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A nonautonomous Leslie-Gower type food chain model with time delays is investigated. It is
proved the general nonautonomous system is permanent and globally asymptotically stable under
some appropriate conditions. Furthermore, if the system is periodic one, some sufficient conditions
are established, which guarantee the existence, uniqueness, and global asymptotic stability of a
positive periodic solution of the system. The conditions for the permanence, global stability of
system, and the existence, uniqueness of positive periodic solution depend on delays; so, time
delays are profitless.

1. Introduction

Among the relationships between the species living in the same outer environment, the
predator-prey theory plays an important and fundamental role. The dynamic relationship
between predators and their preys has long been and will continue to be one of the dominant
themes in both ecology and mathematical ecology due to its universal existence and
importance [1]. Food-chain predator-prey system, as one of themost important predator-prey
system, has been extensively studied by many scholars, many excellent results concerned
with the permanent property and positive periodic solution of the system, see [2–4] and
the references cited therein. Recently, Nindjin and Aziz-Alaoui [5] proposed the following
autonomous delayed predator-prey model with modified Leslie-Gower functional response

ẋ1(t) = x1(t)
(
a1 − a11x1(t − τ11) − a12x2(t)

x1(t) + d1

)
,
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ẋ2(t) = x2(t)
(
−a2 +

a21x1(t − τ21)
x1(t − τ21) + d1

− a22x2(t − τ22) − a23x3(t)
x2(t) + d2

)
,

ẋ3(t) = x3(t)
(
a3 − a33x3(t − τ33)

x2(t − τ32) + d3

)
,

(1.1)

system (1) represents an ecological situation where a prey population x1 is the only food for a
predator x2. This specialist predator x2, in turns, serves as the prey of a top-predator x3. The
interaction between species x2 and its prey x1 has been modeled by the Volterra scheme.
But, the interaction between species x3 and its prey x2 has been modeled by a modified
version of Leslie-Gower scheme. About Leslie-Gower scheme one could refer to [6–13] and
the references cited therein.

In [5], the authors showed that the system is uniformly persistent under some
appropriate conditions and obtained sufficient conditions for global stability of the positive
equilibrium of system (1).

We note that any biological or environment parameters are naturally subject to
fluctuation in time, and if a model is to take into account such fluctuation then the model
must be nonautonomous. On the other hand, time delays occur so often in nature, a number
of models can be formulated as systems of differential equations with time delays (see, e.g.,
[2, 14, 15] and the references cited therein). Motivated by above considerations, in this paper,
we consider the following general nonautonomous Leslie-Gower type food chain model with
time delays of the form

ẋ1(t) = x1(t)
(
a1(t) − a11(t)x1(t − τ11(t)) − a12(t)x2(t)

x1(t) + d1(t)

)
,

ẋ2(t) = x2(t)
(
−a2(t) +

a21(t)x1(t − τ21(t))
x1(t − τ21(t)) + d1(t)

− a22(t)x2(t − τ22(t)) − a23(t)x3(t)
x2(t) + d2(t)

)
,

ẋ3(t) = x3(t)
(
a3(t) − a33(t)x3(t − τ33(t))

x2(t − τ32(t)) + d3(t)

)
,

(1.2)

where τii(t), i = 1, 2, 3 denote the time delays due to negative feedbacks of the prey, specialist
predator and top-predator, respectively. τ21(t) is a time delay due to gestation, that is, mature
adult predators can only contribute to the reproduction of predator biomass. τ32(t) can be
regarded as a gestation period.

In this paper, for system (1.2) we always assume that for all i, j = 1, 2, 3

(H1) ai(t), aij(t), di(t) are continuous and bounded above and below by positive
constants on [0,+∞), and

(H2) τij(t) are continuous and differentiable bounded functions on [0,+∞), and τ̇ij(t) is
uniformly continuous with respect to t on [0,+∞) and inft∈[0,+∞){1 − τ̇ij(t)} > 0.

Let τ = sup{τij(t) : t ∈ [0,+∞), i, j = 1, 2, 3}, then we have 0 ≤ τ < +∞. Let
σij(t) = t − τij(t), then the function σ−1

ij (t) is the inverse function of the function σij(t),
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i, j = 1, 2, 3. Motivated by the application of system (1.2) to population dynamics, we assume
that solutions of system (1.2) satisfies the following initial conditions

xi(θ) = φi(θ) ≥ 0, θ ∈ [−τ, 0], φi(0) > 0,

φi ∈ C([−τ, 0], R+), i = 1, 2, 3.
(1.3)

It is well known that by the fundamental theory of functional differential equation
[16], one can prove the solution of system (1.2)with initial conditions (1.3) exists and remains
positive for t ≥ 0, we call such a solution the positive solution of system (1.2).

The organization of this paper is as follows. In Section 2, by using comparison theorem
and further developing the analytical technique of [2, 14], we obtain a set of sufficient
conditions, which ensure the permanence of the system (1.2). In Section 3, by constructing
a suitable Lyapunov function, we establish a set of sufficient conditions, which ensure the
global stability of the system (1.2). In Section 4, we will explore the existence and stability of
the solutions of the periodic system (1.2). At last, the conclusion ends with brief remarks.

2. Permanence

In this section, we establish a permanent result for system (1.2).
Here, for any bounded function {f(t)}

fu = lim
t→+∞

sup
{
f(t)

}
, f l = lim

t→+∞
inf

{
f(t)

}
. (2.1)

Definition 2.1. System (1.2) is said to be permanent, if there are positive constantsmi andMi,
such that each positive solution (x1(t), x2(t), x3(t)) of system (1.2) satisfies

mi ≤ lim
t→+∞

inf xi(t) ≤ lim
t→+∞

sup xi(t) ≤ Mi, i = 1, 2, 3. (2.2)

Theorem 2.2. Assume that (H1) and (H2) hold assume further that

(H3) al
1 > au

12M2/d
l
1, a

l
21m1/(m1 + du

1) > au
2 + au

23M3/d
l
2

hold. Then system (1.2) is permanent.

Proof. From the first equation of the system (1.2) it follows that

ẋ1(t) ≤ x1(t)(a1(t) − a11(t)x1(t − τ11(t)))

≤ x1(t)
(
au
1 − al

11x1(t − τ11(t))
)
.

(2.3)

Let τ = sup{τij(t) : t ∈ [0,+∞), i, j = 1, 2, 3}, by (H2), thenwe have 0 ≤ τ < +∞. Taking
M̃1 = (au

1/a
l
11)(1 + h1), where 0 < h1 < exp{au

1τ} − 1. Firstly, suppose x1(t) is not oscillatory
about M̃1. That is, there exists a T1 > 0, for t > T1 such that

x1(t) < M̃1, (2.4)
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or

x1(t) > M̃1. (2.5)

If (2.4) holds, then our aim is obtained. Suppose (2.5) holds, then for t ≥ T1 + τ , we
obtain

ẋ1(t) < −h1a
u
1x1(t), (2.6)

thus x1(t) < x1(0) exp[−h1a
u
1 t] → 0, as t → +∞, which is contradiction with (2.5). Hence

there must exist T∗
1 > T1 + τ such that x1(t) < M̃1 for t > T∗

1 . Secondly now assume that
x1(t) is oscillatory about M̃1 for t ≥ T1, that is, there exists a time sequence {tn} such that
τ < t1 < t2 < · · · < tn < · · · is a sequence of zeros of x1(tn) − M̃1 with limn→∞tn = +∞
and x1(tn) = M̃1. Set t̃n a point where x1(t) attends its maximum in (tn, tn+1). Thus we get
x1(t̃n) ≥ x1(tn) = M̃1. Then it follows from (2.3) that

0 = ẋ1(t)|t=t̃n ≤ x1

(
t̃n
)(

au
1 − al

11x1

(
t̃n − τ11

(
t̃n
)))

, (2.7)

which leads to

x1

(
t̃n − τ11

(
t̃n
))

≤ au
1

al
11

. (2.8)

Integrating the both sides of (2.3) from t̃n − τ11(t̃n) to t̃n, it follows that

ln
x1

(
t̃n
)

x1

(
t̃n − τ11

(
t̃n
)) ≤

∫ t̃n

t̃n−τ11(t̃n)

(
au
1 − al

11x1(t − τ11(t))
)
dt ≤ au

1τ11
(
t̃n
)
. (2.9)

From (2.8) and (2.9) we have

x1

(
t̃n
)
≤ au

1

al
11

exp
{
au
1τ

}
. (2.10)

Since x1(t̃n) is an arbitrary local maximumof x1(t), we can see that there exists a T2 > T1
such that for all t ≥ T2

x1(t) ≤
au
1

al
11

exp
{
au
1τ

}
:= M1. (2.11)

Thus

lim
t→+∞

sup x1(t) ≤ M1. (2.12)
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For t ≥ T2 + τ , from (2.11) and the second equation of the system (1.2) it follows that

ẋ2(t) ≤ x2(t)

(
−al

2 +
au
21M1

M1 + dl
1

− al
22x2(t − τ22(t))

)
. (2.13)

Similar to the argument above, from (2.13) we obtain

lim
t→+∞

sup x2(t) ≤
−al

2 + au
21M1/

(
M1 + dl

1

)

al
22

exp

{(
−al

2 +
au
21M1

M1 + dl
1

)
τ

}
:= M2. (2.14)

Similarly, from the third equation of the system (1.2), we have

ẋ3(t) ≤ x3(t)

(
au
3 −

al
33x3(t − τ33(t))

M2 + du
3

)
, (2.15)

and so

lim
t→+∞

sup x3(t) ≤
au
3

(
M2 + du

3

)
al
33

exp
{
au
3τ

}
:= M3. (2.16)

Condition (H3) of Theorem 2.2 also implies that we could choose ε > 0 small enough such
that

al
1 >

au
12(M2 + ε)

dl
1

,
al
21(m1 − ε)

(m1 − ε) + du
1
> au

2 +
au
23(M3 + ε)

dl
2

, (2.17)

hence, for ε > 0 satisfies (2.17), from (2.12), (2.14), and (2.16), we know that there exists
T3 > T2 + τ such that for i = 1, 2, 3 and t ≥ T3

xi(t) ≤ Mi + ε. (2.18)

From the first equation and (2.18) it follows that for t ≥ T3 + τ ,

ẋ1(t) = x1(t)
(
a1(t) − a11(t)x1(t − τ11(t)) − a12(t)x2(t)

x1(t) + d1(t)

)

≥ x1(t)

(
al
1 − au

11(M1 + ε) − au
12(M2 + ε)

dl
1

)
.

(2.19)

Note that au
1/a

l
11 ≤ M1 implies that

al
1 − au

11(M1 + ε) − au
12(M2 + ε)

dl
1

≤ al
1 − au

11(M1 + ε) ≤ au
1 − al

11(M1 + ε) ≤ 0. (2.20)

Now we consider the following two cases.
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Case 1. Suppose al
1 − au

11(M1 + ε) − au
12(M2 + ε)/dl

1 = 0, then for t ≥ T3 + τ , from the positivity
of the solution and (2.19) it follows that

ẋ1(t) = 0. (2.21)

Then from (2.12) and (2.21) it follows that limt→+∞x1(t) =: p1 < al
1/a

u
11, then there exists

T4 > T3 + τ such that for t ≥ T4

x1(t) < p1 +
al
1/a

u
11 − p1

2
<

al
1

au
11

< M1. (2.22)

From the positivity of the solution, (2.19) and (2.22) it follows that

ẋ1(t) ≥ x1(t)

(
al
1 − au

11

al
1/a

u
11 + p1

2
− au

12(M2 + ε)

dl
1

)

> x1(t)

(
al
1 − au

11(M1 + ε) − au
12(M2 + ε)

dl
1

)

= 0, t ≥ T4 + τ,

x1(t) ≥ x1(T4 + τ) exp

{(
al
1 − au

11

al
1/a

u
11 + p1

2
− au

12(M2 + ε)

dl
1

)
(t − (T4 + τ))

}
,

(2.23)

then we can see that x1(t) → +∞ as t → +∞, which is contradiction with (2.12). Hence we
have limt→+∞x1(t) ≥ al

1/a
u
11, which implies that there exists T∗

4 > T4 + τ such that x1(t) ≥
al
1/2a

u
11 for t ≥ T∗

4 .

Case 2. Suppose al
1 − au

11(M1 + ε) − au
12(M2 + ε)/dl

1 < 0, from (2.19), for t ≥ T3 + τ , it follows
that

ẋ1(t) ≥ x1(t)

(
al
1 −

au
12(M2 + ε)

dl
1

− au
11x1(t − τ11(t))

)
. (2.24)

Let

m̃1 =
al
1 − au

12(M2 + ε)/dl
1

au
11

(1 − σ1), (2.25)

where 0 < σ1 < 1 − exp{(al
1 − au

11(M1 + ε) − au
12(M2 + ε)/dl

1)τ}.

Firstly, suppose x1(t) is not oscillatory about m̃1. That is, there exists a T5 > 0, for t > T5
such that

x1(t) > m̃1, (2.26)
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or

x1(t) < m̃1. (2.27)

If (2.26) holds, then our aim is obtained. Suppose (2.27) holds, then for t ≥ T5 + τ , we
obtain

ẋ1(t) ≥ σ1

(
al
1 −

au
12(M2 + ε)

dl
1

)
x1(t). (2.28)

thus there must exist T∗
5 > T5 + τ such that x1(t) > m̃1 for t > T∗

5 , which is a contradiction.
Hence, (2.27) could not hold. Secondly now assume that x1(t) is oscillatory about m̃1 for
t ≥ T3 + τ , that is, there exists a time sequence {tn} such that τ < t1 < t2 < · · · < tn < · · · is a
sequence of zeros of x1(tn)− m̃1 with limn→∞tn = +∞ and x1(tn) = m̃1. Set t̂n be a point where
x1(t) attends its minimum in (tn, tn+1). Thus, we get x1(t̂n) ≤ x1(tn) = m̃1. Then it follows from
(2.24) that

0 = ẋ1(t)|t=t̂n ≥ x1

(
t̂n
)(

al
1 −

au
12(M2 + ε)

dl
1

− au
11x1

(
t̂n − τ11

(
t̂n
)))

, (2.29)

which implies that

x1

(
t̂n − τ11

(
t̂n
))

≥ al
1 − au

12(M2 + ε)/dl
1

au
11

. (2.30)

Integrating (2.24) on the interval [t̂n − τ11(t̂n), t̂n], we have

ln
x1

(
t̂n
)

x1

(
t̂n − τ11

(
t̂n
)) ≥

∫ t̂n

t̂n−τ11(t̂n)

(
al
1 −

au
12(M2 + ε)

dl
1

− au
11x1(t − τ11(t))

)
dt

≥
∫ t̂n

t̂n−τ11(t̂n)

(
al
1 −

au
12(M2 + ε)

dl
1

− au
11(M1 + ε)

)
dt

=

(
al
1 − au

11(M1 + ε) − au
12(M2 + ε)

dl
1

)
τ11

(
t̂n
)
.

(2.31)
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From (2.30) and (2.31), we get that

x1

(
t̂n
)
≥ al

1 − au
12(M2 + ε)/dl

1

au
11

exp

{(
al
1 − au

11(M1 + ε) − au
12(M2 + ε)

dl
1

)
τ

}
. (2.32)

Since x1(t̂n) is an arbitrary local minimum of x1(t), we can have that there exists a
q1 ≤ m̃1 such that for all t ≥ T∗

6

x1(t) ≥ q1, (2.33)

where

0 < q1 ≤
al
1 − au

12M2/d
l
1

au
11

exp

{(
al
1 − au

11M1 −
au
12M2

dl
1

)
τ

}
. (2.34)

Takenm1 = min{al
1/2a

u
11, q1}, thus, we have

lim
t→+∞

inf x1(t) ≥ m1. (2.35)

Thus, for ε > 0 satisfies (2.17), it follows from (2.35) that there exists large enough T6 such
that for t ≥ T6

x1(t) ≥ m1 − ε. (2.36)

For t ≥ T6 + τ , by using (2.36), from the second equation of system (1.2) it follows that

ẋ2(t) = x2(t)
(
−a2(t) +

a21(t)x1(t − τ21(t))
x1(t − τ21(t)) + d1(t)

− a22(t)x2(t − τ22(t)) − a23(t)x3(t)
x2(t) + d2(t)

)

≥ x2(t)

(
−au

2 +
al
21(m1 − ε)

(m1 − ε) + du
1
− au

22(M2 + ε) − au
23(M3 + ε)

dl
2

)
,

ẋ2(t) ≥ x2(t)

(
−au

2 +
al
21(m1 − ε)

(m1 − ε) + du
1
− au

23(M3 + ε)

dl
2

− a22(t)x2(t − τ22(t))

)
;

(2.37)

from (2.37), by a procedure similar to the discussion above, we can verify that

lim
t→+∞

inf x2(t) ≥ m2, (2.38)
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where

m2 = min

{−au
2 + al

21m1/
(
m1 + du

1

)
2au

22
, q2

}
,

0 < q2 ≤
−au

2 + al
21m1/

(
m1 + du

1

) − au
23M3/d

l
2

au
22

exp

{(
−au

2 +
al
21m1

m1 + du
1
− au

22M2 −
au
23M3

dl
2

)
τ

}
.

(2.39)

From (2.38), we see that there exists large enough T7 such that for t ≥ T7

x2(t) ≥ m2 − ε. (2.40)

Substituting (2.18) to the last equation of system (1.2), it follows that

ẋ3(t) ≥ x3(t)

(
al
3 −

au
33(M3 + ε)

dl
3

)
,

ẋ3(t) ≥ x3(t)

(
al
3 −

au
33x3(t − τ33(t))

dl
3

)
;

(2.41)

from (2.41), similar to the argument of (2.35), we also have

lim
t→+∞

inf x3(t) ≥ m3, (2.42)

where

m3 = min

{
al
3d

l
3

2au
33
, q3

}
,

0 < q3 ≤
al
3d

l
3

au
33

exp

{(
al
3 −

au
33M3

dl
3

)
τ

}
.

(2.43)

Consequently, (2.12), (2.14), (2.16), (2.35), (2.38), and (2.42) show that under the assumption
(H1)–(H3), for any positive solution (x1(t), x2(t), x3(t)) of system (1.2), one has

mi ≤ lim
t→+∞

inf xi(t) ≤ lim
t→+∞

sup xi(t) ≤ Mi, i = 1, 2, 3, (2.44)

wheremi andMi, i = 1, 2, 3 are independent of the solution of system (1.2), thus system (1.2)
is permanent. This completes the proof of Theorem 2.2.
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3. Global Stability

Now we study the global stability of the positive solution of system (1.2). We say a positive
solution of system (1.2) is globally asymptotically stable if it attracts all other positive solution
of the system.

The following lemma is from [17], and will be employed in establishing the global
stability of positive solution of system (1.2).

Lemma 3.1. Let h be a real number and f be a nonnegative function defined on [h;+∞) such that f
is integrable on [h;+∞) and is uniformly continuous on [h;+∞), then limt→+∞f(t) = 0.

Theorem 3.2. In addition to (H1)–(H3), assume further that

(H4) there exist constants λi > 0 such that

lim inf
t→+∞

{Ai(t)} > 0, i = 1, 2, 3, (3.1)

where

A1(t) = λ1

(
a11(t) − a12(t)M2

d2
1(t)

− a11
(
σ−1
11 (t)

)
M1

1 − τ̇11
(
σ−1
11 (t)

)
∫σ−1

11 (σ
−1
11 (t))

σ−1
11 (t)

a11(s)ds

−
[
a1(t) + a11(t)M1 +

a12(t)M2

d1(t)

] ∫σ−1
11 (t)

t

a11(s)ds

)

− λ2

(
a21

(
σ−1
21 (t)

)
d1
(
σ−1
21 (t)

)(
1−τ̇21

(
σ−1
21 (t)

)) +
a21

(
σ−1
21 (t)

)
M2

d1
(
σ−1
21 (t)

)(
1−τ̇21

(
σ−1
21 (t)

))
∫σ−1

22 (σ
−1
21 (t))

σ−1
21 (t)

a22(s)ds

)
,

A2(t) = λ2

(
a22(t) − a23(t)M3

d2
2(t)

− a22
(
σ−1
22 (t)

)
M2

1 − τ̇22
(
σ−1
22 (t)

)
∫σ−1

22 (σ
−1
22 (t))

σ−1
22 (t)

a22(s)ds

−
[
a2(t) + a22(t)M2 + a21(t) +

a23(t)
d2(t)

M3

] ∫σ−1
22 (t)

t

a22(s)ds

)

− λ1a12(t)

(
1

d1(t)
+
∫σ−1

11 (t)

t

a11(s)ds

)

− λ3

(
a33

(
σ−1
32 (t)

)
M3

d2
3

(
σ−1
32 (t)

)(
1−τ̇32

(
σ−1
32 (t)

))+ a33
(
σ−1
32 (t)

)
M2

3

d2
3

(
σ−1
32 (t)

)(
1−τ̇32

(
σ−1
32 (t)

))
∫σ−1

33 (σ
−1
32 (t))

σ−1
32 (t)

a33(s)
d3(s)

ds

)
,
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A3(t) = λ3

(
a33(t)

M2 + d3(t)
−
[
a3(t) +

a33(t)M3

d3(t)

] ∫σ−1
33 (t)

t

a33(s)
d3(s)

ds

− a33
(
σ−1
33 (t)

)
M3

d3
(
σ−1
33 (t)

)(
1 − τ̇33

(
σ−1
33 (t)

))
∫σ−1

33 (σ
−1
33 (t))

σ−1
33 (t)

a33(s)
d3(s)

ds

)

− λ2a23(t)

(
1

d2(t)
+
∫σ−1

22 (t)

t

a22(s)ds

)
.

(3.2)

Then for any positive solutions (x1(t), x2(t), x3(t)) and (x∗
1(t), x

∗
2(t), x

∗
3(t)) of system (1.2), one has

lim
t→+∞

[∣∣xi(t) − x∗
i (t)

∣∣] = 0, i = 1, 2, 3. (3.3)

Proof. For two arbitrary nontrivial solutions (x1(t), x2(t), x3(t)) and (x∗
1(t), x

∗
2(t), x

∗
3(t)) of

system (1.2), we have from Theorem 2.2 that there exist positive constants T > T7 and Mi,
mi (i = 1, 2, 3) such that for all t ≥ T and i = 1, 2, 3

mi ≤ xi(t) ≤ Mi. (3.4)

We define

V11(t) =
∣∣lnx1(t) − ln x∗

1(t)
∣∣. (3.5)

Calculating the upper right derivative of V11(t) along the solution of system (1.2), for t ≥ T+τ ,
it follow that

D+V11(t) =

(
ẋ1(t)
x1(t)

− ẋ∗
1(t)

x∗
1(t)

)
sgn

(
x1(t) − x∗

1(t)
)

= sgn
(
x1(t) − x∗

1(t)
)

×
{
−a11(t)

(
x1(t − τ11(t)) − x∗

1(t − τ11(t))
) − a12(t)x2(t)

x1(t) + d1(t)
+

a12(t)x∗
2(t)

x∗
1(t) + d1(t)

}

= sgn
(
x1(t) − x∗

1(t)
)

×
{
−a11(t)

(
x1(t) − x∗

1(t)
) − a12(t)

x1(t) + d1(t)
(
x2(t) − x∗

2(t)
)

+
a12(t)x∗

2(t)

(x1(t) + d1(t))
(
x∗
1(t) + d1(t)

)(x1(t) − x∗
1(t)

)

+ a11(t)
∫ t

t−τ11(t)

(
ẋ1(u) − ẋ∗

1(u)
)
du

}
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≤ −a11(t)
∣∣x1(t) − x∗

1(t)
∣∣ + a12(t)

d1(t)

∣∣x2(t) − x∗
2(t)

∣∣

+
a12(t)M2

d2
1(t)

∣∣x1(t) − x∗
1(t)

∣∣

+ a11(t)

∣∣∣∣∣
∫ t

t−τ11(t)

(
ẋ1(u) − ẋ∗

1(u)
)
du

∣∣∣∣∣.
(3.6)

On substituting (1.2) into (3.6), we derive that

D+V11(t) ≤ −a11(t)
∣∣x1(t) − x∗

1(t)
∣∣ + a12(t)

d1(t)

∣∣x2(t) − x∗
2(t)

∣∣ + a12(t)M2

d2
1(t)

∣∣x1(t) − x∗
1(t)

∣∣

+ a11(t)

∣∣∣∣∣
∫ t

t−τ11(t)

{
a1(u) − a11(u)x∗

1(u − τ11(u))

− a12(u)d1(u)x∗
2(u)

(x1(u) + d1(u))
(
x∗
1(u) + d1(u)

)(x1(u) − x∗
1(u)

)

− a11(u)x1(u)
(
x1(u − τ11(u)) − x∗

1(u − τ11(u))
)

− a12(u)x1(u)
x1(u) + d1(u)

(
x2(u) − x∗

2(u)
)}

du

∣∣∣∣.

(3.7)

It follows (3.4) and (3.7) that for t > T + τ

D+V11(t) ≤ −a11(t)
∣∣x1(t) − x∗

1(t)
∣∣ + a12(t)

d1(t)

∣∣x2(t) − x∗
2(t)

∣∣

+
a12(t)M2

d2
1(t)

∣∣x1(t) − x∗
1(t)

∣∣

+ a11(t)
∫ t

t−τ11(t)

{[
a1(u) + a11(u)M1 +

a12(u)M2

d1(u)

]∣∣x1(u) − x∗
1(u)

∣∣

+ a11(u)M1
∣∣x1(u − τ11(u)) − x∗

1(u − τ11(u))
∣∣

+a12(u)
∣∣x2(u) − x∗

2(u)
∣∣}du.

(3.8)

Let σ11(t) = t− τ11(t), by (H2), we can obtain the inverse function of the function σ11(t)
denoted by σ−1

11 (t).
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Define

V12(t) =
∫σ−1

11 (t)

t

∫ t

σ11(s)
a11(s)

×
{[

a1(u) + a11(u)M1 +
a12(u)M2

d1(u)

]∣∣x1(u) − x∗
1(u)

∣∣

+ a11(u)M1
∣∣x1(u − τ11(u)) − x∗

1(u − τ11(u))
∣∣

+ a12(u)
∣∣x2(u) − x∗

2(u)
∣∣}duds.

(3.9)

We obtain from (3.8) and (3.9) for t > T + τ

D+V11(t) + V̇12(t) ≤ −
(
a11(t) − a12(t)M2

d2
1(t)

)∣∣x1(t) − x∗
1(t)

∣∣ + a12(t)
d1(t)

∣∣x2(t) − x∗
2(t)

∣∣

+
∫σ−1

11 (t)

t

a11(s)ds

×
{[

a1(t) + a11(t)M1 +
a12(t)M2

d1(t)

]∣∣x1(t) − x∗
1(t)

∣∣

+ a11(t)M1
∣∣x1(t − τ11(t)) − x∗

1(t − τ11(t))
∣∣

+ a12(t)
∣∣x2(t) − x∗

2(t)
∣∣}.

(3.10)

We now define

V1(t) = V11(t) + V12(t) + V13(t), (3.11)

where

V13(t) = M1

∫ t

t−τ11(t)

∫σ−1
11 (σ

−1
11 (l))

σ−1
11 (l)

a11(s)a11
(
σ−1
11 (l)

)
1 − τ̇11

(
σ−1
11 (l)

) ∣∣x1(l) − x∗
1(l)

∣∣ds dl. (3.12)

It then follows from (3.10) that for t > T + τ

D+V1(t) ≤ −
(
a11(t) − a12(t)M2

d2
1(t)

)∣∣x1(t) − x∗
1(t)

∣∣ + a12(t)

×
[

1
d1(t)

+
∫σ−1

11 (t)

t

a11(s)ds

]∣∣x2(t) − x∗
2(t)

∣∣
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+
[
a1(t) + a11(t)M1 +

a12(t)M2

d1(t)

] ∫σ−1
11 (t)

t

a11(s)ds
∣∣x1(t) − x∗

1(t)
∣∣

+
a11

(
σ−1
11 (t)

)
M1

1 − τ̇11
(
σ−1
11 (t)

)
∫σ−1

11 (σ
−1
11 (t))

σ−1
11 (t)

a11(s)ds
∣∣x1(t) − x∗

1(t)
∣∣.

(3.13)

Similarly, we define

V2(t) = V21(t) + V22(t) + V23(t), (3.14)

where

V21(t) =
∣∣lnx2(t) − ln x∗

2(t)
∣∣,

V22(t) =
∫ t

t−τ21(t)

a21
(
σ−1
21 (s)

)
d1
(
σ−1
21 (s)

)(
1 − τ̇21

(
σ−1
21 (s)

))∣∣x1(s) − x∗
1(s)

∣∣ds

+
∫σ−1

22 (t)

t

∫ t

σ22(s)
a22(s)

×
{[

a2(u) + a22(u)M2 + a21(u) +
a23(u)M3

d2(u)

]∣∣x2(u) − x∗
2(u)

∣∣

+ a23(u)
∣∣x3(u) − x∗

3(u)
∣∣ + a22(u)M2

∣∣x2(u − τ22(u)) − x∗
2(u − τ22(u))

∣∣

+
a21(u)M2

d1(u)

∣∣x1(u − τ21(u)) − x∗
1(u − τ21(u))

∣∣}duds,

V23(t) = M2

∫ t

t−τ22(t)

∫σ−1
22 (σ

−1
22 (l))

σ−1
22 (l)

a22(s)a22
(
σ−1
22 (l)

)
1 − τ̇22

(
σ−1
22 (l)

) ∣∣x2(l) − x∗
2(l)

∣∣ds dl

+M2

∫ t

t−τ21(t)

∫σ−1
22 (σ

−1
21 (l))

σ−1
21 (l)

a22(s)a21
(
σ−1
21 (l)

)
d1
(
σ−1
21 (l)

)(
1 − τ̇21

(
σ−1
21 (l)

))∣∣x1(l) − x∗
1(l)

∣∣ds dl.
(3.15)

Calculating the upper right derivative of V2(t) along solutions of (1.2), we derive that for
t > T + τ

D+V2(t) ≤ −
(
a22(t) − a23(t)M3

d2
2(t)

)∣∣x2(t) − x∗
2(t)

∣∣

+ a23(t)

[
1

d2(t)
+
∫σ−1

22 (t)

t

a22(s)ds

]∣∣x3(t) − x∗
3(t)

∣∣

+
a21

(
σ−1
21 (t)

)
d1
(
σ−1
21 (t)

)(
1 − τ̇21

(
σ−1
21 (t)

))∣∣x1(t) − x∗
1(t)

∣∣
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+
[
a2(t) + a22(t)M2 + a21(t) +

a23(t)M3

d2(t)

]

×
∫σ−1

22 (t)

t

a22(s)ds
∣∣x2(t) − x∗

2(t)
∣∣

+
a22

(
σ−1
22 (t)

)
M2

1 − τ̇22
(
σ−1
22 (t)

)
∫σ−1

22 (σ
−1
22 (t))

σ−1
22 (t)

a22(s)ds
∣∣x2(t) − x∗

2(t)
∣∣

+
a21

(
σ−1
21 (t)

)
M2

d1
(
σ−1
21 (t)

)(
1 − τ̇21

(
σ−1
21 (t)

))
∫σ−1

22 (σ
−1
21 (t))

σ−1
21 (t)

a22(s)ds
∣∣x1(t) − x∗

1(t)
∣∣.

(3.16)

Similarly, we define

V3(t) = V31(t) + V32(t) + V33(t), (3.17)

where

V31(t) =
∣∣lnx3(t) − lnx∗

3(t)
∣∣,

V32(t) = M3

∫ t

t−τ32(t)

a33
(
σ−1
32 (s)

)
d2
3

(
σ−1
32 (s)

)(
1 − τ̇32

(
σ−1
32 (s)

))∣∣x2(s) − x∗
2(s)

∣∣ds

+
∫σ−1

33 (t)

t

∫ t

σ33(s)

a33(s)
d3(s)

×
{[

a3(u) +
a33(u)M3

d3(u)

]∣∣x3(u) − x∗
3(u)

∣∣

+
a33(u)M3

d3(u)

∣∣x3(u − τ33(u)) − x∗
3(u − τ33(u))

∣∣

+
a33(u)M2

3

d2
3(u)

∣∣x2(u − τ32(u)) − x∗
2(u − τ32(u))

∣∣
}
duds,

V33(t) = M3

∫ t

t−τ33(t)

∫σ−1
33 (σ

−1
33 (l))

σ−1
33 (l)

a33(s)a33
(
σ−1
33 (l)

)
d3(s)d3

(
σ−1
33 (l)

)(
1 − τ̇33

(
σ−1
33 (l)

))∣∣x3(l) − x∗
3(l)

∣∣ds dl

+M2
3

∫ t

t−τ32(t)

∫σ−1
33 (σ

−1
32 (l))

σ−1
32 (l)

a33(s)a33
(
σ−1
32 (l)

)
d3(s)d2

3

(
σ−1
32 (l)

)(
1 − τ̇32

(
σ−1
32 (l)

))∣∣x2(l) − x∗
2(l)

∣∣ds dl.
(3.18)
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Calculating the upper right derivative of V3(t) along solutions of (1.2), we derive that for
t > T + τ

D+V3(t) ≤ − a33(t)
M2 + d3(t)

∣∣x3(t) − x∗
3(t)

∣∣

+M3
a33

(
σ−1
32 (t)

)
d2
3

(
σ−1
32 (t)

)(
1 − τ̇32

(
σ−1
32 (t)

))∣∣x2(t) − x∗
2(t)

∣∣

+
[
a3(t) +

a33(t)M3

d3(t)

] ∫σ−1
33 (t)

t

a33(s)
d3(s)

ds
∣∣x3(t) − x∗

3(t)
∣∣

+
a33

(
σ−1
33 (t)

)
M3

d3
(
σ−1
33 (t)

)(
1 − τ̇33

(
σ−1
33 (t)

))
∫σ−1

33 (σ
−1
33 (t))

σ−1
33 (t)

a33(s)
d3(s)

ds
∣∣x3(t) − x∗

3(t)
∣∣

+
a33

(
σ−1
32 (t)

)
M2

3

d2
3

(
σ−1
32 (t)

)(
1 − τ̇32

(
σ−1
32 (t)

))
∫σ−1

33 (σ
−1
32 (t))

σ−1
32 (t)

a33(s)
d3(s)

ds
∣∣x2(t) − x∗

2(t)
∣∣.

(3.19)

We now define a Lyapunov functional as

V (t) =
3∑
i=1

λiVi(t). (3.20)

It then follows from (3.13), (3.16), (3.19), and (3.20) that for t > T + τ

D+V (t) ≤ −
3∑
i=1

Ai(t)
∣∣xi(t) − x∗

i (t)
∣∣. (3.21)

By the hypothes is (H4), there exist enough small positive constants αi, i = 1, 2, 3 and a large
enough constant T∗ ≥ T + τ , such that for all i = 1, 2, 3 and t ≥ T∗

Ai(t) ≥ αi > 0. (3.22)

Integrating both sides of (3.21) on interval [T∗, t]

V (t) +
3∑
i=1

∫ t

T ∗
Ai(s)

∣∣xi(s) − x∗
i (s)

∣∣ds ≤ V (T∗). (3.23)

It follows from (3.22) and (3.23) that

V (t) +
3∑
i=1

αi

∫ t

T ∗

∣∣xi(s) − x∗
i (s)

∣∣ds ≤ V (T∗). (3.24)
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Therefore, V (t) is bounded on [T∗,+∞) and also

∫ t

T ∗

∣∣xi(s) − x∗
i (s)

∣∣ds < ∞, i = 1, 2, 3. (3.25)

By Theorem 2.2, we know that |xi(t) − x∗
i (t)|, i = 1, 2, 3 are bounded on [T∗,+∞). On the other

hand, it is easy to see that ẋi(t), i = 1, 2, 3 are bounded for t ≥ T∗. Therefore, |xi(t) − x∗
i (t)|,

i = 1, 2, 3 are uniformly continuous on [T∗,+∞). By Lemma 3.1, one can conclude that

lim
t→+∞

∣∣xi(t) − x∗
i (t)

∣∣ = 0, i = 1, 2, 3. (3.26)

This completes the proof of Theorem 3.2.

Remark 3.3. In the proof of the stability of system (1.2), we construct the Lyapunov functional,
which need the condition (H2). Similar method and conditon can be found in the [2, 14].

4. Existence and Stability of the Positive Periodic Solutions

In this section, we suppose that all the coefficients in system (1.2) are continuous and positive
ω-periodic functions, then the system (1.2) is an ω-periodic system for this case.

We let the following denote the unique solution of periodic system (1.2) for initial
value Z0 = {x0

1, x
0
2, x

0
3}:

Z
(
t, Z0

)
=
{
x1

(
t, Z0

)
, x2

(
t, Z0

)
, x3

(
t, Z0

)}
, for t > 0,

Z
(
0, Z0

)
= Z0.

(4.1)

Now define Poincâre transformation A : R3
+ → R3

+ is

A
(
Z0

)
= Z

(
ω,Z0

)
. (4.2)

In this way, the existence of periodic solution of system (1.2) will be equal to the existence of
the fixed point A.

Theorem 4.1. Assume that the conditions of (H1)–(H3) hold, then system (1.2) with initial
condition (1.3) has at least one positive ω-periodic solution.

Proof. If assumption (H1)–(H3) are satisfied, then from Theorem 2.2 we have that there exist
positive constants T > T7 andMi,mi (i = 1, 2, 3) such that for all t ≥ T and i = 1, 2, 3

mi ≤ xi(t) ≤ Mi. (4.3)

Let

K = {x1(t), x2(t), x3(t) | mi ≤ xi(t) ≤ Mi, i = 1, 2, 3}, (4.4)
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then the compact region K ⊂ R3
+ is a positive invariant set of system (1.2), and K is also a

close bounded convex set. So we have

Z0 ∈ K =⇒ Z
(
t, Z0

)
∈ K, (4.5)

also Z(ω,Z0) ∈ K, thus AK ⊂ K. The operator A is continuous because the solution is
continuous about the initial value. Using the fixed point theorem of Brower, we can obtain
that A has at least one fixed point in K, then there exists at least one strictly positive ω-
periodic solution of system (1.2). This ends the proof of Theorem 4.1.

By constructing similar Lyapunov functional to those of Theorem 3.2, and using
Theorem 4.1, we have the following theorem.

Theorem 4.2. Assume that the conditions of (H1)–(H4) hold, then system (1.2) has a unique positive
ω-periodic solution which is globally asymptotically stable.

5. Concluding Remarks

In this paper, a nonautonomous Leslie-Gower type food chain model with time delays is
investigated, which is based on the Holling type II and a Leslie-Gower modified functional
response. By using comparison theorem, we prove the system is permanent under some
appropriate conditions. Further, by constructing the suitable Lyapunov functional, we show
that the system is globally asymptotically stable under some appropriate conditions. If the
system is periodic one, some sufficient conditions are established, which guarantee the
existence, uniqueness and global asymptotic stability of a positive periodic solution of the
system. Our results have showed that the permanence, global stability of system and the
existence, uniqueness of positive periodic solution depend on delays, and so time delays are
profitless.
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