

)
. (3.3)

Multiply both sides of (3.3) by the denominator of right side in (3.3), and compare the
coefficients of both sides of (3.3), then we have

al +
m∑

k=1

al−kqk = pl, (l = 0, . . . ,M), (3.4)

al +
L∑

k=1

al−kqk = 0, (l =M + 1, . . . ,M + L). (3.5)

Solve the linear equation in (3.5), then we have qk(k = 1, . . . , L). And substitute qk into (3.4),
then we have p1(l = 0, . . . ,M). Therefore, we have constructed a [L/M] Padé approximation,
which agrees with

∑∞
i=0 aix

i through order xL+M . If M ≤ L ≤M + 2, where M and L are the
degree of numerator and denominator in Padé series, respectively, then Padé series gives an
A-stable formula for an ordinary differential equation.

4. Numerical Examples

Example 4.1 (see Table 2 and Figure 1).

u′′(x) +
2
x
u′(x) = 2

(
2x2 + 3

)
u(x), 0 ≤ x ≤ 1,

u(0) = 1, u′(0) = 0,

(4.1)

where the exact solution is u(x) = ex
2
. Multiplying both sides of (4.1) by x,

xu′′(x) + 2u′(x) = 4x3u(x) + 6xu(x), 0 ≤ x ≤ 1. (4.2)

By using the fundamental operations of one-dimensional differential transform method in
Table 1, we obtained following recurrence relation:

δ(k − 1) ⊗ (k + 1)(k + 2)U(k + 2) + 2(k + 1)U(k + 1) = 4δ(k − 3) ⊗U(k) + 6δ(k − 1) ⊗U(k).
(4.3)



Discrete Dynamics in Nature and Society 5

Table 2: Numerical solution of u(x).

x u(x) P[5/4] |u(x) − P[5/4]|

0.1 1.010050167 1.010050167 0

0.2 1.040810774 1.040810774 0

0.3 1.094174234 1.094174275 4.1 × 10−8

0.4 1.173509974 1.173510700 7.26 × 10−7

0.5 1.284016927 1.284023668 0.000006741

0.6 1.433275840 1.43317285 0.000041445

0.7 1.632060167 1.632251266 0.000191099

0.8 1.895481174 1.896191187 0.000710013

0.9 2.244559634 2.246777235 0.002217601

1.0 2.708333334 2.714285714 0.005952380
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16

−1.5 −1 −0.5 0 0.5 1 1.5

x

u(x)
P[5/4]

Figure 1: Values of u(x) and its P[5/4] Padé approximant.

Then,

k∑

l=0

δ(l − 1)(k − l + 1)(k − l + 2)U(k − l + 2) + 2(k + 1)U(k + 1)

= 4
k∑

l=0

δ(l − 3)U(k − l) +
k∑

l=0

6δ(l − 1)U(k − l),

U(0) = 1, U(1) = 0, U(2) = 1, U(3) = 0, U(4) =
1
2
, U(5) = 0,
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U(6) =
1
6
, U(7) = 0, U(8) =

1
24
, U(9) = 0, . . . ,

u∗(x) = U(0) + xU(1) + x2U(2) + x3U(3) + . . . ,

u∗(x) = 1 + x2 +
1
2
x4 +

1
6
x6 +

1
24
x8 + · · · = 1 + x2 +

1
2
x4 +

1
3!
x6 +

1
4!
x8 + · · · + 1

n!
x2n.

(4.4)

Power series u∗(x) can be transformed into Padé series

P

[
5
4

]
=

(
1 + (1/2)x2 + (1/12)x4)

(
1 − (1/2)x2 + (1/12)x4

) =

(
1 + 0.5x2 + 0.8333333333x4)

(
1 − 0.5x2 + 0.8333333333x4

) . (4.5)

Example 4.2 (see Table 3 and Figure 2). Consider the Lane-Emden-type equation

y′′ +
2
x
y′ +

(
8ey + 4ey/2

)
= 0, (4.6)

with initial values

y(0) = 0, y′(0) = 0, (4.7)

where the exact solution is y(x) = −2 ln(1 + x2).
Multiplying both sides of equation by x,

xy′′ + 2y′ + 8xey + 4xey/2 = 0. (4.8)

Also, ey and ey/2 are defined as follows:

ey = 1 + y, ey/2 = 1 +
y

2
. (4.9)

Then,

xy′′ + 2y′ + 12x + 10xy = 0. (4.10)

By using the fundamental operations of one-dimensional differential transform method in
Table 1, we obtain the following recurrence relation:

δ(k − 1) ⊗ (k + 1)(k + 2)Y(k + 2) + 2(k + 1)Y(k + 1) + 12δ(k − 1) + 10δ(k − 1) ⊗ Y(k) = 0.
(4.11)
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Table 3: Numerical solution of y(x).

x y(x) P[5/4] |y(x) − P[5/4]|
0.1 −0.01990023712 −0.01990023713 1 × 10−11

0.2 −0.07841498810 −0.07841499080 2.70 × 10−9

0.3 −0.1720671642 −0.1720673162 1.520 × 10−7

0.4 −0.2953112381 −0.2953138699 0.0000026318

0.5 −0.4408387684 −0.4408625091 0.0000237407

0.6 −0.5998683214 −0.6000097952 0.0001414738

0.7 −0.7622819782 −0.7629141475 0.0006321693

0.8 −0.9164312381 −0.9187160286 0.0022847905

0.9 −1.048395758 −1.055408536 0.007012778

1.0 −1.140438988 −1.159333345 0.018894357

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

−1.5 −1 −0.5 0 0.5 1 1.5

x

y(x)
P[5/4]

Figure 2: Values of y(x) and its P[5/4] Padé approximant.

Then,

k∑

l=0

δ(l − 1)(k − l + 1)(k − l + 2)Y(k − l + 2) + 2(k + 1)Y(k + 1) + 12δ(k − 1)

+10
k∑

l=0

δ(l − 1)Y(k − l) = 0,

y(0) = 0, y(1) = 0, y(2) = −2, y(3) = 0, y(4) = 1, y(5) = 0,
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y(6) = − 5
21
, y(7) = 0, y(8) =

25
756

, . . . ,

y∗(x) = y(0) + xy(1) + x2y(2) + x3y(3) + . . . ,

y∗(x) = −2x2 + x4 − 5
21
x6 +

25
756

x8 + . . . .

(4.12)

Power series y∗(x)can be transformed into Padé series

P

[
5
4

]
=

(
(589/704)x4 − 2x2)

(
1 + (115/1408)x2 − (4625/59136)x4

)

=

(
0.8366477273x4 − 2x2)

(
1 + 0.08167613636x2 − 0.07820955087x4

) .

(4.13)

5. Conclusion

A Padé approximation method has proposed for solving differential equation of Lane-
Emden type in this study. This method is very simple and effective for most of Lane-Emden
equations. Numerical results explicitly reveal the complete reliability of the proposed Padé
approximation.
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