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We study both analytically and numerically the stability of the solutions of the Hébraud-Lequeux
equation. This parabolic equation models the evolution for the probability of finding a stress σ
in a mesoscopic block of a concentrated suspension, a non-Newtonian fluid. We prove a new
result concerning the stability of the fixed points of the equation, and pose some conjectures about
stability, based on numerical evidence.

1. Introduction

Non-Newtonian (or complex) fluids are very common in nature and industry, appearing
for instance, in foods, biofluids, personal care products, pharmacology and bioengineering,
electronics and optical materials, and energy and plastic production. In fact, one could say
that Newtonian (or simple) fluids are rather an exception (if not an idealization), even though
they include such a prominent member as water. Attending to their rheologic properties,
complex fluids are classified in different categories, including suspensions, colloids, polymer
melts, liquid crystals, gels and foams, among others.

In this paper, we will consider numerical approximations for the Hébraud-Lequeux
equation for suspensions [1] and,more specifically, for the followingmodel (proposed in [2]):

∂tp = −b(t)∂σp +D
(
p(t)
)
∂2σσp − 1

T0
χ�\[−σc,σc](σ)p +

D
(
p(t)
)

α
δ0(σ), p ≥ 0,

p(0, σ) = p0(σ),

(1.1)
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with p = p(t, σ), t ≥ 0, σ ∈ �, and D(p(t)) ≡ D(p(t, ·)) = α/T0
∫
|σ|>σc p(t, σ)dσ. Furthermore,

χI denotes the characteristic function of the interval I and δ0 is the Dirac delta function
supported at the origin.

We point out the important fact that the function p(t, σ) is a probability density
function for every fixed t, so it must satisfy that p(t, σ) ≥ 0 and

∫
�
p(t, σ)dσ = 1, for any

t ≥ 0.
Existence of solutions of (1.1) is given in [3]. In [4] a simplified version of this model is

studied, in which the term b(t)∂σp is neglected, proving that in such case the weak solutions
of the equation generate a multivalued dynamical system possessing a global attractor with
respect to a suitable phase space.

In [5] we considered a lattice dynamical system of the simplified model, obtained by
discretizating the derivative ∂2σσp and using a Simpson’s quadrature for the integral D(p).
Also, the Dirac delta function δ is approximated by a parabolic-type function. Observe that
the variable σ belongs to the whole real line, so the lattice dynamical system consists of
an infinite number of ordinary differential equations. We proved that this system defines
a continuous semigroup of operators in an appropriate space and, as well, the existence of a
global compact connected attractor.

Moreover, by a suitable truncation, finite-dimensional approximations of the lattice
system are given, proving that each of the approximating systems possesses a global compact
connected attractor and also the upper semicontinuous convergence of these attractors to the
one generated by the lattice system.

Finally, an implicit Euler scheme is implemented in the finite-dimensional approxima-
tions. Thus, a numerical algorithm approximating the solutions of the original equation is
obtained. In [5] the resulting discrete dynamical system is studied, proving the existence of a
global compact connected attractor and the upper semicontinuity of the sequence of attractors
with respect to the previous finite-dimensional approximations.

In this paper, using this algorithm, we present several numerical approximations of
the solutions of the equation.

At the same time, we prove a new result concerning the stability of the fixed points
of the equation and give also some conjectures which are supported by the numerical
simulations.

More precisely, let us consider the simplified equation (i.e., b(t) = 0). Also, for
simplicity we take σc = 1 and T0 = 1. In such a case it is well known [3] that all the probability
densities with support in the interval [−1, 1] are fixed points. Also, if α ≤ 0.5, then there no
more fixed points, and if α > 0.5, then there exists a unique fixed point not contained inside
the interval [−1, 1]. It is known that this fixed point is asymptotically stable [6].

In this paper, we prove that if α < 0.5, a subset of probability densities with support in
the interval [−1, 1] is stable.

Furthermore, based on our numerical simulations we make some more conjectures
about the stability of fixed points and also about the asymptotic behavior of solutions as time
goes to +∞.

First, it is natural to think that when α > 0.5 the unique fixed point with support not
contained inside the interval [−1, 1] if globally asymptotically stable, that is, if the initial data
is not a fixed point, then the corresponding solution will converge to this point as time goes to
+∞ (which would imply that all the other fixed points are unstable). However, it seems that
this is not true, as we found numerically a solution converging to a fixed point with support
in the interval [−1, 1]. Hence, several stable fixed points seem to coexist, although this fact
has not been proved yet.
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Secondly, the numerical simulations support the conclusion that every solution of the
equation converges to a fixed point as time goes to +∞, in other words, that the omega-limit
set of every trajectory is a fixed point. Again, there is still no proof of this fact.

Finally, it is natural to think that most fixed points with support in the interval [−1, 1]
are unstable, since if we take an arbitrary fixed point and a close initial data, usually the
numerical solution converges to distant fixed point.

2. Implicit Finite Difference Scheme

We shall consider the simplified model that results from (1.1) after taking b(t) ≡ 0. Also, we
set σc = 1 for simplicity, although our results can be obtained for an arbitrary σc > 0. Hence,
we consider the equation

∂tp = D
(
p(t)
)
∂2σσp − 1

T0
χ�\[−1,1](σ)p +

D
(
p(t)
)

α
δ0(σ), p ≥ 0,

p(0, σ) = p0(σ),

(2.1)

with p = p(t, σ), t ≥ 0, σ ∈ �, D(p(t)) ≡ D(p(t, ·)) = α/T0
∫
|σ|>1 p(t, σ)dσ. Here, χI is the

characteristic function on the interval I.
Consider an initial condition p0 satisfying

p0 ∈ L∞(�) ∩ L1(�) , p0 ≥ 0,
∫

�

p0dσ = 1 D
(
p0
)
> 0. (2.2)

Then it is proved in [3, Theorem 1.1] that problem (2.1) has a unique solution p(t, σ) satisfying
the following properties for all T > 0:

p ∈ L∞
(
0, T ;L2(�) ∩ L1(�)

)
∩ L2
(
0, T ;H1(�)

)
,

p ∈ L∞((0, T) × �) ∩C
(
[0, T], L2(�) ∩ L1(�)

)
,

∫

�

p(t, σ)dσ = 1, p(t) ≥ 0 ∀ t ≥ 0,

D
(
p(t)
) ∈ C([0, T]), min

0≤t≤T
D
(
p(t)
) ≥ ν(T) > 0,

σp ∈ L∞
(
0, T ;L1(�)

)
,

(2.3)

where ν(T) exists for any T > 0. The last property implies that the average stress τ(t) =∫
�
σp(t, σ)dσ belongs to L∞(0, T). From δ0 ∈ H−1(�) and the above properties, it follows that

∂tp ∈ L2(0, T ;H−1(�)).
Our aim is to approximate the solution to the nonlinear partial differential equation

given in (2.1) by solving an implicit discrete problem based on finite differences. We begin by
discretizing the unbounded spacial domain � via a uniform grid with space step h = Δσ. Let
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Figure 1: Numerical grid.

(σi)i∈� ⊂ � be such that σ0 = 0 and |σi+1 − σi| = h. We fix h so as σ−2n1 = −1 and σ2n1 = 1. In
our numerical simulations, we will always take p0 in such a way that its support is contained
in [−S, S] with S = hN sufficiently large, and we truncate this unbounded grid for |i| > N. If
p0 has an unbounded support, we can take S large enough in order to achieve

∫S
−S p

0dσ ≈ 1.
Similarly, we discretize the time domain with a time stepΔt = s. The resulting numerical grid
is illustrated in Figure 1.

Denote by ‖Δ‖
�2N+1 and (Δ,Δ)

�2N+1 the usual norm and scalar product in �2N+1 . Let us
define the following norms in �2N+1 :

∥
∥p
∥
∥
l
1N :=

N∑

i=−N
(|i| + 1)

∣∣pi
∣∣

∥
∥p
∥
∥
l1NS

:=
h

3

⎡

⎢⎢⎢
⎣

∑

|i|≤N
i is even

2
∣
∣pi
∣
∣ +

∑

|i| ≤ N
i is odd

4
∣
∣pi
∣
∣

⎤

⎥⎥⎥
⎦
,

(2.4)

for p ∈ �2N+1 . Obviously, all these norms are equivalent in �2N+1 .
We shall implement an implicit scheme in finite differences by using the following

approximations. Let p(n)
h

= (pni )i∈(−N,N) denote the vector grid satisfying pni ≈ p(tn, σi). Since
the partial differential equation (2.1) is of evolution type, we approximate ∂tp at the point
(tn, σi) by the forward difference

∂tp(tn, σi) ≈
pn+1i − pni

s
. (2.5)
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In order to approximate ∂σσp at the point (tn, σi), we define the operatorAN
h

: �2N+1 →
�
2N+1 by AN

h
:= (1/(2h)2)AN , where

AN :=

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

1 0 −1 0 · · · 0 0 0

0 1 0 −1 0 · · · 0 0

−1 0 2 0 −1 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . 0

0 · · · 0 −1 0 2 0 −1
0 0 · · · 0 −1 0 1 0

0 0 0 · · · 0 −1 0 1

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

(2N+1)×(2N+1)

, (2.6)

and we take −(∂2p/∂σ2)(tn, σi) ≈ (AN
h
p
(n+1)
h

)i. This choice is necessary for the matrix AN
h

to
satisfy the condition

(
AN

h u, v
)

�2N+1
=
(
u,AN

h v
)

�2N+1
= 0, (2.7)

where

v = (ai)|i|≤N =
h

3

(
2β, . . . , 2, 4,

(i=0)
2 , 4, 2, . . . , 2β

)
, (2.8)

being β = 1, ifN is even, and being β = 2, ifN is odd. This follows from (AN
h
v)

i
= 0, for any i.

Observe also that (u, v)
�2N+1 = ‖u‖l1NS , which together with equality (2.7) is a key fact to prove

Theorem 2.1 (see below).
We define also the matrix BN

h
:= (1/(2h))BN , where

BN :=

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0 0 0 0 · · · 0 0 0

0 0 0 0 0 · · · 0 0

1 0 −1 0 0 0 · · · 0

0
. . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . .

...

0 · · · 0 1 0 −1 0 0

0 0 · · · 0 1 0 −1 0

0 0 0 · · · 0 1 0 −1

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

(2N+1)×(2N+1)

, (2.9)

which satisfies AN
h = (BN

h )TBN
h , where the superscript “T” stands for “transpose”.
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The integral (α/T0)
∫
|σ|>1 p(t, σ)dσ is approximated by

DN
h

(
pnh
)
=

α

T0

h

3

⎛

⎜⎜
⎝

∑

2n1<|k|≤N
k is odd

4pnk +
∑

2n1<|k|≤N
k is even

2pnk

⎞

⎟⎟
⎠, (2.10)

which is a slight variation of the Simpson formula. The only difference is that the weight for
the terms p2n1 and p−2n1 is equal to zero instead of 1. Observe that we can also set DN

h
(p(n)

h
) =

α/T0(p
(n)
h , χN

n1
v)
�2N+1, where

χN
n1

=

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢
⎣

1

. . .
N − 2n1︸ ︷︷ ︸

1

0 0

0

0

. . .
4n1 + 1
︸ ︷︷ ︸

0

0

0 0

1

. . .
N − 2n1︸ ︷︷ ︸

1

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥
⎦

(2N+1)×(2N+1)

. (2.11)

Finally, the δ-function δ0 will be approximated by the following piecewise parabolic
function:

δc(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for σ ≤ − 3
2c

,

4
9

(
c3σ2 + 3c2σ +

9c
4

)
for − 3

2c
≤ σ ≤ 0,

4
9

(
c3σ2 − 3c2σ +

9c
4

)
for 0 ≤ σ ≤ 3

2c
,

0 for σ ≥ 3
2c

.

(2.12)

This function is continuous, its support is [−3/(2c), 3/(2c)], and it attains the
maximum value at σ = 0, which is equal to c > 0. Also, the integral

∫
�
δc(σ)dσ equals 1 (see

Figure 2). Let us take c such that 3/(2ch) = nc is even and let nc < 2n1 so as 3/(2c) < 1, that
is, the support of δc is strictly included in the interval [−1, 1]. Then at σi = ih this function
looks as
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−S −1 −3/(2c) 0 3/(2c) 1 S

δ
c
(σ

)

Dirac delta function

c

σ

Figure 2: Approximation of Dirac delta function.

δc(σi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i ≤ −nc,

3σ2
i + 6hncσi + 3h2n2

c

2h3n3
c

for − nc ≤ i ≤ 0,

3σ2
i − 6hncσi + 3h2n2

c

2h3n3
c

for 0 ≤ i ≤ nc,

0 for i ≥ nc,

(2.13)

or

δc(σi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for i ≤ −nc,

3i2 + 6nci + 3n2
c

2hn3
c

for − nc ≤ i ≤ 0,

3i2 − 6nci + 3n2
c

2hn3
c

for 0 ≤ i ≤ nc,

0 for i ≥ nc.

(2.14)

Denote δc
i = δc(σi).

Substituting all the above discretization formulas into the partial differential equation
(2.1), we get the following algebraic system for each integer n ≥ 0:

pn+1i − pni
s

= −DN
h

(
p
(n)
h

)(
AN

h p
(n+1)
h

)

i

− 1
T0

χ�\[−2n1,2n1](i)p
n
i +

DN
h

(
p
(n)
h

)

α
δc
i , |i| ≤ N, n ≥ 0.

(2.15)
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Bearing in mind that AN
h

= (1/(2h)2)AN and denoting by κ = s/(2h)2 = s/(4h2), the
difference scheme system (2.15) can then be equivalently written in the form

pn+1i + κDN
h

(
p
(n)
h

)
·
(
ANp

(n+1)
h

)

i
= pni −

s

T0
χ�\[−2n1,2n1](i)p

n
i +

s

α
DN

h

(
p
(n)
h

)
δc
i , (2.16)

which can be expressed in matrix form as

Mnp
(n+1)
h = Cp

(n)
h +

s

α
Dnδ

c
h, (2.17)

where

Mn = I2N+1 + κDnA
N, C = I2N+1 − s

T0
χN
n1
, Dn = DN

h

(
p
(n)
h

)
, δc

h =
(
δc
i

)
. (2.18)

Observe that the matrix C depends on the time step s, while Mn depends on the steps h and
s. It is easy to check that Mn is strictly diagonally dominant for all n ∈ �. In particular, this
fact guarantees that Mn is nonsingular and the system (2.17) has a unique solution for every
n > 0. Recall also the following result.

Theorem 2.1 (see [5]). Assume that 0 < s ≤ T0. If p0h ≥ 0 and ‖p0
h
‖
l1NS

= 1, then p
(n)
h

≥ 0 and

‖p(n)
h

‖
l1NS

= 1, for all n ≥ 1.

3. Numerical Simulation

We present in this section some numerical solutions of the simplified model (2.1)made with
the finite difference scheme (2.15). For simplicity, let us consider the case where T0 = 1. We
shall consider two cases dependingwhether α > 0.5 or α ≤ 0.5 with different initial conditions
p0, which may or not have support intersecting the interval [−1, 1]. We shall not plot cases
when the support of p0 is totally contained in [−1, 1], since in such a case p0 would be a fixed
point of the discrete system (2.15). Therefore, we will focus on cases such that supp(p0)

⋂
(�\

[−1, 1])/= ∅.

Case 1 (α > 0.5). In this case all the probability densities whose support is totally contained
in [−1, 1] are fixed points of the system. It is known [3] that for the continuous system, the
unique fixed point whose support is not totally contained in [−1, 1] is given by

pf(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
D

2α
e(1+σ)/

√
D for σ ≤ −1,

1
2α

σ +

√
D + 1
2α

for − 1 ≤ σ ≤ 0,

− 1
2α

σ +

√
D + 1
2α

for 0 ≤ σ ≤ 1,

√
D

2α
e(1−σ)/

√
D for σ ≥ 1,

(3.1)
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where D = D(pf ) satisfies the equation D +
√
D = α − (1/2) in order for the normalization

constraint
∫
�
pf = 1 to hold true. Furthermore, this fixed point is stable (see [6]).

In the next experiments, we shall take the constants α = 0.8 and T0 = 1 and we define
the spacial and time mesh size Δσ = h = 0.001 and Δt = s = 0.1, respectively. Other choices
of α > 0.5 lead to similar results. The numerical simulations will be plotted as a sequence of
discrete functions converging to a fixed point. The initial condition and the fixed point will
be drawn in black, and between both there are a sequence of plots converging to the fixed
point which are drawn in a thinner black. We shall consider different cases depending on the
initial conditions, and we shall discuss the results.

Subcase 1. Consider the initial condition p0 with support out of [−1, 1] given by

p0(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for σ < −2.5,
0.75 for − 2.5 ≤ σ ≤ −1.5,
0 for − 1.5 < x < 1.5,

0.25 for 1.5 ≤ σ ≤ 2.5,

0 for σ > 2.5.

(3.2)

The numerical results (see Table 1 and Figure 3) show how the sequence converges to the
fixed point (3.1).

Subcase 2. Consider the initial condition p0 with support in and out of [−1, 1] given by

p0(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for σ < 0,

0.5 for 0 ≤ σ ≤ 2,

0 for σ > 2.

(3.3)

We observe (see Table 2 and Figure 4) the same behavior as in Subcase 1.

Subcase 3. Consider a parabolic-type initial condition with support in and out of [−1, 1] given
by

p0(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for σ < −2,
3
16

σ2 for − 2 ≤ σ ≤ 2,

0 for σ > 2.

(3.4)

We obtain a similar behavior as in the above cases (see Table 3 and Figure 5).
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Table 1:Numerical results: Subcase 1

Time(=tn) Dn ‖pf–p(n)h
‖
l1NS

‖p(n)
h

‖
l1NS

0 0.8 1.05652 1
0.1 0.705458 0.816505 1
0.2 0.622759 0.684835 1
0.3 0.554732 0.590543 1
0.5 0.452966 0.4604 1
0.8 0.353125 0.339992 1
1.3 0.255866 0.22828 1
2.3 0.163415 0.127484 1
6.3 0.0778101 0.0293551 1
50 0.058259 0.00174592 1

0

0.2

0.4

0.6

0.8

1

−4 −2 0 2 4

−1 1

p
(t
,σ

)

Variable σ

p0(σ)

p0(σ)

pf (σ)

α = 0.8 T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001

Figure 3: Graphics sequence: Subcase 1.

Subcase 4. We start from an initial condition verifying D(p0) ≈ 0 given by

p0(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for σ < −0.3,

1.65 for − 0.3 ≤ σ ≤ 0.3,

0 for 0.3 < σ < 1.5,

0.02 for 1.5 ≤ σ ≤ 2,

0 for σ > 2.

(3.5)

The sequence approaches to a fixed point whose support is contained in [−1, 1] (see Table 4
and Figure 6).

This fact leads to the hypothesis that besides the fixed point (3.1) there are stable fixed
points p for (2.1) with support contained in [−1, 1].
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Table 2: Numerical results: Subcase 2.

Time(=tn) Dn ‖pf–p(n)h
‖
l1NS

‖p(n)
h

‖
l1NS

0 0.399733 0.707458 1
0.1 0.364271 0.595094 1
0.3 0.309402 0.469011 1
0.6 0.252906 0.350344 1
1.1 0.19497 0.234926 1
2 0.140035 0.133475 1
5.2 0.0801411 0.0353912 1
50 0.058259 0.00174438 1

0

0.2

0.4

0.6

0.8

1
−1 1

p
(t
,σ

)

Variable σ

−3 −2 −1 0 1 2 3 4

p0(σ)

pf (σ)

α = 0.8 T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001

Figure 4: Graphics sequence: Subcase 2.

Subcase 5. As in Subcase 4, consider an initial condition verifying D(p0) ≈ 0 given by

p0(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for σ < −1,
0.49995 for − 1 ≤ σ ≤ 1,

0 for 1 < σ < 1.5,

0.0001 for 1.5 ≤ σ ≤ 2.5,

0 for σ > 2.5.

(3.6)

On the contrary, this sequence approaches to the fixed point (3.1) (see Table 5 and Figure 7).
In fact, this is the usual behavior of the system in the majority of cases.

We note that, usually, when we take an arbitrary fixed point with support in the
interval [−1, 1] and an initial data close to it, then the numerical solution converges as time
goes +∞ to a fixed point situated far away. Hence, we think that most of the fixed points of
such type are unstable. However, we prove in Section 2 that some of them are stable if α < 0.5.

Case 2 (α ≤ 0.5). In this case the probability densities with support totally included in [−1, 1]
are the unique fixed points. Let us take the constants α = 0.3 and T0 = 1. We define the spacial
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Table 3: Numerical results: Subcase 3.

Time(=tn) Dn ‖pf–p(n)h
‖
l1NS

‖p(n)
h

‖
l1NS

0 0.6999 0.912096 1
0.1 0.600363 0.695849 1
0.2 0.525382 0.581376 1
0.4 0.421593 0.439187 1
0.7 0.326635 0.318878 1
1.2 0.23797 0.213573 1
2.3 0.149904 0.114729 1
8.2 0.0680922 0.0154131 1
50 0.0582591 0.00174539 1

0

0.2

0.4

0.6

0.8

1

−4 −2 0 2 4

−1 1

p
(t
,σ

)

Variable σ

p0(σ)
pf (σ)

α = 0.8 T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001

Figure 5: Graphics sequence: Subcase 3.

and time mesh size Δσ = h = 0.001 and Δt = s = 0.1, respectively. As in Case 1, the numerical
simulations will be plotted by a sequence of plots converging to a fixed point. The initial
condition and the fix point are both drawn in a thicker black. Let us take the same first three
initial conditions as in Case 1.

Subcase 1. Consider an initial condition p0 with support out of [−1, 1] given by (3.2). In
this case, the sequence converges to a fixed point with support in [−1, 1] (see Table 6 and
Figure 8).

Subcase 2. Consider an initial condition p0 with support in and out of [−1, 1] given by (3.3).
We also obtain a sequence approaching to a fixed point with support in [−1, 1] (see Table 7
and Figure 9).

Subcase 3. Consider a parabolic initial condition p0 with support in and out of [−1, 1] given
by (3.4). A similar behavior is obtained (see Table 8 and Figure 10).

Observe that in the three cases we obtain a sequence converging to different fixed
points, although all of them have support [−1, 1]. This fact leads to the hypothesis that if
α ≤ 0.5 and is taken an initial condition whose support is not contained in [−1, 1], then the
iterates of the discrete system converge to a fixed point with support in [−1, 1].
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Table 4: Numerical results: Subcase 4.

Time(=tn) Dn ‖p(500)
h

–p(n)
h

‖
l1NS

‖p(n)
h

‖
l1NS

0 0.008 0.397056 1
0.1 0.0072 0.262505 1
0.3 0.005832 0.172329 1
0.9 0.00309936 0.0718397 1
50 1.18676e-25 0 1

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1

−1 1

1.5 2 2.5

p
(t
,σ

)

Variable σ

p0(σ)

p(500)(σ)

α = 0.8 T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001

p0(σ)

Figure 6: Graphics sequence: Subcase 4.

Table 5: Numerical results: Subcase 5.

Time(=tn) Dn ‖pf–p(n)h
‖
l1NS

‖p(n)
h

‖
l1NS

0 8e−05 0.270682 1
0.6 0.027615 0.217782 1
1.3 0.0589046 0.129579 1
3.1 0.0739296 0.0368412 1
50 0.0582589 0.00173631 1

0

0.2

0.4

0.6

0.8

1
−1 1

p
(t
,σ

)

Variable σ

−3 −2 −1 0 1 2 3

p0(σ)

p0(σ)

pf (σ)

α = 0.8 T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001

Figure 7: Graphics sequence: Subcase 5.
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Table 6: Numerical results: Subcase 1.

Time(=tn) Dn ‖p(500)
h

–p(n)
h

‖
l1NS

‖p(n)
h

‖
l1NS

0 0.3 1.14095 1
0.1 0.268792 0.945352 1
0.2 0.240264 0.817591 1
0.3 0.214826 0.716764 1
0.5 0.172795 0.564541 1
0.7 0.140451 0.454826 1
1 0.104849 0.339219 1
1.4 0.0730429 0.240026 1
2.1 0.0411177 0.144771 1
4.3 0.00929853 0.0514336 1
50 9.89956e−06 0 1

0

0.2

0.4

0.6

0.8

1

−4 −2 0 2 4

−1 1

p
(t
,σ

)

Variable σ

p0(σ)

p0(σ)

1.2
p(500)(σ)

T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001α = 0.3

Figure 8: Graphics sequence: Subcase 1.

4. Stability

Again we take T0 = 1. In this section we prove that if α < 0.5, then some fixed points with
support totally included in [−1, 1] are stable. In fact, due to the numerical simulations, we
believe that this result holds true also for α ≥ 0.5. Some examples are also exhibited.

We consider the function

θ(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(1 − a)2
(σ + a)2 for − 1 ≤ σ ≤ −a,

0 for − a ≤ σ ≤ a,

1

(1 − a)2
(σ − a)2 for a ≤ σ ≤ 1,

1 ≤ θ ≤ 2 for 1 ≤ |σ| ≤ 1 + b,

2 for |σ| ≥ 1 + b,

(4.1)
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Table 7: Numerical results: Subcase 2.

Time(=tn) Dn ‖p(500)
h

–p(n)
h

‖
l1NS

‖p(n)
h

‖
l1NS

0 0.1499 0.78167 1
0.1 0.135835 0.682456 1
0.3 0.1126 0.554505 1
0.6 0.0864183 0.424413 1
1 0.0622293 0.311188 1
1.6 0.0396164 0.209146 1
2.8 0.0179062 0.112225 1
11 0.000697678 0.0147486 1
50 1.42e−05 0 1

0

0.2

0.4

0.6

0.8

1

−1 1

p
(t
,σ

)

p0(σ)

1.2
p(500)(σ)

Variable σ

−3 −2 −1 0 1 2 3 4

T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001α = 0.3

Figure 9: Graphics sequence: Subcase 2.

where 0 < a < 1, b > 0, θ(σ) is smooth on |σ| > a and |θ′′(σ)| ≤ 2/(1 − a)2 for any σ.
Sometimes, total or partial derivatives with respect to σ be denoted by subindices like, for
example, in θσσ and pσ below.

Lemma 4.1. Denote η = 1/(1 − a)2 and assume that α < 1/2η. Let p(·) be the unique solution
corresponding to the initial data p0 satisfying (2.2). Then

∫ t

0

∫

|σ|>1
p(t, σ)dσdt ≤ 1

1 − 2ηα

∫

�

p0(σ)θ(σ)dσ, ∀ t ≥ 0. (4.2)

Proof. Let p(·) be the unique solution corresponding to the initial data p0 such thatD(p0) > 0.
Multiplying (2.1) by θ we have

d

dt

∫

�

p(t, σ)θ(σ)dσ +
∫

�

1�\[−1,1](σ)p(t, σ)θ(σ)dσ = D
(
p(t)
)
∫

�

p(t, σ)θσσ(σ)dσ

≤ 2ηD
(
p(t)
)
= 2ηα

∫

|σ|>1
p(t, σ)dσ.

(4.3)
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Table 8: Numerical results: Subcase 3.

Time(=tn) Dn ‖p(500)
h

–p(n)
h

‖
l1NS

‖p(n)
h

‖
l1NS

0 0.262463 1.02875 1
0.1 0.231699 0.852257 1
0.2 0.205521 0.738885 1
0.4 0.163906 0.577043 1
0.6 0.132827 0.46447 1
0.9 0.0992477 0.348402 1
1.3 0.0695707 0.249958 1
2.1 0.0369394 0.14574 1
4.5 0.00806068 0.0513328 1
50 1.18855e−05 0 1

0

0.2

0.4

0.6

0.8

1

−1 1

p
(t
,σ

)

p0(σ)

T0 = 1 s = ∆t = 0.1 S = 10

1.2
p(500)(σ)

Variable σ

−3 −2 −1 0 1 2 3 4−4

h = ∆σ = 0.001α = 0.3

Figure 10: Graphics sequence: Subcase 3.

Hence,

d

dt

∫

�

p(t, σ)θ(σ)dσ +
(
1 − 2ηα

)
∫

|σ|>1
p(t, σ)dσ ≤ 0,

(
1 − 2ηα

)
∫ t

0

∫

|σ|>1
p(t, σ)dσdt ≤

∫

�

p(0, σ)θ(σ)dσ.
(4.4)

These calculations are formal, but can be justified by using a cutoff function.

Let f(σ) : [0, 1] → �
+ be such that f ∈ C2([0, 1]), f ′′(σ) ≥ 0, f ′(σ) ≤ 0, f(a) = 0, and∫a

0 f(σ)dσ = 1/2. We define v(σ) by

v(σ) =

⎧
⎪⎪⎨

⎪⎪⎩

f(σ) for 0 ≤ σ ≤ a,

f(−σ) for − a ≤ σ ≤ 0,

0 for |σ| ≥ a.

(4.5)

We note that v ∈ H1(�). AsD(v) = 0 and
∫
�
f(σ)dσ = 1, we obtain that v is a fixed point.
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Denote by ‖ · ‖ the norm in L2(�).

Theorem 4.2. Let α < (1 − a)2/2. If

(−2αfσ(0) + 1
)2

8α
− f(0) ≤ 0, (4.6)

then the fixed point v is stable with respect to initial data p0 satisfying (2.2) in the following sense: for
any ε > 0 there exists δ > 0 such that if ‖p0–v‖ < δ and

∫
�
|p0(σ)–v(σ)|dσ < δ, then

∥∥p(t)–v
∥∥ < ε ∀ t ≥ 0. (4.7)

Proof. Let p(·) be the unique solution corresponding to the initial data p0 such thatD(p0) > 0.
Denote z(t) = p(t)–v. Multiplying (2.1) by z, we have

1
2
d

dt
‖z‖2 = α

∫

|σ|>1
p(t, σ)dσ

(
−
∫

�

∣∣pσ
∣∣2dσ +

∫

�

pσvσdσ

)

−
∫

|σ|>1

∣∣p(t, σ)
∣∣2dσ +

∫

|σ|>1
p(t, σ)dσ

(
p(t, 0) − f(0)

)
.

(4.8)

We use that

∫

�

pσvσdσ = fσ(a)p(t, a) − fσ(0)p(t, 0) −
∫a

0
pfσσdσ

+ fσ(a)p(t,−a) − fσ(0)p(t, 0) −
∫0

−a
pfσσdσ

≤ fσ(a)
(
p(t, a) + p(t,−a)) − 2fσ(0)p(t, 0).

(4.9)

Denote b = −fσ(0), c = f(0). Thus

1
2
d

dt
‖z‖2 +

∫

|σ|>1

∣∣p(t, σ)
∣∣2dσ

≤
∫

|σ|>1

∣∣p(t, σ)
∣∣2dσ

(
(2αb + 1)p(t, 0) − α

∫

�

∣∣pσ
∣∣2dσ + αfσ(a)

(
p(t, a) + p(t,−a)) − c

)
.

(4.10)

Now

p(t, 0) = p(t,−a) +
∫0

−a
pσ(t, σ)dσ,

p(t, 0) = p(t, a) −
∫a

0
pσ(t, σ)dσ,

(4.11)
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so

(2αb + 1)p(t, 0) ≤ (2αb + 1)
2

(
p(t,−a) + p(t, a)

)
+
(2αb + 1)

2

∫a

−a

∣
∣pσ(t, σ)

∣
∣dσ

≤ (2αb + 1)
2

(
p(t,−a) + p(t, a)

)
+
(2αb + 1)

2

(∫a

−a

∣∣pσ(t, σ)
∣∣2dσ

)1/2

(2a)1/2

≤ (2αb + 1)
2

(
p(t,−a) + p(t, a)

)
+ α

∫a

−a

∣
∣pσ(t, σ)

∣
∣2dσ +

(2αb + 1)2

8α
.

(4.12)

Hence

1
2
d

dt
‖z‖2 +

∫

|σ|>1

∣∣p(t, σ)
∣∣2dσ ≤

∫

|σ|>1

∣∣p(t, σ)
∣∣2dσ

(
(2αb + 1)2

8α
− c − α

∫

|σ|>a

∣∣pσ
∣∣2dσ

+
(
αfσ(a) +

(2αb + 1)
2

)(
p(t, a) + p(t,−a))

)
.

(4.13)

Denote d = αfσ(a) + (2αb + 1)/2. Using (4.6), (4.13), and the inequality |u(x)|2 ≤
2‖u‖L2(I)‖uσ‖L2(I), for any x ∈ I (an interval of �) and u ∈ H1(I) (see [7, page 129]), we
have

d

α
p(t,−a) ≤ d

α

√
2
(∫−a

−∞

∣∣p
∣∣2dσ

∫−a

−∞

∣∣pσ
∣∣2dσ

)1/4

≤
∫−a

−∞

∣∣pσ
∣∣2dσ +

3
4

(
d

α

)4/3(∫−a

−∞

∣∣p
∣∣2dσ

)1/3

,

d

α
p(t, a) ≤ d

α

√
2
(∫∞

a

∣∣p
∣∣2dσ

∫∞

a

∣∣pσ
∣∣2dσ

)1/4

≤
∫∞

a

∣∣pσ
∣∣2dσ +

3
4

(
d

α

)4/3(∫∞

a

∣∣p
∣∣2dσ

)1/3

,

1
2
d

dt
‖z‖2 + ∫|σ|>1

∣∣p(t, σ)
∣∣2dσ ≤ 3α

2

(
d

α

)4/3 ∫
|σ|>1
∣∣p(t, σ)

∣∣dσ
(∫

|σ|>a
∣∣p(t, σ)

∣∣2dσ
)1/3

.

(4.14)

It is known [4] that for any R > 0 there exists N(R) such that

∥
∥p(t)

∥
∥ ≤ N(R), ∀ t ≥ 0, (4.15)

if ‖p0‖ ≤ R. Hence by Lemma 4.1, we have

∥∥p(t) − v
∥∥2 = ‖z(t)‖2 ≤ ‖z(0)‖2 + 3α

(
d

α

)4/3

(N(R))2/3
∫ t

0

∫

|σ|>1

∣∣p(t, σ)
∣∣dσ

≤
∥∥∥p0 − v

∥∥∥
2
+
3α−1/3d4/3(N(R))2/3

1 − 2ηα

∫

�

p0(σ)θ(σ)dσ.

(4.16)
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We note that
∫
�
v(σ)θ(σ)dσ = 0. Hence, for any γ > 0 there exists δ > 0 such that∫

�
|p0(σ) − v(σ)|dσ < δ implies

∫

�

p0(σ)θ(σ)dσ ≤
∫

�

∣∣∣p0(σ) − v(σ)
∣∣∣θ(σ)dσ ≤ 2

∫

�

∣∣∣p0(σ) − v(σ)
∣∣∣dσ < γ. (4.17)

From here the stability follows.

Let us consider now particular examples of stable fixed points.

Example 4.3. Take α = 0.1 and

v(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A + Bσ +
C

σ −D
for 0 ≤ σ ≤ 1

2
,

A − Bσ +
C

−σ −D
for − 1

2
≤ σ ≤ 0,

0 for |σ| ≥ 1
2
,

(4.18)

where C = 0.05, D = −0.01, and B = 8C/(D − 1) + 8C ∗ log(|(1− 2D)/(2D)|)− 4,A = 2C/(2D −
1) − B/2. Here a = 0.5 and α < (1 − a)2/2 = 1/8.

This function satisfies
∫1/2
0 vdσ = 1/2, v(1/2) = 0, and

vσ(0+) = −6.5536, v(0) = 8.1537,

K = (1 + 2α(−vσ(0+)))
2 − 8αv(0) = −1.1836,

(4.19)

so that (4.6) holds. Hence, by Theorem 4.2, v is stable in the above sense.
Taking an initial condition close to v, for instance,

p0(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v(σ − a) for σ ≤ 0,

v(σ + a) for 0 ≤ σ < 1.5,

c for 1.5 ≤ σ ≤ 2,

0 for σ > 2,

(4.20)

where a = 0.001 and c = 0.02238, we obtain the numerical results collected in Table 9 (see
also Figure 11).

If we take an initial condition closer to v than before, for instance,

p0(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v(σ − a) for σ ≤ 0,

v(σ + a) for 0 ≤ σ < 1.5,

c for 1.5 ≤ σ ≤ 2,

0 for σ > 2,

(4.21)
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Table 9:Numerical results: Stable fixes point.

Time(=tn) Dn ‖v–p(n)
h

‖
l1NS

‖p(n)
h

‖
l1NS

0 0.001119 0.0420466 1
0.1 0.0010071 0.152997 1
0.4 0.000734176 0.241727 1
4.1 1.48858e−05 0.31577 1
50 1.64377e−26 0.316667 1
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v(σ)p0(σ)
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T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001α = 0.1

Figure 11: Graphics sequence: Example 4.3.

where a = 0.0001, and c = 0.00057414, then we obtain the numerical results collected in
Table 10 (see also Figure 12).

Hence, the solution remains near this fixed point if the initial data is close to it.

Example 4.4. Take α = 0.1 and

v(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A + Bσ +
C

σ −D
for 0 ≤ σ ≤ 1

2
,

A − Bσ +
C

−σ −D
for − 1

2
≤ σ ≤ 0,

0 for |σ| ≥ 1
2
,

(4.22)

where C = 0.1, D = −0.01 and B = 8(C/(D − 1)) + 8C ∗ log(|((1 − 2D)/(2D))|) − 4, A =
2C/(2D − 1) − B/2. Here a = 0.5 and α < (1 − a)2/2 = 1/8.
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Table 10: Numerical results: Stable fixed point.

Time(=tn) Dn ‖v–p(n)
h

‖
l1NS

‖p(n)
h

‖
l1NS

0 2.87e−05 0.00416863 1
50 4.21594e−28 0.0949217 1
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Figure 12: Graphics sequence: Example 4.3.

This function satisfies
∫1/2
0 vdσ = 1/2, v(1/2) = 0 and

vσ(0+) = −9.1071, v(0) = 14.3075,

K = (1 + 2α(−vσ(0+)))
2 − 8αv(0) = −3.4855,

(4.23)

so that (4.6) holds.
Hence, by Theorem 4.2, v is stable.

Example 4.5. Take α = 0.3 and

v(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A + Bσ +
C

σ −D
for 0 ≤ σ ≤ 0.2,

A − Bσ +
C

−σ −D
for − 0.2 ≤ σ ≤ 0,

0 for |σ| ≥ 0.2,

(4.24)
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Table 11: Numerical results: Unstable fixed point.

Time(=tn) Dn ‖u–p(n)
h

‖
l1NS

‖p(n)
h

‖
l1NS

0 0.001 0.0122474 1
1.4 0.00175508 0.102968 1
5.8 0.000545087 0.183122 1
50 3.77079e−06 0.230102 1
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T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001α = 0.1

Figure 13: Graphics sequence: Unstable fixed point.

where C = 0.11, D = −0.005, and B = 2(C/(a(D − a))) + 2(C/a2) ∗ log(|(a − D)/D|) − 1/a2,
A = (C/(D − a))) − aB. Here a = 0.2, and α < (1 − a)2/2 = 0.32.

This function satisfies
∫0.2
0 vdσ = 1/2, v(0.2) = 0 and

vσ(0+) = −10.0512, v(0) = 23.4517,

K = (1 + 2α(−vσ(0+)))
2 − 8αv(0) = −6.8529,

(4.25)

so that (4.6) holds. Hence, by Theorem 4.2 v is stable.
We can see that for a given α < 1/2 more than one stable point exists. Finally, we shall

give an example of an unstable fixed point for α = 0.1. Let us consider the fixed point given
by

u(σ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for σ < −1,
0.5 for − 1 ≤ σ ≤ 1,

0 for σ > 1,

(4.26)
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Table 12: Numerical results: Unstable fixed point.

Time(=tn) Dn ‖u–p(n)
h

‖
l1NS

‖p(n)
h

‖
l1NS

0 1e−05 0.000122474 1
2.8 0.00110966 0.101461 1
9.9 0.000274849 0.183757 1
50 5.14826e-06 0.21686 1
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T0 = 1 s = ∆t = 0.1 S = 10h = ∆σ = 0.001α = 0.1

Figure 14: Graphics sequence: Unstable fixed point.

and the initial condition

p0(σ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for σ < −1,
c1 for − 1 ≤ σ ≤ 1,

0 for 1 < σ < 1.5,

c2 for 1.5 ≤ σ ≤ 2.5,

0 for σ > 2.5,

(4.27)

where the constants c1 and c2 are chosen in such a way that p0 is close enough. For c1 =
0.495 and c2 = 0.01 we obtain the numerical results given in Table 11 (see Figure 13). For
c1 = 0.49995 and c2 = 0.0001 the numerical results are given in Table 12 (see Figure 14). These
numerical results show that the fixed point pf is unstable.

5. Conclusions

For problem (2.1) with T0 = 1, we have proved in Theorem 4.2 that if α < 0.5, then a class
of fixed points with support inside the interval [−1, 1] is stable. It would be interesting to
prove such result for α ≥ 0.5, as the numerical simulations suggest that this is true. It follows
from such hypothesis that the unique fixed point with support not contained in the interval
[−1, 1] is not globally asymptotically stable, that is, not all solutions which are not fixed points
converge to it as time goes to +∞, although it seems that most of solutions behave in this way.
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On the other hand, we have obtained in this paper numerical simulations of the
solutions leading to the following conjectures.

(1) Every solution of the equation converges to a fixed point as time goes to +∞, that
is, the omega-limit set of every trajectory is a fixed point.

(2) Most fixed points with support in the interval [−1, 1] are unstable.
These are interesting open problems to consider for the near future.
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