
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2011, Article ID 319829, 15 pages
doi:10.1155/2011/319829

Research Article
Existence and Multiplicity of Solutions for Discrete
Nonlinear Two-Point Boundary Value Problems

Jianmin Guo and Caixia Guo

School of Mathematics and Computer Sciences, Shanxi Datong University, Datong, Shanxi 037008, China

Correspondence should be addressed to Jianmin Guo, dtdxguojianmin@163.com

Received 26 September 2010; Accepted 5 January 2011

Academic Editor: Chang-hong Wang

Copyright q 2011 J. Guo and C. Guo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

By usingMorse theory, the critical point theory, and the character ofK1/2, we consider the existence
and multiplicity results of solutions to the following discrete nonlinear two-point boundary value
problem −Δ2x(k − 1) = f(k, x(k)), k ∈ Z(1, T) subject to x(0) = 0 = Δx(T), where T is a positive
integer, Z(1, T) = {1, 2, . . . , T},Δ is the forward difference operator defined by Δx(k) = x(k + 1) −
x(k), and f : Z(1, T) × R → R is continuous. In argument, Morse inequalities play an important
role.

1. Introduction

In this paper, we discuss the existence and multiplicity results of solutions to the following
discrete nonlinear two-point boundary value problem (BVP):

−Δ2x(k − 1) = f(k, x(k)), k ∈ Z(1, T),

x(0) = 0 = Δx(T),
(1.1)

where T is a positive integer, Z(1, T) = {1, 2, . . . , T},Δ is the forward difference operator
defined by Δx(k) = x(k + 1) − x(k), and f : Z(1, T) × R → R is continuous.

Recent years, there have been many papers studying the existence and multiplicity
of solutions for differential equations. For example, by employing the strongly monotone
operator principle and the critical point theory, F. Li et al. in [1] establish some conditions
on f which are able to guarantee a class of boundary value problem on differential equation
has a unique solution, at least one nonzero solution and infinitely many solutions; by using
the critical point theory, and Morse theory, Yang and Zhang in [2] obtained some existence
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results for differential equations with parameters; there are also many authors who studied
the existence results of positive solutions to boundary value problem on differential equation
by employing the cone expansion or compression fixed point theorem or the critical point
theory, see [3–5]; Jiang and Zhou in [6] obtained variational framework of the BVP(1.1) first
by virtue of Green’s function and separation of linear operator and studied the existence of
a unique solution or at least one nontrivial solution by employing the strongly monotone
operator principle and the critical point theory respectively.

In this paper, the main difference from the ordinary literatures is that we apply Morse
theory and critical point theory to deal with problems on discrete systems. Then we establish
some conditions on f which include sublinear, superlinear or asymptotical case to guarantee
that BVP(1.1) has at least one solution, at least two nontrivial solutions, and infinitely many
solutions.

2. Preliminary

In this section, we give some notations and lemmas.
Let B = {x : Z(1, T + 1) → R, x(0) = 0 = Δx(T)} is a T -dimensional Hilbert

space with inner product (x, y) =
∑T

k=1 x(k)y(k), and we denote the induced norm by

‖x‖ = (
∑T

k=1 |x(k)|2)
1/2

. Bρ = {x ∈ B : ‖x‖ � ρ}, Sρ = ∂Bρ. And Ja = {x ∈ H : J(x) � a}
for any J ∈ C(B,R1) and a ∈ R

1. Let E be a real Banach space, and let C1(E,R) denote the set
of functionals that are Fréchet differentiable and their Fréchet derivatives are continuous on
E.

Let G [6] be the Green’s function of the linear boundary value problem

−Δ2x(k − 1) = 0, k ∈ Z(1, T),

x(0) = 0 = Δx(T),
(2.1)

where

G(k, t) = min{k, t} =

⎧
⎨

⎩

k, k � t,

t, t � k
(2.2)

then the (BVP)(1.1) has a solution if and only if the following equation:

x(k) =
T∑

t=1

G(k, t)f(t, x(t)), k ∈ Z(1, T) (2.3)

has a solution in B. Define operators K, f : B → B by

Kx(k) =
T∑

t=1

G(k, t)x(t), fx(k) = f(k, x(k)), k ∈ Z(1, T), ∀x ∈ B. (2.4)



Discrete Dynamics in Nature and Society 3

It is easy to see that a solution of (2.3) is equivalent to a solution in B of the following operator
equation:

x = Kfx. (2.5)

It is well know, that all eigenvalues of K are

λt =
1

4 sin2((2t − 1)π/(4T + 2))
, t = 1, 2, . . . , T, (2.6)

which have the corresponding orthonormal eigenfunctions

{et}Tt=1 = sin
(2t − 1)π
2T + 1

(
T∑

t=1

sin2 (2n − 1)π
2T + 1

)−1/2
, t ∈ Z(1, T). (2.7)

Remark 2.1 (see [6]).

(i) K : B → B is a linear continuous operator; furthermore, K is symmetric in B.

(ii) There are x =
∑T

k=1(x, ek)ek, ‖x‖2 =
∑T

k=1 |x, ek|2, Kx =
∑T

k=1 λk(x, ek)ek, x ∈ B.

(iii) The square root operator of K: K1/2 : B → B is bounded linear and symmetric,

K1/2x =
T∑

k=1

λ1/2
k (x, ek)ek, x ∈ B. (2.8)

(iv) (K1/2x, x) =
∑T

k=1 λ
1/2
k |(x, ek)|2, x ∈ B, this implies that K1/2x /= 0 for all x ∈ H with

x /= 0. Therefore, K1/2x1 /=K1/2x2 for all x1, x2 ∈ B with x1 /=x2.

In next section, we will use the critical point theory and Morse theory to discuss the
main results. Here, we state some necessary definitions and lemmas.

Definition 2.2. Let E be a real Banach space; D is an open subset of E. Suppose the functional
J : D → R is C1(E,R) on D. If x0 ∈ D and the Fréchet derivative f ′(x0) = 0, then we call that
x0 is a critical point of the functional f , and c = f(x0) is a critical value of f .

Definition 2.3. Let f ∈ C1(E,R). If any sequence {xm} ⊂ E for which {f(xm)} is bounded and
f ′(xm) → 0 as m → ∞ possesses a convergent subsequence, then we say that f satisfies
Palais-Smale condition (denoted by P.S. condition for short).

Lemma 2.4 (see [7, Definition 1.16, page 13]). Let E be a real reflexive Banach space. Suppose that
the functional J : E → R

1 is C1, and is bounded below and satisfies P.S. condition, then J must have
a minimum in E, that is, there exists a x∗ ∈ E such that J(x∗) = infx∈EJ(x), therefore x∗ is a critical
point of the functional J .
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Definition 2.5 (see [2]). Let J(0) = 0, E = V ⊕ X with dimV < ∞ be a real Banach space.
Assume that there exists ρ > 0 small, such that

J(x) � 0, x ∈ V, ‖x‖ � ρ,

J(x) > 0, x ∈ X, 0 < ‖x‖ � ρ
(2.9)

Then J has a local linking at 0.

Definition 2.6. Let E be a real Banach space, let u be an isolated critical point of J with J(u) = c
and let U be a neighborhood of u, containing the unique critical point. We call Cq(J, u) =
Hq(Jc ∩ U, Jc ∩ U \ {u}) the q-th critical group of J at u, q = 0, 1, 2, . . ., where Hq(·, ·) stands
for the q-th singular relative homology group with integer coefficients. We say that u is a
homological nontrivial critical point of J if at least one of its critical groups is nontrivial.

Lemma 2.7 (see [8]). Assume that J ∈ C1(E,R) satisfies P.S. condition and has a local linking at 0.
Then Ck(J, θ) � 0, that is, 0 is a homological nontrivial critical point of J .

Lemma 2.8 (see [8]). Let M be a Finsler manifold of C2. Assume that f ∈ C1(M,R) satisfies the
P.S. condition and a is the only critical value of f in [a, b). If connected component of Ka is only
composed of isolated critical points, then fa is a deformation retract of fb \Kb.

Lemma 2.9 (see [2]). (i) The operator equation

x = Kfx (2.10)

has a solution in B if and only if the operator equation

x = K1/2fK1/2x (2.11)

has a solution in B.
(ii) The uniqueness of solution for these two above equations is also equivalent.
(iii) If (2.11) has a nonzero solution in B, then (2.10) has a nonzero solution in B. If (2.11)

has infinitely many solutions in B, then (2.10) has also infinitely many solutions in B.

Lemma 2.10 (see [9]). Suppose that the functional

J(x) =
1
2
‖x‖2 −

T∑

k=1

F
(
k,K1/2x(k)

)
, x ∈ B (2.12)

has a critical point x ∈ B, where F(k, x) =
∫x
0 f(k, s)ds, then (BVP)(1.1) has a solution in B.

Lemma 2.11 (see [8]). Suppose J ∈ C1(B,R) satisfies P.S. and (A) conditions, then, one has

Mq −Mq−1 + · · · + (−1)qM0 � βq − βq−1 + · · · + (−1)qβ0, q = 0, 1, 2, . . . , (2.13)
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where βq = βq(a, b) = rankHq(fb, fa), q = 0, 1, 2, . . .. Furthermore, if the left of the equation is
convergent, then one has that

∞∑

q=0

(−1)qMq =
∞∑

q=0

(−1)qβq. (2.14)

(A) Suppose that there are two regular values, then J has at most finite critical points and rank
of critical groups of every critical point is finite.

Lemma 2.12 (see [8, page 100, Theorem 3.2]). Let J ∈ C2(B,R) be a functional and satisfy P.S.
condition. Suppose that J ′ = I −A, where A is a compact map and p0 is a isolated critical point of J ,
then we have

ind
(
J ′, p0

)
=

∞∑

q=0

(−1)q rankCq

(
J, p0
)
. (2.15)

3. Mail Results

Lemma 3.1. Suppose f satisfies one of the following conditions:

(a) (H1)lim sup|x|→∞ F(k, x)/x2 < a for k ∈ Z(1, T), where a ∈ [0, 2 sin2π/(4T + 2)),

(b) (H2)lim|x|→∞ F(k, x)/x2 = a for k ∈ Z(1, T), where a ∈ [0, 2 sin2(π/(4T + 2)); and
(H3)lim|x|→∞(F(k, x) − ax2) = −∞ for k ∈ Z(1, T), where a ∈ [0, 2sin2(π/(4T + 2)),

(c) (H2) and (H4)lim|x|→∞(f(k, x)x − 2F(k, x)) = +∞, uniformly for k ∈ Z(1, T), where
a ∈ [0, 2 sin2(π/(4T + 2)), then one has

(i) J is coercive on B, that is J(x) → +∞ as ‖x‖ → ∞, (ii) J satisfies P.S. condition.

Proof. (i) Let (a) hold. It follows from (H1) that there is a constant c > 0 such that
F(k, x) � ax2 + c, x ∈ R, k ∈ Z(1, T). Therefore,

J(x) =
1
2
‖x‖2 −

T∑

k=1

F
(
k,K1/2x(k)

)

� 1
2
‖x‖2 −

(

a
∣
∣
∣K1/2x

∣
∣
∣
2
+ c

)

=
1
2
‖x‖2 − a(Kx, x) − c

� 1
2
‖x‖2 − a

4 sin2((π/4T) + 2)
‖x‖2 − c

=
1
2

(

1 − a

2 sin2((π/4T) + 2)

)

‖x‖2 − c −→ +∞, ‖x‖ −→ ∞.

(3.1)
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Let (b) or (c) hold. By the condition (H2), write f(k, x) = 2ax+g(k, x), F(k, x) = ax2 +
G(k, x). If (H3) holds, then lim|x|→∞G(k, x) = −∞; if (H4) holds, then lim|x|→∞G(k, x)/x2 =
0, lim|x|→∞(g(k, x)x − 2G(k, x)) = +∞. It follows that for every M > 0, there is RM > 0 such
that

g(k, x)x − 2G(k, x) � M, |x| � RM. (3.2)

Integrating the equality

d

dx

G(k, x)
x2

=
g(k, x)x − 2G(k, x)

x3
� M

x3
(3.3)

over the interval [x, y] ⊂ [RM,+∞), we have

G
(
k, y
)

y2
− G(k, x)

x2
� −M

2

(
1
y2

− 1
x2

)

. (3.4)

Letting y → +∞, we see thatG(k, x) � −M/2, k ∈ Z(1, T), x � RM. In a similar way, we have
G(k, x) � −M/2, k ∈ Z(1, T), x � −RM. Hence, lim|x|→∞G(k, x) = −∞.

Let {xn} ⊂ B be such that ‖xn‖ → ∞ as n → ∞ and J(xn) � C for some constant
C ∈ R. Taking yn = xn/‖xn‖, then yn, yn ⇀ y0, y0 ∈ B and ‖y0‖ ≤ 1. So, K1/2yn → K1/2y0

in B.

C∗
∥
∥yn

∥
∥2

≥ J
(
yn

)

∥
∥yn

∥
∥2

=
1
2
− 1

‖xn‖2
T∑

k=1

F
(
k,K1/2xn(k)

)

=
1
2
− 1

‖xn‖2
T∑

k=1

(

a
(
K1/2xn(k)

) 2
+G
(
k,K1/2xn(k)

))

=
1
2
− a

(

K1/2 xn

‖xn‖
)2

− 1

‖xn‖2
T∑

k=1

G
(
k,K1/2xn(k)

)

=
1
2
− 2 sin2 π

4T + 2
(K1/2yn)

2 − 1

‖xn‖2
T∑

k=1

G
(
k,K1/2xn(k)

)

≥ 1
2
− 2 sin2 π

4T + 2
(K1/2yn)

2 − C

‖xn‖2
.

(3.5)
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Then,

(
Ky0, y0

)
=

T∑

k=1

(
K1/2y0(k)

)2
= lim

n−→∞

T∑

k=1

(
K1/2yn(k)

)2
= lim

n−→∞
(K1/2yn)

2 ≥ 1

4sin2((π/4T) + 2)
.

(3.6)

Hence |K1/2yn(k)|/= 0 and |K1/2xn(k)| = |K1/2(‖xn‖yn(k))| = ‖xn‖|K1/2yn(k)| → ∞. And
G(k,K1/2xn(k)) → −∞, as n → ∞ for k ∈ Z(1, T). Therefore,

C∗ ≥ J(xn) =
1
2
‖xn‖2 − a(K1/2xn)

2 −
T∑

k=1

G
(
k,K1/2xn(k)

)

≥ 1
2

(
‖xn‖2 − a(Kxn, xn)

)
−

T∑

k=1

G
(
k,K1/2xn(k)

)

≥ −
T∑

k=1

G
(
k,K1/2xn(k)

)
−→ +∞, n −→ ∞.

(3.7)

This is impossible, so J is coercive on B.

(ii) Let {xn} ∈ B, {J(xn)} is bounded and J ′(xn) → θ, n → ∞. By (i), {xn} is bounded
on B. Clearly, {xn} possesses a convergent subsequence. Then, the P.S. condition is
satisfied.

Lemma 3.2. Suppose that

(H5) there exist δ, a, b ∈ (0,+∞) and an integerm ∈ Z(1, T), which satisfy

2 sin2 (2m − 1)π
4T + 1

� b � a � 2 sin2 (2m + 1)π
4T + 1

, (3.8)

such that by2 ≤ F(k, y) ≤ ay2, |y| ≤ δ, k ∈ Z(1, T).
Then the functional J has a local linking with respect to B = V1 ⊕ V2, where V1 = span{e1,

e2, . . . , em}, V2 = V ⊥
1 .

Proof. Let V1 = span{e1, e2, . . . , em}, V2 = V ⊥
1 . If x ∈ V1, then (Kx, x) ≥ λm‖x‖2; if x ∈ V2, then

(Kx, x) ≤ λm+1‖x‖2.
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By Remark 2.1, we can assume that for the given δ > 0, there exists a ρ = δ/L > 0 such
that x ∈ V1, ‖x‖ ≤ ρ ⇒ |K1/2x| ≤ L‖x‖ ≤ δ, and thus, by (H5), we have

J(x) =
1
2
‖x‖2 −

T∑

k=1

F
(
K1/2x(k)

)

≤ 1
2
‖x‖2 −

T∑

k=1

b
(
K1/2x(k)

)2

=
1
2
‖x‖2 − b

(
K1/2x,K1/2x

)

=
1
2
‖x‖2 − b(Kx, x)

≤
(

1
2
− b

4 sin2((2m − 1)(π/4T) + 1)

)

‖x‖2 ≤ 0, x ∈ V1, ‖x‖ ≤ ρ.

(3.9)

For x ∈ V2, consider the above ρ. By Remark 2.1, we still have ‖x‖ ≤ ρ ⇒ |K1/2x| ≤ L‖x‖ ≤ δ;
thus by (H5), we have

J(x) =
1
2
‖x‖2 −

T∑

k=1

F
(
K1/2x(k)

)

≥ 1
2
‖x‖2 −

T∑

k=1

A(K1/2x)
2

=
1
2
‖x‖2 − a

(
K1/2x,K1/2x

)

=
1
2
‖x‖2 − a(Kx, x)

≥
(

1
2
− a

4 sin2((2m + 1)(π/4T) + 1)

)

‖x‖2 ≥ 0, x ∈ V2, ‖x‖ ≤ ρ.

(3.10)

This implies that J has a local linking at 0 with respect to B = V1 ⊕ V2.

Theorem 3.3. If condition (H1) holds, then the BVP(1.1) has at least a solution.

Proof. Wewill verify that the functional J(x) defined in Lemma 2.10 has a critical point x ∈ B.
By [6], we know that J : B → R is C1 functional. And by Lemma 3.1, it is easy to know that J
is bounded below and satisfies P.S. condition. It follows from Lemma 2.4 that J has a critical
point in x ∈ B.

Theorem 3.4. If conditions (H2) and (H3) hold, then the BVP(1.1) has at least a solution.

Theorem 3.5. If conditions (H2) and (H4) hold, then the BVP(1.1) has at least a solution. The proof
of Theorem 3.4 and Theorem 3.5 is similar to the proof of Theorem 3.3.
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Theorem 3.6. If conditions (H1) and (H5) hold, then the BVP(1.1) has at least two nontrivial
solutions.

Proof. By Lemma 3.1, we know that J satisfies P.S. condition, and it follows from Lemmas
2.7 and 3.2 that x = θ is a homological nontrivial critical point of J , then Ck(J, 0) � 0. If
infx∈BJ(x) ≥ 0, then J(x) = infx∈V1J(x) = 0, x ∈ V1, ‖x‖ < ρ, which implies that all x ∈ V1

with ‖x‖ < ρ are solutions of the BVP(1.1). If infx∈BJ(x) < 0, that is, 0 is not a minimizer of J ,
by Lemma 3.1, it is easy to know that J is bounded below and satisfies P.S. condition. Then
by Lemma 2.4, J has a minimizer x0 → B, that is, a critical point and x0 /= 0; Without loss of
generality, we may suppose that the minimizer x0 is unique. Let c = J(x0), then Morse index
of x0 is

Cq(J, x0) = Hq(Jc ∩Ux0 , (Jc \ {x0}) ∩Ux0)

=

⎧
⎨

⎩

G, q = 0,

0, q /= 0.

(3.11)

We suppose, J only have two critical points with θ and x0, where c1 = c, c2 = J(θ),
c1 < c2. Let b > max{c1, c2}, ε > 0 is small enough such that c1 + ε < c2 − ε, c2 + ε < b.

If χ(X,Y ) =
∑∞

q=0 (−1)qHq(X,Y ) is finite, then χ(X,Y ) satisfies additivity. So,

χ(Jb, Jc1−ε) = χ(Jb, Jc2−ε) + χ(Jc2−ε, Jc1−ε). (3.12)

It follows from the second deformation lemma, exactness, and excision that Hq(Jb, Jc2−ε) ∼=
Hq(Jc2+ε, Jc2−ε) ∼= Hq(Jc2+ε, Jc2 \ {θ}) ∼= Hq(Jc2 , Jc2 \ {θ}) ∼= Hq(Jc2 ∩Uθ, (Jc2 \ {θ}) ∩Uθ). Thus,

Hq(Jb, Jc2−ε) = Hq(Jc2 ∩Uθ, (Jc2 \ {θ}) ∩Uθ)

= Cq(J, θ)

=

⎧
⎨

⎩

G, q = m,

0, q /=m.

(3.13)

Hence, χ(Jb, Jc2−ε) = (−1)m.
By the same way,

Hq(Jc2+ε, Jc1−ε) ∼= Hq(Jc1+ε, Jc1−ε)

∼= Hq(Jc1 , Jc1−ε)

∼= Hq(Jc1 , Jc1 \ {x0})
∼= Cq(J, x0)

=

⎧
⎨

⎩

G, q = 0,

0, q /= 0.

(3.14)
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So, χ(Jc2+ε, Jc1−ε) = 1. But

χ(Jb, Jc1−ε) =
∞∑

q=0
(−1)qHq(Jb, Jc1−ε)

=
∞∑

q=0

(−1)qHq(Jb)

= 1.

(3.15)

Then, (−1)m + 1/= 1 is a contradict with (3.12).
Thus, J has at least three critical points, that is, the BVP (1.1) has at least two nontrivial

solutions.

Theorem 3.7. If condition (H2), (H3), and (H5) hold, then the BVP(1.1) has at least two nontrivial
solutions.

Theorem 3.8. If condition (H2), (H4), and (H5) hold, then the BVP(1.1) has at least two nontrivial
solutions.

The proof of Theorems 3.5, and 3.6 is similar to the proof of Theorem 3.6.

Theorem 3.9. Suppose that

(H6) there existsm ∈ Z(1, T), such that

4 sin2 (2m − 1)π
4T + 1

< f ′
x(k, 0) < 4 sin2 (2m + 1)π

4T + 1
, k ∈ Z(1, T), (3.16)

(H7) there exist μ ∈ (0, 1/2) and R > 0 such that 0 < F(k, x) =
∫x
0 f(k, s)ds � μxf(k, x)

for all k ∈ Z(1, T) and x ∈ R with |x| � R.

Then the BVP(1.1) has at least one nontrivial solution.

Proof. Obviously, dJ(θ) = θ and d2J(θ) = I − λK1/2f′x(θ)K
1/2 := I − Ψ, where Ψ =

K1/2f′x(θ)K
1/2. It follows from (H6) that there exists a sufficiently small ε0 > 0 such that

a = 4sin2 (2m − 1)π
4T + 1

+ ε0 � f ′
x(k, 0) � 4sin2 (2m + 1)π

4T + 1
− ε0 = b, k ∈ Z(1, T). (3.17)

Since (Ψy, y) = (f ′
x(·, 0)K1/2y,K1/2y) for all y ∈ B, a(Ky, y) � (Ψy, y) � b(Ky, y) for y ∈ B.

So, for every m ∈ Z(1, T),

a inf
Em−1

sup
y∈E⊥

m−1,‖y‖=1
(
Ky, y

)
� inf

Em−1
sup

y∈E⊥
m−1,‖y‖=1

(
Ψy, y

)
� b inf

Em−1
sup

y∈E⊥
m−1,‖y‖=1

(
Ky, y

)
, (3.18)
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where Em−1 is (m − 1)-dimension subspace of B. Therefore, 4a sin2((2m − 1)π/(4T + 1) μk �
4b sin2((2m − 1)(π/4T) + 1), where m-th eigenvalues of Ψ are μm. If there exists m0 such
that μm0 = 1, then 4a sin2((2m0 − 1)(π/4T) + 1) � 1 � 4b sin2((2m0 − 1)(π/4T) + 1). Thus,
1/4 sin2((2m−1)π/(4T +1))+ε0 � 1/4asin2((2m0−1)π/(4T +1)) � 1/4 sin2((2m+1)π/(4T +
1)) − ε0. It is not true. So, 1 is not eigenvalues of Ψ. Thus θ is a nondegenerate critical point of
J and Morse index number is n. Then, Cq(J, θ) = δqnG.

Asumme that J is no other critical points, then Morse index number of (H, Ja) is

Mn = 1, Mq = 0, q /=n,
∞∑

q=0

(−1)qMq = (−1)n. (3.19)

It follows from (H7) that there existsC1, C2 > 0 such that F(k, x) � C1|x|1/μ−C2, (k, x) ∈
Z(1, T) × R

1. So,

J(τx) =
1
2
τ2‖x‖2 −

T∑

t=1

F
(
k, τK1/2x(k)

)
� 1

2
τ2‖x‖2 − C1τ

1/μ
∥
∥
∥K1/2x

∥
∥
∥
1/μ

1/μ
+ C2, x ∈ B.

(3.20)

This implies limτ →+∞J(τx) = −∞ for all x ∈ S∞. So, there exists γ(x) > 0 such that J(γ(x)x) =
a for all x ∈ S∞. Then, wewill prove that there existsA > 0 such that a < −A, and if J(τx) � a,
then d/dτ[J(τx)] < 0.

Indeed, let A = C3, then for all x ∈ S∞,

d

dτ
J(τx) =

(
J ′(τx), x

)

= τ −
T∑

t=1

K1/2x(k)f
(
k, τK1/2x(k)

)

� τ − 1
τμ

T∑

t=1

F
(
k, τK1/2x(k)

)
+
C3

τμ

� 1
τμ

(
1
2
τ2 −

T∑

t=1

F
(
k, τK1/2x(k)

)
)

+
C3

τμ

=
1
τμ

(J(τx) + C3) < 0.

(3.21)

So, γ(x) satisfies J(γ(x)x) = a and for all x ∈ S∞ is unique. It follows from implicit function
theorem that we have γ ∈ C(S∞,R1

+), where R
1
+ = [0,+∞).

At last, J(θ) = 0 and there exists ε0 > 0 such that Bε0 ∩ Ja = ∅ and γ(x) � ε0 for all
x ∈ S∞. We define a deformation retract η : [0, 1] × (B \ Bε0) → B \ Bε0 by

η(s, x) =

⎧
⎪⎨

⎪⎩

(1 − s)x + sγ

(
x

‖x‖
)

x

‖x‖ , x ∈ (B \ Bε0) \ Ja,

x, x ∈ Ja.

(3.22)
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This proves that B \ Bε0 � Ja. The,n S∞ � Ja. Therefore, Hq(H, Ja) � Hq(H,S∞) � 0. Since S∞

is contractible, we have Betti number βq = 0, q � 0. Thus,

∞∑

q=0

(−1)qβq = 0. (3.23)

Then by (3.19) and (3.23), we have
∑∞

q=0 (−1)qMq /=
∑∞

q=0 (−1)qβq. Thus, according to the
Morse inequality, J has at least one nontrivial critical point.

Theorem 3.10. Suppose that condition (H7) is satisfied and that

(H8)f(k, x) is odd in x, that is, f(k, x) = −f(k,−x) for all (k, x) ∈ [0, 1] × R
1.

Then the BVP(1.1) has infinitely many solutions.

Proof. First, it follows from (H7) that J satisfies P.S. condition in B [6].
It follows from (H8) that J is even. Asumme that J has only finitelymany critical points

{x1,−x1, x2,−x2, . . . , xm,−xm}. We choose two constant numbers a < 0 and b > 0, such that
they satisfy a < min{J(x1), J(x2), . . . , J(xm),−C4} and b > min{J(x1), J(x2), . . . , J(xm)}.

On the one hand, it follows from Theorem 3.9 that B \ Bε0 � Ja. Then, S∞ � Ja. Since
S∞ is contractible, we can deduce that Betti number βq = 0, q � 0.

Therefore,

∞∑

q=0

(−1)qβq = 0. (3.24)

On the other hand, we choose enough small r > 0 such that B(θ, r), B(yi, r), B(−yi, r), i =
1, 2, . . . , m is mutually disjoint. So,

Mq = Mq(a, b) =
m∑

i=1

[
rankCq

(
J, yi

)
+ rankCq

(
J,−yi

)]
+ rankCq(J, θ), q � 0. (3.25)

It follows from Borsuk theorem that

∞∑

q=0

(−1)qMq =
m∑

i=1

⎡

⎣
∞∑

q=0
(−1)q(ṙankCq

(
J, yi

)
+ rankCq

(
J,−yi

))
⎤

⎦ +
∞∑

q=0

(−1)q rankCq(J, θ)

=
m∑

i=1

[
deg
(
I −A,B

(
yi, r
)
, θ
)
+ deg

(
I −A,B

(−yi, r
)
, θ
)]

+ deg(I −A,B(θ, r), θ)

= deg

(

I −A,
m⋃

i=1

(
B
(
yi, r
) ∪ B

(−yi, r
)) ∪ B(θ, r), θ

)

,

(3.26)
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that is

∞∑

q=0

(−1)qMq = an odd number. (3.27)

By (3.24) and (3.27), we obtain that

∞∑

q=0

(−1)qMq /=
∞∑

q=0

(−1)qβq. (3.28)

It is a contradiction. Thus, J has infinitely many critical points in B.

Example 3.11. Consider the (BVP)

−Δ2x(k − 1) =
cosx

1 + sinx
, k ∈ Z(1, T),

x(0) = 0 = Δx(T),
(3.29)

Here, f(k, x) = cosx/(1 + sinx), F(k, x) = ln(1 + sinx). By simple calculation, we have
lim|x|→∞(F(k, x)/x2) < 2(sin2)(π/(4T+2)). Thus, the condition (H1) holds. Then by Theroem
3.3., the (BVP) has at least one solution.

Example 3.12. Consider the (BVP) of Example 3.11, here

f(k, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4x sin2 2π
4T + 1

, −1 < x < 1, k ∈ Z(1, T);

x sin2 π

4T + k + 2
+ 132, x � 1, k ∈ Z(1, T);

x sin2 π

4T + k + 2
− 132, x � −1, k ∈ Z(1, T),

F(k, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x2 sin2 2π
4T + 1

, −1 < x < 1, k ∈ Z(1, T);

2x2 sin2 π

4T + k + 2
+ 132x − 66, x � 1, k ∈ Z(1, T);

2x2 sin2 π

4T + k + 2
− 132x − 66, x � −1, k ∈ Z(1, T).

(3.30)

By simple calculation, we have

lim
|x|−→∞

sup
F(k, x)

x2
= 2 sin2 π

4T + k + 2
< 2 sin2 π

4T + 2
, k ∈ Z(1, T), (3.31)
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and there exists m = 1 and δ = 1 > 0 such that

2 sin2 2π − 1
4T + 1

x2 � F(k, x) � 2 sin2 2π + 1
4T + 1

x2, |x| � 1. (3.32)

Let a = 2 sin2((2π + 1)/(4T + 1)), b = 2 sin2((2π − 1)/(4T + 1)) then a, b satisfy

2 sin2 π

4T + 1
� b � a � 2 sin2 3π

4T + 1
. (3.33)

Thus, the conditions (H1) and (H5) hold. Hence, by Theorem 3.6, the (BVP) has at least two
nontrivial solutions.

Example 3.13. Consider the (BVP) of Example 3.11, where

f(k, x) =
ln(1 + x)
1 + x

+ 10x5 (k, x) ∈ Z(1, T) × R
1. (3.34)

It is obvious that f(k, x) ∈ C1(Z(1, T) × R
1,R1) is odd with respect to x. On the other hand,

F(k, x) =
∫x

0
f(k, s)ds =

1
2
ln2(1 + x) +

5
3
x6, k ∈ Z(1, T), (3.35)

and we have

lim
|x|−→∞

F(k, x)
xf(k, x)

=
1
6
. (3.36)

It is easy to prove that condition (H7) holds. Hence, by Theorem 3.10, the (BVP) has infinitely
many solutions.
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