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This paper studies the asymptotic stability problem for a class of uncertain impulsive
switched systems with discrete and distributed delays. Based on Lyapunov functional theory,
delay-dependent sufficient LMI conditions are established for the asymptotic stability of the
considered systems. Moreover, an appropriate feedback controller is constructed for stabilizing the
corresponding closed-loop system. The results are illustrated to be efficient through an example.

1. Introduction

A switched system is a type of hybrid system which is a combination of discrete and
continuous dynamical systems. These systems arise as models for phenomena which cannot
be described by exclusively continuous or exclusively discrete processes. Recently, on the
basis of Lyapunov functions and other analysis tools, the stability and stabilization for
switched systems have been investigated and many variable results have been obtained; see
[1–4]. In general, the switched systems which have been widely studied in the literature can
be classified into two groups: continuous switched systems and discrete switched systems.
However, both of these classes do not cover some useful switched systems existing in the
real world displaying a certain kind of dynamics with impulse effect at the switching points,
that is, the states jump. Studies on the dynamic systems with impulsive effect and switching
have arisen in various fields of science and engineering in recent years; see [5–11]. These
systems are called impulsive switched systems, which are useful to model those physical
phenomena that exhibit abrupt changes at certain time points due to impulsive inputs or
switching. For these systems, there is an increasing interest among the control community in
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terms of stability analysis and the design of stabilizing feedback controller so as to achieve a
required stability performance. For example, in [6], the authors studied a class of uncertain
impulsive switched systems with delay input; in [7], the author studied a class of impulsive
switched systems; by constructing appropriate Lyapunov-Krasovskii functions and using
LMI approach, some asymptotic stability criteria were obtained and some appropriate
feedback controllers were constructed. To the best of the authors’ knowledge, most of
the papers have studied the delay-independent stability criteria, and few delay-dependent
results have been reported in the literature concerning the problem of robust stability for the
impulsive switched systems. This motivates our research.

On the other hand, time delays and uncertainties happen frequently in various
engineering, biological, and economical systems, and they many result in instability. Many
stability criteria have been derived for continuous dynamical systems with time delays
or uncertainties; see [12–14]. However, such fewer results have been reported for stability
analysis and control of impulsive switched systems with distributed time delays.

In this paper, the problem of delay-dependent stability analysis and synthesis for
impulsive switched system with discrete and distributed delays is studied. The uncertainties
under consideration are norm bounded. Based on Lyapunov functional approach and
linear matrix inequality technology, some new delay-dependent stability and stabilization
conditions are derived. Finally, a numerical example is given to demonstrate the effectiveness
of the proposed method.

Notations. Throughout the paper, AT stands for matrix transpose of the matrix A. Rn

is the n-dimensional Euclidean space. Rn×m is the set of all n × m-dimensional matrices. I
denotes the identity matrix of appropriate dimensions. P > 0 (P < 0) means that P is a
symmetric positive definite (negative definite) matrix. ∗ represents the elements below the
main diagonal of a symmetric matrix.

2. Problem Formulation and Preliminaries

Consider the following impulsive switched system with mixed delays:

ẋ(t) = Aikx(t) + Bikx(t − h1) + Cik

∫ t

t−h2

x(s)ds +Diku(t), t /= tk,

Δx(t) = Gkx(t), t = tk,

x(t) = ϕ(t), −h ≤ t ≤ 0,

(2.1)

where x(t) ∈ �
n and u(t) ∈ �

p , n, p ∈ �, are the state vector and the control input,
respectively. h1 > 0, h2 > 0 are time delays, h = max{h1, h2}. Δx(t) = x(t+) − x(t−), where
x(t+) = limv→ 0+x(t + v), x(t−) = limv→ 0+x(t − v). x(tk) = x(t−

k
), which means that the solution

of the system (2.1) is left continuous at the impulsive switched time point tk which satisfies
t0 < t1 < · · · < tk < · · · , limk→+∞tk = +∞. ik ∈ {1, 2, . . . , m}, k,m ∈ �, is a discrete state
variable. {ik, tk} represents a switching rule of the system (2.1), that is, at tk time point, the
system switches to the ik subsystem from the ik−1 subsystem:

Aik = Aik + ΔAik(t), Bik = Bik + ΔBik(t), (2.2)
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Aik ,Bik ,Cik ,Gk ∈ �
n×n , Dik ∈ �

n×p are known constant real matrices. ΔAik(·) and ΔBik (·)
are unknown real norm-bounded matrix functions which represent time-varying parameter
uncertainties, which are of the following form:

(
ΔAik(t) ΔBik(t)

)
= EikFik(t)

(
Hik Jik

)
, (2.3)

where Eik ,Hik , and Jik are known constant real matrices of appropriate dimensions and Fik(t)
is an unknown real time-varying matrix satisfying FT

ik
(t)Fik(t) ≤ I.

Lemma 2.1. Let D, E, and F be matrices with appropriate dimensions. Suppose that FTF ≤ I; then,
for any real scale λ > 0, one has that

DFE + ETFTDT ≤ λDDT + λ−1ETE. (2.4)

Lemma 2.2. For any constant matrix M ∈ �
n×n , M > 0, and a scalar γ > 0, vector function wis

such that the integrations concerned are well defined; then

(∫ γ

0
w(s)ds

)T

M

(∫γ

0
w(s)ds

)
≤ γ

∫ γ

0
wT (s)Mw(s)ds. (2.5)

3. Stability Analysis

Theorem 3.1. Suppose that there exist symmetric positive definite matrices Pik , Qik , Tik , and Rik and
some positive scalars ε1, ε2 such that for ik = 1, 2, . . . , m the following LMIs hold:

(a)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Qik 0 0 Qik 0

∗ −h1Tik 0 h1Tik 0

∗ ∗ −h2Rik h2Rik 0

∗ ∗ ∗ Zik PikEik

∗ ∗ ∗ ∗ −(ε1 + ε2)−1I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.1)

where Zik = PikAik +AT
ik
Pik + ε−11 HT

ik
Hik + I,

(b)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I PikBik 0 PikCik

∗ −Qik + ε−11 JTikJik 0 0

∗ ∗ − 1
h1

Tik 0

∗ ∗ ∗ − 1
h2

Rik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (3.2)
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(c)

(
Pik−1 (I +Gk)TPik

∗ Pik

)
> 0. (3.3)

Then the trivial solution of the impulsive switched system (2.1) with u(t) = 0 is robustly
asymptotically stable.

Proof. When t ∈ (tk, tk+1], consider the Lyapunov-Krasovskii function candidate

V (x(t)) = xT (t)Pikx(t) +
∫ t

t−h1

xT (s)Qikx(s)ds

+
∫0

−h1

∫ t

t+s
xT (u)Tikx(u)duds +

∫0

−h2

∫ t

t+s
xT (u)Rikx(u)duds.

(3.4)

Taking the right upper derivative of V (x(t)) along the solution of the impulsive switched
system (2.1), we have that

D+V (x(t)) ≤ xT (t)(2Pik(Aik + EikFikHik) +Qik + h1Tik + h2Rik)x(t)

− xT (t − h1)Qikx(t − h1) + 2xT (t)Pik(Bik + EikFikJik)x(t − h1)

−
∫ t

t−h1

xT (s)ds
(

1
h1

Tik

)∫ t

t−h1

x(s)ds −
∫ t

t−h2

xT (s)ds
(

1
h2

Rik

)∫ t

t−h2

x(s)ds

+ 2xT (t)PikCik

∫ t

t−h2

x(s)ds.

(3.5)

Define

ξ(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(t)

x(t − h1)∫ t

t−h1

x(s)ds

∫ t

t−h2

x(s)ds

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Φik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ11 Φ12 0 PikCik

∗ −Qik 0 0

∗ ∗ − 1
h1

Tik 0

∗ ∗ ∗ − 1
h2

Rik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.6)

Φ11 = PikAik+A
T
ik
Pik+Qik+h1Tik+h2Rik+PikEikFikHik+H

T
ik
FT
ik
ET
ik
Pik , andΦ12 = PikBik+PikEikFikJik ;

then we have that

D+V (x(t)) ≤ ξT (t)Φik ξ(t). (3.7)



Discrete Dynamics in Nature and Society 5

Let

Ψik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

PikAik +AT
ik
Pik +Qik + h1Tik + h2Rik PikBik 0 PikCik

∗ −Qik 0 0

∗ ∗ − 1
h1

Tik 0

∗ ∗ ∗ − 1
h2

Rik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.8)

Then by Lemma 2.1 and Schur complement, we have that

Φik = Ψik +

⎛
⎜⎜⎜⎜⎜⎝

PikEikFikHik +HT
ik
FT
ik
ET
ik
Pik PikEikFikJik 0 0

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎠

,

≤ Ψik +

⎛
⎜⎜⎜⎜⎜⎝

(ε1 + ε2)PikEikE
T
ik
Pik + ε−11 HT

ik
Hik 0 0 0

∗ ε−12 JTikJik 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎠

,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I PikBik 0 PikCik

∗ −Qik + ε−12 JTikJik 0 0

∗ ∗ − 1
h1

Tik 0

∗ ∗ ∗ − 1
h2

Rik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

Zik 0 0 0

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎠

,

(3.9)

where Zik = PikAik +AT
ik
Pik +Qik + h1Tik + h2Rik + (ε1 + ε2)PikEikE

T
ik
Pik + ε−11 HT

ik
Hik + I.

The stability condition D+V (x(t)) < 0 can be obtained if the following inequalities
hold:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I PikBik 0 PikCik

∗ −Qik + ε−12 JTikJik 0 0

∗ ∗ − 1
h1

Tik 0

∗ ∗ ∗ − 1
h2

Rik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, Zik < 0. (3.10)

By condition (b) of the theorem, the former inequality is satisfied. Zik < 0 will hold if the
following condition is satisfied:

diag
{
−I,−I,−I, Zik ,−I

}
< 0. (3.11)



6 Discrete Dynamics in Nature and Society

Define

Wik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1/2
ik

0 0 0 0

0 h1/2
1 T1/2

ik
0 0 0

0 0 h1/2
2 R1/2

ik
0 0

−Q1/2
ik

−h1/2
1 T1/2

ik
−h1/2

2 R1/2
ik

I −(ε1 + ε2)1/2PikEik

0 0 0 0 (ε1 + ε2)−1/2I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.12)

Then by left multiplying and right multiplying (3.11) by Wik and WT
ik
, respectively, we have

inequality (3.1).
From conditions (3.1) and (3.2), D+V (x(t)) < 0. It means that the impulsive switched

system is robustly asymptotically stable, except possibly at the impulsive switching points.
Next, for the impulsive switching time point tk, we have that

V
(
x
(
t+k
)) − V (x(tk)) = xT(t+k)Pikx

(
t+k
) − xT (tk)Pik−1x(tk)

= xT (tk)
(
(I +Gk)TPik(I +Gk) − Pik−1

)
x(tk).

(3.13)

Obviously, if (I+Gk)TPik(I +Gk)−Pik−1 < 0, we have that V (x(t+
k
))−V (x(tk)) < 0. On the other

hand, by using Schur complement, (I+Gk)TPik(I+Gk)−Pik−1 < 0 is equivalent to condition (c)
of the theorem given by (3.3). Thus, by (3.1), (3.2), and (3.3), the impulsive switched system
(2.1) is robustly asymptotically stable.

This completes the proof.

4. Design of Feedback Controller

In this section, we focus on designing a memoryless state feedback controller in the form of
u(t) = Kikx(t), which stabilizes the uncertain impulsive switched systems with discrete and
distributed delays considered.

Theorem 4.1. Suppose that there exist symmetric positive definite matrices Pik , Qik , Tik , and Rik and
some positive scalars ε1 > 0, ε2, such that for ik = 1, 2, . . . , m LMIs (3.2), (3.3), and the following
LMIs hold:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Qik 0 0 Qik 0

∗ −h1Tik 0 h1Tik 0

∗ ∗ −h2Rik h2Rik 0

∗ ∗ ∗ Zik PikXik

∗ ∗ ∗ ∗ −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, (4.1)

where XikX
T
ik
= (ε1 + ε2)EikE

T
ik
−DikD

T
ik
, Zik = PikAik +AT

ik
Pik + ε−11 HT

ik
Hik + I.



Discrete Dynamics in Nature and Society 7

Then the trivial solution of the impulsive switched system (2.1) is asymptotically stable.
Moreover,

u(t) = Kikx(t), Kik = −1
2
DT

ik
Pik , (4.2)

is a feedback controller which stabilizes the corresponding closed-loop impulsive switched system.

Proof. Substitute u(t) = Kikx(t) and Kik = −(1/2)DT
ik
Pik into the system (2.1). Then the

corresponding closed-loop impulsive switched system is of the form

ẋ(t) = Ãikx(t) + Bikx(t − h1) + Cik

∫ t

t−h2

x(s)ds, t /= tk,

Δx(t) = Gkx(t), t = tk,

x(t) = ϕ(t), −h ≤ t ≤ 0,

(4.3)

where Ãik = Aik − (1/2)DikD
T
ik
Pik + ΔAik(t).

Replacing Aik with Aik − (1/2)DikD
T
ik
Pik in the matrix Φik defined in Theorem 3.1, we

have that

Φik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Φ11 Φ12 0 PikCik

∗ −Qik 0 0

∗ ∗ − 1
h1

Tik 0

∗ ∗ 0 − 1
h2

Rik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.4)

where Φ11 = Pik(Aik − (1/2)DikD
T
ik
Pik) + (Aik − (1/2)DikD

T
ik
Pik)

TPik + Qik + h1Tik + h2Rik +
PikEikFikHik +HT

ik
FT
ik
ET
ik
Pik , and

Φik ≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I PikBik 0 PikCik

∗ −Qik + ε−12 JTikJik 0 0

∗ ∗ − 1
h1

Tik 0

∗ ∗ 0 − 1
h2

Rik

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

Z̃ik 0 0 0

∗ 0 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎠

, (4.5)

where Z̃ik = PikAik +A
T
ik
Pik +Qik +h1Tik +h2Rik + ε

−1
1 HT

ik
Hik + I +Pik ((ε1 + ε2)EikE

T
ik
−DikD

T
ik
)Pik .

Similar to the proof of Theorem 3.1, in what follows, we will prove that the following
LMIs hold:

diag
{
−I,−I,−I, Z̃ik ,−I

}
< 0. (4.6)
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Define

Wik =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1/2
ik

0 0 0 0

0 h1/2
1 T1/2

ik
0 0 0

0 0 h1/2
2 R1/2

ik
0 0

−Q1/2
ik

−h1/2
1 T1/2

ik
−h1/2

2 R1/2
ik

I PikXik

0 0 0 0 −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.7)

where Xik is defined in Theorem 4.1. Then by left multiplying and right multiplying by Wik

and W
T

ik
, respectively, we have the LMIs (4.1). The rest of the proof is similar to that of

Theorem 3.1 and will be omitted.
This completes the proof.

5. Numerical Example

As an illustration, we consider a system in the form of (2.1) under the given switching rule
Δtk ≡ 1, k ∈ �. Without loss of generality, assume that there are two subsystems, that is,
ik ∈ {1, 2}, between which the dynamical system alternates. Choose the discrete time delay
h1 = 0.1. We consider robust performance of the system using Theorem 3.1. The parameters
of the system are specified as follows:

A1 =

(−2 0

0 2.4

)
, B1 =

(
0.2 0

0.7 1

)
, C1 =

(
0.5 0

0.4 0.1

)
, D1 =

(
0.05 1

0 0.05

)
,

A2 =

(−2.5 0

0 −1.2

)
, B2 =

(−0.7 0

−1 −1

)
, C2 =

(
0.3 0.1

0.6 0.4

)
, D2 =

(
0.05 1

0 0.05

)
,

E1 =

(
0.1 0

0 0.1

)
, E2 =

(−0.1 0

0 0.1

)
, H1 =

(
0.1 0

0 0.1

)
, H2 =

(
0.1 0

0 0.3

)
,

J1 =

(
0.2 0

0 0.1

)
, J2 =

(
0.2 0

0 0.2

)
, Gk =

(−0.1 0

0 −0.1

)
.

(5.1)

Let ε1 = ε2 = 1. Then by solving (3.1)∼(3.3) under MATLAB Toolbox, we obtain the upper
bound of h2 = 0.1546.

Letting h1 = 0.1 and h2 = 0.1546, we obtain the following linear memoryless controller
by using Theorem 4.1:

K1 =

(−0.1158 0.0127

0.0127 −0.0322

)
, K2 =

(−0.1216 0.0182

0.0182 −0.0315

)
. (5.2)
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6. Conclusion

In this paper, the asymptotic stability problem for a class of uncertain impulsive switched
systems with discrete and distributed delays is discussed. Firstly, delay-dependent stability
criteria have been obtained by choosing proper Lyapunov function. Furthermore, some
appropriate feedback controllers have been constructed to ensure the asymptotic stability
of the closed-loop systems. A numerical example is solved by MATLAB Toolbox to illustrate
that the results obtained are effective.
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