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This paper is motivated by Rachnkovab and Tisdell (2006) and Anderson et al. (2007). New suf-
ficient conditions for the existence of at least one solution of the generalized Neumann boundary
value problems for second order nonlinear difference equations ∇Δx(k) = f(k, x(k), x(k + 1)),
k ∈ [1, n − 1], x(0) = ax(1), x(n) = bx(n − 1), are established.

1. Introduction

Recently, there have been many papers discussed the solvability of two-point or multipoint
boundary value problems for second-order or higher-order difference equations, we refer the
readers to the text books [1, 2] and papers [3–8] and the references therein.

In a recent paper [3], Anderson et al. studied the following problem:

∇Δy(k) = f
(
k, y(k),Δy(k)

)
, k = 1, . . . , n − 1,

Δy(0) = Δy(n) = 0,
(1.1)
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where

Δy(k) =

⎧
⎨

⎩

y(k + 1) − y(k), for k = 0, . . . , n − 1,

0, for k = n,

∇Δy(k) =

⎧
⎨

⎩

y(k + 1) − 2y(k) + y(k − 1), for k = 1, . . . , n − 1,

0, for k = 0 or n.

(1.2)

The following result was proved.

Theorem ART

Suppose that f is continuous and there exist constants α ≤ 0, K ≥ 0 such that

∣∣f
(
t, p, q

) − p
∣∣ ≤ α

[
2pf
(
t, p, q

)
+ q2
]
+K,

(
t, p, q

) ∈ {1, . . . , n − 1} × R2. (∗)

Then BVP(1.1) has at least one solution.
The methods in [3] involved new inequalities on the right-hand side of the difference

equation and Schaefer’s Theorem in the finite-dimensional space setting.
In [7], the following discrete boundary value problem (BVP) involving second order

difference equations and two-point boundary conditions

∇Δyk

h2
= f

(
tk, yk,

Δyk

h

)
, k = 1, . . . , n − 1,

y0 = 0, yn = 0,

(1.3)

was studied, where n ≥ 2 an integer, f is continuous, scalar-valued function, the step size
is h = N/n with N a positive constant, the grid points are tk = kh for k = 0, . . . , n. The
differences are given by

Δyk =

⎧
⎨

⎩

yk+1 − yk, k = 0, . . . , n − 1,

0, k = n,

∇Δyk =

⎧
⎨

⎩

yk+1 − 2yk + yk−1, k = 1, . . . , n − 1,

0, k = 0 or k = n.

(1.4)

The following two results were proved in [7].
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Theorem RT

Let f be continuous on [0,N] × R2 and α, β, and, K be nonnegative constants. If there exist
c, d ∈ [0, 1) such that

∣
∣f(t, u, v)

∣
∣ ≤ α|u|c + β|v|d +K, (t, u, v) ∈ [0,N] × R2, (1.5)

then the discrete BVP(1.3) has at least one solution.

Theorem RT

Let f be continuous on [0,N] × R2 and α, β, and K nonnegative constants. If

∣
∣f(t, u, v)

∣
∣ ≤ α|u| + β|v| +K, (t, u, v) ∈ [0,N] × R2, (1.6)

αN2

8
+
βN

2
< 1, (1.7)

then the discrete BVP(1.3) has at least one solution.
In paper [8], Cabada and Otero-Espinar studied the existence of solutions of a class

of nonlinear second-order difference problem with Neumann boundary conditions by using
upper and lower solution methods. Assuming the existence of a pair of ordered lower and
upper solutions γ and β, they obtained optimal existence results for the case γ ≤ β and even
for γ ≥ β.

In this paper, we study the following boundary value problem for second-order
nonlinear difference equation

∇Δx(k) = f(k, x(k), x(k + 1)), k ∈ [1, n − 1],

x(0) = ax(1), x(n) = bx(n − 1),
(1.8)

where a, b ∈ R, n ≥ 2 is an integer, and f is continuous, scalar-valued function. We note that
when a = b = 1, BVP(1.8) becomes the following BVP:

∇Δx(k) = f(k, x(k), x(k + 1)), t ∈ [1, T − 1],

Δx(0) = 0 = Δx(n − 1),
(1.9)

which is called Neumann boundary value problem of difference equation and is a special
case of BVP(1.1). When a = b = 0, BVP(1.8) is changed to

∇Δx(k) = f(k, x(k), x(k + 1)), t ∈ [1, T − 1],

x(0) = 0 = x(n),
(1.10)

which is the so-called Dirichlet problem for discrete difference equations and is a special case
of BVP(1.3).
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The purpose of this paper is to improve the assumptions (∗), (1.5), and (1.6) in the
results in paper [3, 5, 7–9], by using Mawhin’s continuation theorem of coincidence degree,
to establish sufficient conditions for the existence of at least one solution of BVP(1.8). It is
interesting that we allow f to be sublinear, at most linear or superlinear.

This paper is organized as follows. In Section 2, we make the main results, and in
Section 3, we give some examples, which cannot be solved by theorems in [5, 7, 9], to illustrate
the main results presented in Section 3.

2. Main Results

To get the existence results for solutions of BVP(1.8), we need the following fixed point
theorems.

Let X and Y be Banach spaces, L : D(L) ⊂ X → Y a Fredholm operator of index
zero, and P : X → X, Q : Y → Y projectors such that Im P = KerL, KerQ = ImL, X =
KerL⊕ KerP, Y = ImL⊕ ImQ. It follows that L|D(L)∩KerP : D(L)∩KerP → ImL is invertible;
we denote the inverse of that map by Kp.

If Ω is an open bounded subset of X, D(L) ∩Ω/= ∅, the map N :X → Y will be called
L-compact on Ω if QN(Ω) is bounded and Kp(I −Q)N : Ω → X is compact.

Lemma 2.1 (see [9]). Let L be a Fredholm operator of index zero, and let N be L-compact on Ω.
Assume that the following conditions are satisfied:

(i) Lx /=λNx for every (x, λ) ∈ [(D(L) \ KerL) ∩ ∂Ω] × (0, 1);
(ii) Nx /∈ ImL for every x ∈ KerL ∩ ∂Ω;
(iii) deg(∧QN|KerL,Ω ∩ KerL, 0)/= 0, where ∧ : KerL → Y/ ImL is the isomorphism.
Then the equation Lx = Nx has at least one solution in D(L) ∩Ω.

Lemma 2.2 (see [9]). Let X and Y be Banach spaces. Suppose L : D(L) ⊂ X → Y is a Fredholm
operator of index zero with KerL = {0}, N : X → Y is L-compact on any open bounded subset of
X. If 0 ∈ Ω ⊂ X is an open bounded subset and Lx/=λNx for all x ∈ D(L) ∩ ∂Ω and λ ∈ [0, 1],
then there is at least one x ∈ Ω so that Lx = Nx.

Let X = Rn+1, Y = Rn−1 be endowed with the norms

‖x‖ = max
n∈[0,n]

|x(n)|, ∥∥y
∥∥ = max

k∈[1,n−1]

∣∣y(k)
∣∣ (2.1)

for x ∈ X and y ∈ Y , respectively. It is easy to see that X and Y are Banach spaces. Choose D(L) =
{x ∈ X : x(0) = ax(1), x(n) = bx(n − 1)}. Let L : X → Y, Lx(k) = ∇Δx(k), x ∈ D(L), and
N : X → Y byNx(k) = f(k, x(k), x(k + 1)).

Consider the following problem:

∇Δx(k) = 0, x(0) = ax(1), x(n) = bx(n − 1). (2.2)
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It is easy to see that problem (2.2) has a unique solution x(k) = 0 if and only if

(1 − a)[(n − 1)b − n]/=a(1 − b). (2.3)

If (2.3) holds, we call BVP(1.8) at nonresonance case. If (1 − a)[(n − 1)b − n] = a(1 − b), then
problem (2.2) has infinite nontrivial solutions. At this case, we call BVP(1.8) at resonance case.
In this paper, we establish sufficient conditions for the existence of solutions of BVP(1.8) at
nonresonance case, that is, (1 − a)[(n − 1)b − n]/=a(1 − b), and at resonance case, a = b =
1. It is similar to get existence results for the existence of solutions at resonance case when
(1 − a)[(n − 1)b − n] = a(1 − b) and a/= 1, b /= 1.

Lemma 2.3. Suppose a = b = 1. Then the following results are valid.
(i) KerL = {x = (c, . . . , c) ∈ X : c ∈ R}.
(ii) ImL = {y ∈ Y :

∑n−1
i=1 y(i) = 0}.

(iii) L is a Fredholm operator of index zero.
(iv) There are projectors P : X → X and Q : Y → Y such that KerL = ImP , KerQ =

ImL. Furthermore, letΩ ⊂ X be an open bounded subset withΩ∩D(L)/= ∅; thenN is L-compact on
Ω.

(v) x ∈ D(L) is a solution of L(x) = N(x) which implies that x is a solution of BVP(1.8).

The projectors P : X → X and Q : Y → Y , the isomorphism ∧ : KerL → Y/ ImL,
and the generalized inverse Kp : ImL → D(L) ∩ ImP are as follows:

Px(n) = x(1),

Qy(n) =
1

n − 1

n−1∑

i=1

y(i),

∧(c) = c,

Kpy(n) =
k∑

s=1

s∑

i=1

y(i).

(2.4)

Lemma 2.4. Suppose (1 − a)[(n − 1)b − n]/=a(1 − b). Then the following results are valid.
(i) x ∈ D(L) is a solution of L(x) = N(x) which implies that x is a solution of BVP(1.8).
(ii) KerL = {0}.
(iii) L is a Fredholm operator of index zero,N is L-compact on each open bounded subset of X.

Suppose

(A) there exist numbers β > 0, θ ≥ 1, nonnegative sequences p(n), q(n), r(n), functions
g(n, x, y), h(n, x, y) such that f(n, x, y) = g(n, x, y) + h(n, x, y) and

g
(
n, x, y

)
x ≥ β|x|θ+1,

∣∣h
(
n, x, y

)∣∣ ≤ p(n)|x|θ + q(n)
∣∣y
∣∣θ + r(n),

(2.5)

for all n ∈ {1, . . . , n − 1}, (x, y) ∈ R2;
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(B) there exists a constant M > 0 so that

c

[
n−1∑

i=1

f(n, c, c)

]

> 0 (2.6)

for all |c| > M or

c

[
n−1∑

i=1

f(n, c, c)

]

< 0 (2.7)

for all |c| > M.

Theorem L

Suppose a2 ≤ 1, b2 ≤ 1, and that (A) and (B) hold. Then BVP(1.8) has at least one solution if

∥∥p
∥∥ +
∥∥q
∥∥max

{
|b|θ+1, 1

}
< β. (2.8)

Proof. To apply Lemma 2.1, we consider Lx = λNx for λ ∈ [0, 1].

Step 1. Let Ω1 = {x ∈ X : Lx = λNx, λ ∈ [0, 1]}. For x ∈ Ω1, we have

x(k + 1) − 2x(k) + x(k − 1) = λf(k, x(k), x(k + 1)), k ∈ [1, n − 1],

x(0) = ax(1),

x(n) = bx(n − 1).

(2.9)

So

[x(k + 1) − 2x(k) + x(k − 1)]x(k) = λf(k, x(k), x(k + 1))x(k), k ∈ [1, n − 1]. (2.10)

It is easy to see that

2
n−1∑

n=1

[x(k + 1) − 2x(k) + x(k − 1)]x(k)

=
n−1∑

n=1

(
−[x(k + 1)]2 + 2x(k)x(k + 1) − [x(k)]2 − [x(k − 1)]2 + 2x(k − 1)x(k) − [x(k)]2

+[x(k + 1)]2 − 2[x(k)]2 + [x(k − 1)]2
)

=
n−1∑

n=1

(
−[x(k + 1) − x(k)]2 − [x(k − 1) − x(k)]2 + [x(k + 1)]2 − 2[x(k)]2 + [x(k − 1)]2

)
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=
n−1∑

n=1

(
−[x(k + 1) − x(k)]2 − [x(k − 1) − x(k)]2

)

+
(
[x(n)]2 − [x(n − 1)]2 − [x(1)]2 + [x(0)]2

)

=
n−1∑

n=1

(
−[x(k + 1) − x(k)]2 − [x(k − 1) − x(k)]2

)

+
((

b2 − 1
)
[x(n − 1)]2 +

(
a2 − 1

)
[x(1)]2

)
.

(2.11)

Since a2 ≤ 1, b2 ≤ 1, we get

n−1∑

n=1

[x(k + 1) − 2x(k) + x(k − 1)]x(k) ≤ 0. (2.12)

So, we get

λ
n−1∑

n=1

f(k, x(k), x(k + 1))x(k) ≤ 0. (2.13)

Then

n−1∑

n=1

[
g(k, x(k), x(k + 1)) + h(k, x(k), x(k + 1))

]
x(k) ≤ 0. (2.14)

It follows that

β
n−1∑

k=1

|x(k)|θ+1 ≤ −
n−1∑

n=1

h(k, x(k), x(k + 1))x(k)

≤
n−1∑

n=1

[
p(k)|x(k)|θ+1 + q(k)|x(k + 1)|θ|x(k)| + r(k)|x(k)|

]

≤ ∥∥p∥∥
n−1∑

n=1

|x(k)|θ+1 + ∥∥q∥∥
n−1∑

k=1

|x(k + 1)|θ|x(k)| +
n−1∑

k=1

r(k)|x(k)|.

(2.15)

For xi ≥ 0, yi ≥ 0, Holder’s inequality implies

s∑

i=1

xiyi ≤
(

s∑

i=1

x
p

i

)1/p( s∑

i=1

y
q

i

)1/q

,
1
p
+
1
q
= 1, q > 0, p > 0. (2.16)
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It follows that

β
n−1∑

k=1

|x(k)|θ+1

≤ ∥∥p∥∥
n−1∑

n=1

|x(k)|θ+1 + ∥∥q∥∥
(

n−1∑

k=1

|x(k + 1)|θ+1
)θ/(θ+1)(n−1∑

k=1

|x(k)|θ+1
)1/(θ+1)

+ ‖r‖
n−1∑

k=1

|x(k)|

= ‖r‖(n − 1)θ/(θ+1)
(

n−1∑

k=1

|x(k)|θ+1
)1/(θ+1)

+
∥
∥p
∥
∥
n−1∑

n=1

|x(k)|θ+1

+
∥∥q
∥∥
(

|b|θ+1|x(1)|θ+1 +
n−2∑

k=1

|x(k + 1)|θ+1
)θ/(θ+1)(n−1∑

k=1

|x(k)|θ+1
)1/(θ+1)

≤ ‖r‖(n − 1)θ/(θ+1)
(

n−1∑

k=1

|x(k)|θ+1
)1/(θ+1)

+
∥∥p
∥∥
n−1∑

n=1

|x(k)|θ+1

+
∥∥q
∥∥max

{
|b|θ+1, 1

}(n−1∑

k=1

|x(k)|θ+1
)θ/(θ+1)(n−1∑

k=1

|x(k)|θ+1
)1/(θ+1)

= ‖r‖(n − 1)θ/(θ+1)
(

n−1∑

k=1

|x(k)|θ+1
)1/(θ+1)

+
∥∥p
∥∥
n−1∑

n=1

|x(k)|θ+1

+
∥∥q
∥∥max

{
|b|θ+1, 1

}n−1∑

k=1

|x(k)|θ+1.

(2.17)

It follows from (2.8) that there exists a constant M1 > 0 such that

n−1∑

k=1

|x(k)|θ+1 ≤ M1. (2.18)

Hence |x(k)| ≤ (M1/(n − 1))1/(θ+1) for all k ∈ {1, . . . , n − 1}. Hence ||x|| ≤ (M1/(n − 1))1/(θ+1).
So Ω1 is bounded.

Step 2. Prove that the set Ω2 = {x ∈ KerL : N(x) ∈ ImL} is bounded.
For x ∈ KerL, we have x(k) = c for k ∈ [0, n]. Thus we have Nx(k) = f(k, c, c).

N(x, y) ∈ ImL implies that

n−1∑

k=1

f(n, c, c) = 0. (2.19)

It follows from condition (B) that |c| ≤ M. Thus Ω2 is bounded.
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Step 3. Prove the set Ω3 = {x ∈ KerL : ±λ ∧ (x) + (1 − λ)QN(x) = 0, ∃λ ∈ [0, 1]} is bounded.
If the first inequality of (B) holds, let

Ω3 = {x ∈ KerL : λ ∧ (x) + (1 − λ)QN(x) = 0, ∃λ ∈ [0, 1]}. (2.20)

We will prove that Ω3 is bounded. For x(k) = c for k ∈ [0, n] such that x ∈ Ω3, and
λ ∈ [0, 1], we have

−(1 − λ)
n−1∑

k=1

f(n, c, c) = λc(n − 1). (2.21)

If λ = 1, then c = 0. If λ/= 1, then

0 > −(1 − λ)c
n−1∑

k=1

f(n, c, c) = λc2T ≥ 0, (2.22)

a contradiction.
If the second inequality of (B) holds, let

Ω3 = {x ∈ KerL : −λ ∧ (x) + (1 − λ)QN(x) = 0, ∃λ ∈ [0, 1]}. (2.23)

Similarly, we can get a contradiction. So Ω3 is bounded.

Step 4. Obtain open bounded set Ω such (i), (ii), and (iii) of Lemma 2.1.
In the following, we will show that all conditions of Lemma 2.1 are satisfied. Set Ω an

open bounded subset of X such that Ω ⊃ ⋃3
i=1 Ωi. We know that L is a Fredholm operator of

index zero andN is L-compact onΩ. By the definition ofΩ, we haveΩ ⊃ Ω1 andΩ ⊃ Ω2, thus
L(x)/=λN(x) for x ∈ (D(L) \ KerL) ∩ ∂Ω and λ ∈ (0, 1); N(x) /∈ ImL for x ∈ KerL ∩ ∂Ω.

In fact, letH(x, λ) = ±λ ∧ (x) + (1 − λ)QN(x). According the definition of Ω, we know
Ω ⊃ Ω3, thus H(x, λ)/= 0 for x ∈ ∂Ω ∩ KerL, thus by homotopy property of degree,

deg(QN|KerL,Ω ∩ KerL, 0) = deg(H(·, 0),Ω ∩ KerL, 0)

= deg(H(·, 1),Ω ∩ KerL, 0)

= deg(±∧,Ω ∩ KerL, 0)/= 0.

(2.24)

Thus by Lemma 2.1, L(x) = N(x) has at least one solution inD(L) ∩Ω, which is a solution of
BVP(1.8). The proof is completed.

Theorem L

Suppose a2 ≤ 1, b2 ≤ 1, (1 − a)[(n − 1)b − n]/=a(1 − b), and that (A) holds. Then BVP(1.8) has
at least one solution if (2.8) holds.
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Proof. To apply Lemma 2.2, we consider Lx = λNx for λ ∈ [0, 1]. Let Ω1 = {x ∈ X : Lx =
λNx, λ ∈ [0, 1]}. For x ∈ Ω1, we get (2.9) and (2.10). using the methods in the proof of
Theorem LX1, we get that Ω1 is bounded. Let Ω be a nonempty open bounded subset of X
such thatΩ ⊃ Ω1 centered at zero. It is easy to see that L is a Fredholm operator of index zero
and N is L-compact on Ω. One can see that Lx/=λNx for all x ∈ D(L) ∩ ∂Ω and λ ∈ [0, 1].
Thus, from Lemma 2.2, Lx = Nx has at least one solution x ∈ D(L) ∩Ω, so x is a solution of
BVP(1.8). The proof is complete.

3. An Example

In this section, we present an example to illustrate the main results in Section 2.

Example 3.1. Consider the following problem:

x(k + 1) − 2x(k) + x(k − 1) = β[x(k)]2m+1 + p(k)[x(k)]2m+1 + q(k)[x(k + 1)]2m+1 + r(k),

k ∈ [1, n − 1],

x(0) = ax(1),

x(n) = bx(n − 1),
(3.1)

where n ≥ 2, m ≥ 1 are integers and β > 0, p(n), q(n), r(n) are sequences. Corresponding to
the assumptions of Theorem L1, we set

f
(
k, x, y

)
= βx2m+1 + p(k)x2m+1 + q(k)y2m+1 + r(k),

g
(
k, x, y

)
= βx2m+1,

h
(
k, x, y

)
= p(k)x2m+1 + q(k)y2m+1 + r(k),

(3.2)

and θ = 2m + 1. It is easy to see that (A) holds, and

f(n, c, c) = c2m+1β + p(k)c2m+1 + q(k)c2m+1 + r(k) (3.3)

implies that there is M > 0 such that c
∑n−1

i=1 [c
2m+1β + p(k)c2m+1 + q(k)c2m+1 + r(k)] > 0 for all

n ∈ [1, n − 1] and |c| > M.

It follows from Theorem L2 that (3.1) has at least one solution if a2 ≤ 1, b2 ≤ 1, (1 −
a)[(n − 1)b − n]/=a(1 − b) and ||p|| + ||q||max{|b|θ+1, 1} < β. BVP(3.1) has at least one solution
if a = b = 1 and ||p|| + ||q||max{|b|θ+1, 1} < β.

Remark 3.2. It is easy to see that BVP(3.1)when a = b = 0 cannot be solved by using theorems
obtained in paper [7]. BVP(3.1) when a = b = 1 cannot be solved by the results obtained in
paper [3].
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