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In this paper, we investigate some nonlinear dynamical integral inequalities involving the forward
jump operator in two independent variables. These inequalities provide explicit bounds on
unknown functions, which can be used as handy tools to study the qualitative properties of
solutions of certain partial dynamical systems on time scales pairs.

1. Introduction

Theory of dynamical equations on time scales, which goes back to Hilger’s landmark paper
[1], has received considerable attention in recent years. For example, see the monographs [2,
3] and the references cited therein. Since dynamical integral inequalities usually can be used
as handy tools to study the qualitative theory of dynamical equations on time scales, many
researchers devoted to the study of different types of integral inequalities on time scales. We
refer the readers to [4–19].

To the best of our knowledge, the theory of partial dynamic equations on time scales
has received less attention [20–24]. The main purpose of this paper is to investigate several
nonlinear integral inequalities in two independent variables on time scale pairs, which can
be used to estimate explicit bounds of solutions of certain partial dynamical equations on
time scales. Unlike some existing results in the literature (e.g., [12]), the integral inequalities
considered in this paper involve the forward jump operator σ(t) and σ(s) on a pair of
time scales T and ˜T, which results in difficulties in the estimation on the explicit bounds
of unknown functions u(t, s) for t ∈ T and s ∈ ˜T. As an application, we study the qualitative
property of certain partial dynamical equations on time scales.

Throughout this paper, a knowledge and understanding of time scales and time scale
notations is assumed. In what follows, T and ˜T are two unbounded time scales, t0 ∈ T and
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s0 ∈ ˜T. Crd(T, ˜T) is the set of right-dense continuous functions on T × ˜T. For an excellent
introduction to the calculus on time scales, we refer the reader to monographs [2, 3].

2. Problem Statements

Before establishing the main results of this paper, we first present two useful lemmas as
follows.

Lemma 2.1. Let c ≥ 0, x ≥ 0, and 0 < λ < 1. Then, for any k > 0,

cxλ ≤ kx + θ(c, k, λ) (2.1)

holds, where θ(c, k, λ) = (1 − λ)λλ/(1−λ)c1/(1−λ)kλ/(λ−1).

Proof. Set F(x) = cxλ − kx. It is not difficult to see that F(x) obtains its maximum at x =
(λc/k)1/(1−λ) and

Fmax = (1 − λ)λλ/(1−λ)c1/(1−λ)kλ/(1−λ). (2.2)

This completes the proof of Lemma 2.1.

Lemma 2.2. Let y, p, q, r ∈ Crd(T) with p(t), q(t) ≥ 0 for t ∈ T. Then

yΔ(t) ≤ p(t)y(t) +
q(t)

1 + μ(t)q(t)
y(σ(t)) + r(t), t ∈ T, (2.3)

implies

y(t) ≤ y(t0)ep⊕q(t, t0) +
∫ t

t0

ep⊕q(t, σ(s))
[

1 + μ(s)q(s)
]

r(s)Δs, t ∈ T, (2.4)

where p ⊕ q = p + q + μpq and μ(t) = σ(t) − t.

Proof. Note that y(σ(t)) = y(t) + μ(t)yΔ(t), we have

yΔ(t) ≤ p(t)y(t) +
q(t)

1 + μ(t)q(t)

[

y(t) + μ(t)yΔ(t)
]

+ r(t) (2.5)

that is,

yΔ(t) ≤ (p ⊕ q
)

(t)y(t) +
[

1 + μ(t)q(t)
]

r(t). (2.6)

By Theorem 6.1 [2, page 255], we get that Lemma 2.2 holds.
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Consider the following nonlinear integral inequalities in two independent variables
on time scales T × ˜T:

u(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫ s

s0

[

g
(

τ, η
)

u
(

τ, η
)

+ h1
(

τ, η
)

uλ1
(

σ(τ), η
)

]

ΔηΔτ, (2.7)

u(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫s

s0

[

g
(

τ, η
)

u
(

τ, η
)

+ h1
(

τ, η
)

uλ1
(

σ(τ), η
)

+ h2
(

τ, η
)

uλ2
(

τ, σ
(

η
))

]

ΔηΔτ,

(2.8)

u(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

∫s

s0

[

g
(

τ, η
)

u
(

τ, η
)

+ h1
(

τ, η
)

uλ1
(

σ(τ), η
)

+ h2
(

τ, η
)

uλ2
(

τ, σ
(

η
))

+ h3
(

τ, η
)

uλ3
(

σ(τ), σ
(

η
))

]

ΔηΔτ,

(2.9)

where u(t, s), a(t, s), b(t, s), g(t, s), and hi(t, s) (i = 1, 2, 3) are nonnegative right-dense
continuous functions on T × ˜T, 0 < λi < 1 (i = 1, 2, 3) are constants.

The reason for studying inequalities of type (2.7)–(2.9) is that sometimes we may need
to estimate the solutions of the following partial dynamical equation in the form

uΔtΔs(t, s) = f(t, s, u(t, s), u(σ(t), s), u(t, σ(s)), u(σ(t), σ(s))) (2.10)

with boundary conditions u(t, s0) = α(t), u(t0, s) = β(s), and u(t0, s0) = u0, where f : T ×
˜T × R

3 → R is right-dense continuous, R = (−∞,∞), and u0 is a constant. Integrating (2.10)
yields

u(t, s) = α(t) + β(s) − u0

+
∫ t

t0

∫ s

s0

f
(

τ, η, u
(

τ, η
)

, u
(

σ(τ), η
)

, u
(

τ, σ
(

η
))

, u
(

σ(τ), σ
(

η
)))

ΔηΔτ.
(2.11)

Therefore, the study on the integral inequalities of type (2.7)–(2.9) can provide explicit
bounds of solutions of system (2.10) in some cases.

3. Main Results

Now, let us present the main results of this paper.

Theorem 3.1. If there exists a positive function k1(t, s) ∈ Crd(T, ˜T), such that

μ(t)b(σ(t), s)k1(t, s) < 1, (t, s) ∈ T × ˜T, (3.1)
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then inequality (2.7) implies

u(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

e(p1⊕q1)(·,s)(t, σ(τ))
[

1 + μ(τ)q1(τ, s)
]

r1(τ, s)Δτ, (3.2)

where

p1(t, s) = b(t, s)
∫s

s0

g
(

t, η
)

Δη,

q1(t, s) =
b(σ(t), s)k1(t, s)

1 − μ(t)b(σ(t), s)k1(t, s)
,

r1(t, s) = a(σ(t), s)k1(t, s) + a(t, s)
∫s

s0

g
(

t, η
)

Δη + θ

(

∫s

s0

h1
(

t, η
)

Δη, k1(t, s), λ1

)

.

(3.3)

Proof. Define a function v(t, s) by

v(t, s) =
∫ t

t0

∫s

s0

[

g
(

τ, η
)

u
(

τ, η
)

+ h1
(

τ, η
)

uλ1
(

σ(τ), η
)

]

ΔηΔτ. (3.4)

Then, v(t, s) ≥ 0 for (t, s) ∈ T × ˜T, v(t, s) is nondecreasing with respect to t and s, and

u(t, s) ≤ a(t, s) + b(t, s)v(t, s), (t, s) ∈ T × ˜T. (3.5)

A delta derivative of v(t, s)with respect to t yields

vΔt(t, s) =
∫ s

s0

g
(

t, η
)

u
(

t, η
)

+ h1
(

t, η
)

uλ1
(

σ(t), η
)

Δη

≤
[

u(t, s) + uλ1(σ(t), s)
]

∫s

s0

h1
(

t, η
)

Δη.

(3.6)

By Lemma 2.1, we have

uλ1(σ(t), s)
∫s

s0

h1
(

t, η
)

Δη ≤ k1(t, s)u(σ(t), s) + θ

(

∫ s

s0

h1
(

t, η
)

Δη, k1(t, s), λ1

)

. (3.7)
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It follows from (3.5), (3.6), and (3.7) that

vΔt(t, s) ≤ [a(t, s) + b(t, s)v(t, s)]
∫s

s0

g
(

t, η
)

Δη

+ [a(σ(t), s) + b(σ(t), s)v(σ(t), s)]k1(t, s)

+ θ

(

∫ s

s0

h1
(

t, η
)

Δη, k1(t, s), λ1

)

.

(3.8)

Notice the definitions of p1(t, s), q1(t, s), and r1(t, s), we have

vΔt(t, s) ≤ p1(t, s)v(t, s) +
q1(t, s)

1 + μ(t)q1(t, s)
+ r1(t, s), (t, s) ∈ T × ˜T. (3.9)

Since v(t0, s) = 0, by Lemma 2.2 we get

v(t, s) ≤
∫ t

t0

e(p1⊕q1)(·,s)(t, σ(τ))
[

1 + μ(τ)q1(τ, s)
]

r1(τ, s)Δτ, (t, s) ∈ T × ˜T. (3.10)

Then, (3.5) and (3.10) imply (3.2).

Theorem 3.2. If there exist positive functions k1(t, s), k2(t, s) ∈ Crd(T, ˜T), such that k2(t, s) is Δ-
differentiable with respect to s, kΔs

2 (t, s) ∈ Crd(T, ˜T), and

μ(t)b(σ(t), s)k1(t, s) < 1, (t, s) ∈ T × ˜T, (3.11)

then inequality (2.8) implies

u(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

e(p2⊕q2)(·,s)(t, σ(τ))
[

1 + μ(τ)q2(τ, s)
]

r2(τ, s)Δτ, (3.12)

where

p2(t, s) = p1(t, s) + k2(t, s) +
∫ s

s0

[

k
Δη

2
(

t, η
)

+
k2
(

t, σ
(

η
))

b
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
))

]

Δη,

k
Δs

2 (t, s) = max
{

0,−kΔs

2 (t, s)
}

, q2(t, s) = q1(t, s),

r2(t, s) = r1(t, s) +
∫s

s0

[

θ

(

h2
(

t, η
)

,
k2
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
)) , λ2

)

+
k2
(

t, σ
(

η
))

a
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
))

]

Δη.

(3.13)
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Proof. Set

z(t, s) =
∫ t

t0

∫ s

s0

[

g
(

τ, η
)

u
(

τ, η
)

+ h1
(

τ, η
)

uλ1
(

σ(τ), η
)

+ h2
(

τ, η
)

uλ2
(

τ, σ
(

η
))

]

ΔηΔτ. (3.14)

Then, z(t, s) is nonnegative and nondecreasing with respect to t and s on T × ˜T, and

u(t, s) ≤ a(t, s) + b(t, s)z(t, s), (t, s) ∈ T × ˜T. (3.15)

By Lemma 2.1, we have

zΔt(t, s) ≤ u(t, s)
∫s

s0

g
(

t, η
)

Δη + uλ1(σ(t), s)
∫s

s0

h1
(

t, η
)

Δη

+
∫ s

s0

h2
(

t, η
)

uλ2
(

t, σ
(

η
))

Δη

≤ u(t, s)
∫s

s0

g
(

t, η
)

Δη + k1(t, s)u(σ(t), s)

+ θ

(

∫s

s0

h1
(

t, η
)

Δη, k1(t, s), λ1

)

+
∫ s

s0

k2
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
))u
(

t, σ
(

η
))

Δη

+
∫ s

s0

θ

(

h2
(

t, η
)

,
k2
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
)) , λ2

)

Δη.

(3.16)

Substituting (3.15) into (3.16), we get

zΔt(t, s) ≤ [a(t, s) + b(t, s)z(t, s)]
∫s

s0

g
(

t, η
)

Δη

+ [a(σ(t), s) + b(σ(t), s)z(σ(t), s)]k1(t, s)

+ θ

(

∫ s

s0

h1
(

t, η
)

Δη, k1(t, s), λ1

)

+
∫s

s0

k2
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
))

[

a
(

t, σ
(

η
))

+ b
(

t, σ
(

η
))

z
(

t, σ
(

η
))]

Δη

+
∫s

s0

θ

(

h2
(

t, η
)

,
k2
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
)) , λ2

)

Δη.

(3.17)
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Note that

z
(

t, σ
(

η
))

= z
(

t, η
)

+ μ
(

η
)

zΔη
(

t, η
)

. (3.18)

Integrating by parts, we have

∫ s

s0

k2
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
))

[

a
(

t, σ
(

η
))

+ b
(

t, σ
(

η
))

z
(

t, σ
(

η
))]

Δη

≤
∫s

s0

k2
(

t, σ
(

η
))

a
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
)) Δη +

∫s

s0

k2
(

t, σ
(

η
))

b
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
)) z

(

t, η
)

Δη

+
∫s

s0

k2
(

t, σ
(

η
))

zΔη
(

t, η
)

Δη

≤
∫s

s0

k2
(

t, σ
(

η
))

a
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
)) Δη + z(t, s)

∫ s

s0

k2
(

t, σ
(

η
))

b
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

t, σ
(

η
)) Δη

+ z(t, s)

[

k2(t, s) +
∫ s

s0

k
Δη

2
(

t, η
)

Δη

]

.

(3.19)

Therefore, it follows from (3.17) and (3.19) that

zΔt(t, s) ≤ p2(t, s)z(t, s) +
q2(t, s)

1 + μ(t)q2(t, s)
z(σ(t), s) + r2(t, s), (t, s) ∈ T × ˜T. (3.20)

This together with Lemma 2.2 and (3.15) yields (3.12).

Theorem 3.3. If there exist positive functions k1(t, s), k2(t, s), k3(t, s) ∈ Crd(T, ˜T), such that
k2(t, s), k3(t, s) are Δ-differentiable with respect to s, kΔs

2 (t, s), kΔs

3 (t, s) ∈ Crd(T, ˜T), and

μ(t)Λ(t, s) < 1, (t, s) ∈ T × ˜T, (3.21)

then inequality (2.9) implies

u(t, s) ≤ a(t, s) + b(t, s)
∫ t

t0

e(p3⊕q3)(·,s)(t, σ(τ))
[

1 + μ(τ)q3(τ, s)
]

r3(τ, s)Δτ, (3.22)
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where

Λ(t, s) = b(σ(t), s)k1(t, s) + k3(t, s) +
∫s

s0

(

k
Δη

3
(

t, η
)

+
k3
(

t, σ
(

η
))

b
(

σ(t), σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
))

)

Δη,

p3(t, s) = p2(t, s),

q3(t, s) =
Λ(t, s)

1 − μ(t)Λ(t, s)
,

r3(t, s) = r2(t, s) +
∫s

s0

k3
(

t, σ
(

η
))

a
(

σ(t), σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
)) Δη

+
∫s

s0

θ3

(

h3
(

t, η
)

,
k3
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
)) , λ3

)

Δη,

(3.23)

and k
Δs

3 (t, s) = max{0,−kΔs

3 (t, s)}.

Proof. Let the nonnegative and nondecreasing function w(t, s) be defined by

w(t, s) =
∫ t

t0

∫s

s0

[

g
(

τ, η
)

u
(

τ, η
)

+ h1
(

τ, η
)

uλ1
(

σ(τ), η
)

+h2
(

τ, η
)

uλ2
(

τ, σ
(

η
))

+ h3
(

τ, η
)

uλ3
(

σ(τ), σ
(

η
))

]

ΔηΔτ.

(3.24)

Then,

u(t, s) ≤ a(t, s) + b(t, s)w(t, s), (t, s) ∈ T × ˜T. (3.25)

Based on the same arguments as in Theorem 3.2, we have

wΔt(t, s) ≤ p2(t, s)z(t, s) + b(σ(t), s)k1(t, s)w(σ(t), s) + r2(t, s)

+
∫s

s0

k3
(

t, σ
(

η
))

a
(

σ(t), σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
)) Δη

+
∫s

s0

θ3

(

h3
(

t, η
)

,
k3
(

t, σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
)) , λ3

)

Δη

+
∫s

s0

k3
(

t, σ
(

η
))

b
(

σ(t), σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
)) z

(

σ(t), σ
(

η
))

Δη.

(3.26)
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Notice that

∫s

s0

k3
(

t, σ
(

η
))

b
(

σ(t), σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
)) z

(

σ(t), σ
(

η
))

Δη

=
∫s

s0

k3
(

t, σ
(

η
))

b
(

σ(t), σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
))

[

z
(

σ(t), η
)

+ μ
(

η
)

zΔη
(

σ(t), η
)

]

Δη

≤ z(σ(t), s)
∫ s

s0

k3
(

t, σ
(

η
))

b
(

σ(t), σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
)) Δη +

∫s

s0

k3
(

t, σ
(

η
))

zΔη
(

σ(t), η
)

Δη

≤ z(σ(t), s)

[

k3(t, s) +
∫ s

s0

(

k
Δη

3
(

t, η
)

+
k3
(

t, σ
(

η
))

b
(

σ(t), σ
(

η
))

1 + μ
(

η
)

b
(

σ(t), σ
(

η
))

)

Δη

]

.

(3.27)

By (3.26) and (3.27), we have

wΔt(t, s) ≤ p3(t, s)w(t, s) + Λ(t, s)w(σ(t), s) + r3(t, s), (t, s) ∈ T × ˜T. (3.28)

Using the fact Λ(t, s) = q3(t, s)/(1 + μ(t)q3(t, s)), Lemma 2.2 and (3.25), we get that (3.22)
holds.

It is worthy to mention that although some additional assumptions such as
μ(t)b(σ(t), s)k1(t, s) < 1 and μ(t)Λ(t, s) < 1 are imposed in Theorems 3.1–3.3, they are easy to
be satisfied by choosing appropriate adjusting functions k1(t, s) and k3(t, s).

4. Applications

We now consider some applications of the main results in the partial dynamical system (2.10)
under the boundary condition

u(t, s0) = α(t), u(t0, s) = β(s), u(t0, s0) = u0. (4.1)

Denote a(t, s) = |α(t)| + |β(s)| + |u0|. We have the following corollaries.

Corollary 4.1. Let T = Z = {0, 1, 2, . . .}, ˜T = R+ = [0,∞), and

∣

∣f(t, s, u(t, s), u(t + 1, s)
∣

∣ ≤ |u(t, s)| + |u(t + 1, s)|λ1 , (t, s) ∈ T × ˜T. (4.2)

Then, the solution of system (2.10) under the boundary condition (4.1) satisfies

|u(t, s)| ≤ a(t, s) + 2
t−1
∑

τ=0
(2 + 2s)t−1−τ

[

a(τ + 1, s)
2

+ a(τ, s)s + θ

(

s,
1
2
, λ1

)]

, (4.3)

for (t, s) ∈ T × ˜T.
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Proof. For (t, s) ∈ T × ˜T, it follows from (2.11) and (4.2) that

|u(t, s)| ≤ a(t, s) +
t−1
∑

τ=0

∫s

0

[

∣

∣u
(

τ, η
)∣

∣ +
∣

∣u
(

τ + 1, η
)∣

∣

λ1
]

. (4.4)

Let k1(t, s) = 1/2 be a constant. A straightforward computation yields

p1(t, s) = s, q1(t, s) = 1,

r1(t, s) =
a(t + 1, s)

2
+ a(t, s)s + θ

(

s,
1
2
, λ1

)

.
(4.5)

Since (p1 ⊕ q1)(t, s) = 2 + 2s, we get (4.3) by Theorem 3.1.

Corollary 4.2. Let T = ˜T = Z, and

∣

∣f(t, s, u(t, s), u(t + 1, s), u(t, s + 1)
∣

∣ ≤ |u(t, s)| + |u(t + 1, s)|λ1 + |u(t, s + 1)|λ2 .
(4.6)

Then, the solution of system (2.10) under the boundary condition (4.1) satisfies

|u(t, s)| ≤ a(t, s) + 2
t−1
∑

τ=0
(3 + 3s)t−1−τ

⎡

⎣r1(τ, s) + sθ

(

s,
1
2
, λ2

)

+

∑s−1
η=0 a

(

τ, η + 1
)

2

⎤

⎦, (4.7)

where r1(t, s) is defined as in Corollary 4.1 for (t, s) ∈ T × ˜T.

Proof. For (t, s) ∈ T × ˜T, it follows from (2.11) and (4.6) that

|u(t, s)| ≤ a(t, s) +
t−1
∑

τ=0

s−1
∑

η=0

[

∣

∣u
(

τ, η
)∣

∣ +
∣

∣u
(

τ + 1, η
)∣

∣

λ1 +
∣

∣u
(

τ, η + 1
)∣

∣

λ2
]

(4.8)

holds for (t, s) ∈ T × ˜T. Let k1(t, s) = 1/2 and k2(t, s) = 1. A straightforward computation
yields

p2(t, s) = 1 +
(

3s
2

)

, q2(t, s) = 1,

r2(t, s) = r1(t, s) + sθ

(

s,
1
2
, λ2

)

+

∑s−1
η=0 a

(

t, η + 1
)

2
.

(4.9)

Hence, p2 ⊕ q2 = 3 + 3s. By Theorem 3.2, we have that (4.7) holds.
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For the case when f satisfies

∣

∣f(t, s, u(t, s), u(t + 1, s), u(t, s + 1), u(t + 1, s + 1))
∣

∣

≤ |u(t, s)| + |u(t + 1, s)|λ1 + |u(t, s + 1)|λ2 + |u(t + 1, s + 1)|λ3
(4.10)

on Z × Z, the solution of system (2.10) under the boundary condition (4.1) can be similarly
estimated by Theorem 3.3. We omit it here.
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