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This paper presents a novel mathematical model with multidrug-resistant (MDR) and undetected
TB cases. The theoretical analysis indicates that the disease-free equilibrium is globally
asymptotically stable if R0 < 1; otherwise, the system may exist a locally asymptotically stable
endemic equilibrium. The model is also used to simulate and predict TB epidemic in Guangdong.
The results imply that our model is in agreement with actual data and the undetected rate plays
vital role in the TB trend. Our model also implies that TB cannot be eradicated from population if
it continues to implement current TB control strategies.

1. Introduction

China is among the highest TB burden countries in the world and is second only to India.
The number of MDR-TB cases is about one third of that of the world [1, 2]. For an MDR-
TB patient, the cost for the treatment is usually 10–100 times higher than that of a common
TB patient [3]. Moreover, undetected TB patients pose threat to others, which plays a major
role in mycobacterium transmission among the general population [4]. It is no doubt that the
earlier the diagnosis and treatment, the better in attenuating the transmissions. Clearly, the
understanding of the mechanism and contribution of undetected patients in transmission is
important to conduct targeted interventions and control TB decease.

Blower et al. proposed a transmission dynamics among the cases infected by drug-
sensitive and the drug-resistant strains, respectively [5]. Many subsequent investigations
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focused on similar topics with various perspectives about the role of drug-resistant strain
[3, 6–8]. However, these works failed to independently identify the role of the undetected
patients in TB transmission. motivated by the previous work, we carefully divide the
infectious cases into undetected cases and timely detected cases in this paper. This improved
classification enables us to interpret the real situation in a better manner. To analyze the
stability of the disease-free equilibrium in our transmission model, we introduce a novel
Lyapunov function. We prove that the disease-free equilibrium is globally asymptotically
stable when the basic reproduction number is less than one, and a forward (transcritical)
bifurcation exists otherwise.

While Guangdong is a developed province of China, the number of TB cases in
Guangdong is about 10% of that of national TB cases. Mass migrants, MDR, and HIV/AIDS
coinfections make the situation of TB transmission very complex in this region. We apply
our model to describe the TB situation in Guangdong and simulate the distribution and
predication. The simulations indicate that undetected cases do play an important role in TB
transmission.

The remainder of the paper is organized as follows. The proposed TB model is
formulated in Section 2. Stability criteria of the equilibria are presented in Section 3. Data
analysis and simulation studies are provided in Section 4. Finally, Section 5 concludes with
discussions and conclusions.

2. Model Description

In this paper, we consider the transmission diagram shown in Figure 1 and the mathematical
model is given by

dS

dt
= A − β1IUS − β2IGS − β3IRS − μS,

dE

dt
= β1IUS + β2IGS + β3IRS − (μ + k + k1

)
E +ωR,

dIU
dt

= kE − (μ + μD + υ
)
IU,

dIG
dt

= υmIU + k1pE − (μ + μ′
D + r1

)
IG − σIG,

dIR
dt

= υ(1 −m)IU + k1
(
1 − p

)
E − (μ + μ′′

D + r2
)
IR + σIG,

dR

dt
= r1IG + r2IR − (μ +ω

)
R,

(2.1)

where S, E, IU, IG, IR, and R represent the numbers of cases of susceptible, latent, undetected
infectious TB, detected drug-sensitive infectious TB, detected infectious MDR-TB, and the
treated, respectively. A is the recruitment rate. β1, β2, and β3 are the transmission rates of the
undetected infectious, detected infectious drug-sensitive, and detected infectious MDR-TB
cases for susceptible individuals, respectively. μ is the per capita natural mortality rate. μD,
μ′
D, and μ′′

D are the death rates (associated to TB) of undetected infectious, detected infectious
drug-sensitive, and detected infectious MDR-TB cases, respectively. (k + k1) is progressive
rate from latent to infectious, with k1 being the detected rate from latent cases to undetected
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Figure 1: Transfer diagram of the model.

cases in two weeks (from onset of symptoms to treatment, see [2]). The infectivity of the
infected patient is strongest in the first two weeks after being infected. υ is the per capita
detected rate from undetected to detected, called the delayed detected rate. r1, r2 are the
treatment rates of detected infectious drug-sensitive and detected infectious MDR-TB cases,
respectively. ω is the reactivation rate from treated to latent. σ is the treatment failure rate of
detected drug-sensitive infectious patients who have been incompletely treated. We assume
that patients without incomplete treatment will develop into MDR-TB as in [5] and the
infectious transmission rate is bilinear.

Let N(t) = S + E + IU + IG + IR + R be the total population. It follows from the system
equations that

dN(t)
dt

≤ A − μN, (2.2)

which implies that

lim
t→∞

N(t) ≤ A

μ
. (2.3)

Therefore, we have an attractor of system (2.1); that is,

P =
{
(S, E, IU, IG, IR, R) ∈ R6

+ : S + E + IU + IG + IR + R ≤ A

μ

}
. (2.4)

It is clear that P is an invariant set with respect to system (2.1) and any solution of system
(2.1) initiated elsewhere will finally converge to the set.

3. Stability Analysis

3.1. The Basic Reproductive Number

In many epidemiological models, there exists a threshold condition, which determines
whether an infection will be eliminated or become endemic. The basic reproduction number
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represents the average number of secondary infections caused by a single infected individual
in susceptible population. For simplicity, denote

a = μ + μD + υ, b = μ + μ′
D + r1, c = μ + μ′′

D + r2,

a′ = kmυ + k1pa, b′ = kmυσ + k1
(
1 − p

)
a(b + σ) + k1paσ + kυ(1 −m)(b + σ),

(3.1)

and further

X = A
(
μ +ω

)[
β1kc(b + σ) + β2ca

′ + β3b
′],

Y = μω
(
r1ca

′ + r2b
′),

Z = μ
(
μ +ω

)
a(b + σ)c

(
μ + k1 + k

)
.

(3.2)

Note that

Z − Y = μ
(
μ +ω

)
a(b + σ)c

(
μ + k1 + k

) − μω
(
r1ca

′ + r2b
′) > 0. (3.3)

Computing the basic reproduction number yields

R0 =
X + Y

Z

=
A
(
μ +ω

)[
β1kc(b + σ) + β2ca

′ + β3b
′] + μω(r1ca′ + r2b

′)

μ
(
μ +ω

)
ac(b + σ)

(
μ + k1 + k

) .

(3.4)

Obviously, R0 is increasing with respect to β1, β2, β3, and ω. Note also that β2, β3 are less
than β1 after treatment. As a result, for sakes of deceasing R0, it is important to increase the
detected rate for disease control.

Evidently, system (2.1) has a disease-free equilibrium P1(A/μ, 0, 0, 0, 0, 0). When R0 >
1, it has yet a unique endemic equilibrium P2(S∗, E∗, I∗U, I

∗
G, I

∗
R, R

∗) ∈ P 0, the interior of P .
Routine calculations show that

I∗U =
μA
(
μ +ω

)
kc(b + σ)(X + Y − Z)
X(Z − Y )

=
μkcA

(
μ +ω

)
(b + σ)(R0 − 1)

XZ(Z − Y )
, (3.5)

and S∗, E∗, I∗G, I
∗
R, and R∗ could be obtained accordingly.

3.2. Proofs of Main Theorems

Theorem 3.1. The disease-free equilibrium P1 of system (2.1) is globally asymptotically stable if R0 ≤
1 and is unstable if R0 > 1.
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Proof. In the region P , we take the Lyapunov function

L(S, E, IU, IG, IR, R) = S − S0 − S0 ln
S

S0
+ E +

ω

ω + μ
R +

h

μ
(
μ +ω

)
c
IR + h1IG + h2IU, (3.6)

where

S0 =
A

μ
,

h = Aβ3
(
ω + μ

)
+ μωr2,

h1 =
Aβ2
(
μ +ω

)
c + σh + μωcr1

μ
(
μ +ω

)
c(b + σ)

,

h2 =
Aβ1
(
μ +ω

)
(b + σ)c + h(b + σ)v(1 −m)

μ
(
μ +ω

)
a(b + σ)c

+
μωcr1vm + hσυm +Aβ2

(
μ +ω

)
cυm

μ
(
μ +ω

)
c(b + σ)

.

(3.7)

It can be verified that L(S, E, IU, IG, IR, R) ≥ 0 and L(S, E, IU, IG, IR, R) = 0 if and only
if (S, E, IU, IG, IR, R) = (A/μ, 0, 0, 0, 0, 0) = P1. This means that the function is positive
definite.

Routine calculation shows that

dL

dt
=
(
2 − S0

S
− S

S0

)
A +

μ + k1 + k

Z
(X + Y − Z)E. (3.8)

When R0 ≤ 1, we have

dL

dt
= A

(
2 − S0

S
− S

S0

)
+
μ + k1 + k

Z
(X + Y − Z)E ≤ 0. (3.9)

It is clear that dL/dt = 0 if and only if either S = S0, E = 0 when R0 < 1 or S = S0 when R0 = 1.
The maximum invariant set in the region {(S, E, IU, IG, IR, R) ∈ P, dL/dt = 0} is {P1} when
R0 ≤ 1. It follows from the LaSalle invariant set theory that P1(A/μ, 0, 0, 0, 0, 0) is globally
asymptotically stable when R0 ≤ 1.

The Jacobian matrix of system (2.1) at P1(A/μ, 0, 0, 0, 0, 0) is computed to be

J(P1) =

(
A1 A2

A3 A4

)

, (3.10)
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where

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−μ 0 −β1A
μ

0 −(μ + k + k1
)

β1
A

μ

0 k −a

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−β2A
μ

−β3A
μ

0

β2
A

μ
β3

A

μ
w

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

A3 =

⎛

⎜⎜
⎝

0 k1p mυ

0 k1
(
1 − p

)
υ(1 −m)

0 0 0

⎞

⎟⎟
⎠,

A4 =

⎛

⎜⎜
⎝

−(b + σ) 0 0

σ −c 0

r1 r2 −(ω + μ
)

⎞

⎟⎟
⎠.

(3.11)

It can be obtained that |J(P1)| = Z − (X +Y ). When R0 > 1, we have |J(P1)| < 0. Then, it can be
seen that J(P1) has at least an eigenvalue with positive real part, thus P1 is unstable if R0 > 1.
By the Lyapunov method, equilibrium P1 is unstable.

Remark 3.2. When R0 > 1, we see that J(P1) has at least one eigenvalue with positive real part
and at least one eigenvalue with negative real part, hence P1 is a saddle point with a stable
manifold and an unstable manifold. Solutions starting sufficiently close to P1 must leave a
neighborhood of P1, except those on invariant T -axis which approach P1 along the T -axis.

Theorem 3.3. System (2.1) has a forward bifurcation at β1 = β∗1, and the endemic equilibrium P2 is
locally asymptotically stable if 0 < R0 − 1 	 1.

Proof. We proceed along the lines as Theorem 4.1 and Remark 1 in [6]. Suppose that β1 is
chosen to be a bifurcation parameter. By solving R0 = 1 with variable β1, we obtain

β∗1 =
μac
(
μ +ω

)
(b + σ)

(
μ + k1 + k

)

Akc
(
μ +ω

)
(b + σ)

− A
(
μ +ω

)(
β2ca

′ + β3b
′) + μω(r1ca′ + r2b

′)

Akc
(
μ +ω

)
(b + σ)

. (3.12)

When β1 = β∗1, we have |J(P1)| = 0. When β1 > β∗1, we have |J(P1)| < 0. When β1 < β∗1, we have
|J(P1)| > 0. Denote J(P1, β

∗
1) = J(P1)|β1=β∗1 .

First, we will show that 0 is a single eigenvalue of J(P1, β
∗
1). To this end, let F(λ) =

det(J(P1, β
∗
1) − λI) and J(P1, β

∗
1) − λI = (aij(λ)), i, j = 1, . . . , 6. Denote the derivative of F(λ)
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by F ′(λ) and the algebraic complement of aii(λ) byAii(λ) for i, j = 1, . . . , 6. Simple calculation
gives

F ′(0) = −[A11(0) +A22(0) +A33(0)] − [A44(0) +A55(0) +A66(0)] > 0. (3.13)

As a result, 0 is simple eigenvalue of J(P1, β
∗
1). It can be seen that all the other eigenvalues of

J(P1, β
∗
1) have negative real parts.
Denote, respectively, the right and the left eigenvectors of J(P1) corresponding to the

zero eigenvalue by

L = (L1, L2, L3, L4, L5, L6)T , M = (M1,M2,M3,M4,M5,M6). (3.14)

It follows from

J
(
P1, β

∗
1

)
L = 0, MJ

(
P1, β

∗
1

)
= 0, (3.15)

that

L1 =
Y − Z

μ2kc
(
ω + μ

)
(b + σ)

L3, L2 =
a

k
L3, L3 /= 0,

L4 =
a′

k(b + σ)
L3, L5 =

b′

kc(b + σ)
L3, L6 =

cr1a
′ + r2b

′

k
(
ω + μ

)
c(b + σ)

L3,

M1 = 0, M2 /= 0,

M3 =
Aβ∗1c

(
μ +ω

)
(b + σ) +mυh3

μac
(
μ +ω

)
(b + σ)

M2 +
(1 −m)υ(b + σ)

(
Aβ3
(
ω + μ

)
+ μωr2

)

μac
(
μ +ω

)
(b + σ)

M2,

M4 =
h3

μc
(
μ +ω

)
(b + σ)

M2, M5 =
Aβ3
(
ω + μ

)
+ μωr2

μc
(
μ +ω

) M2, M6 =
ω

ω + μ
M2,

(3.16)

where

h3 = Acβ2
(
ω + μ

)
+Aβ3σ

(
ω + μ

)
+ μωr2σ + μωcr1. (3.17)

Assume that M2 > 0 and L3 > 0 which are always possible up to a sign change of L and M.
The conditions in [6] are satisfied. Furthermore, routine calculation shows that the quantities
as in [6] are

M2L1
(
β′1L3 + β2L4 + β3L5

)
< 0,

M2
A

μ

(
β′1L3 + β2L4 + β3L5

)
> 0,

(3.18)
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Table 1: Model parameters for simulations.

Parameters Estimate Source

A = recruitment rate 1.05 ∗ 106 GHSY
β1 = infection rate by the undetected
infectious 2.2 ∗ 10−7

β2 = infection rate by the detected
infectious drug sensitive 2 ∗ 10−8

β3 = infection rate by the detected
infectious MDR-TB 6 ∗ 10−8

μ = natural mortality rate 0.015 GHSY
k = endogenous reactivation rate 2 ∗ 10−3 ARIG
k1 = detected rate in time 3.2 ∗ 10−3 ARIG
ω = reinfected rate from the treated 6 ∗ 10−2
υ = detected rate from the undetected
infectious 0.6 ARIG

μD = death rate associated to TB 0.25
μ′
D = death rate associated to TB 0.0063 ARIG

μ′′
D = death rate associated to TB 0.028

r1 = treatment rate of detected
infectious drug sensitive 0.94 ARIG

r2 = treatment rate of detected
infectious MDR-TB 0.6 ARIG

σ = treatment failure rate of detected
drug sensitive 0.04 ARIG

m = proportion of detected infectious
drug sensitive in time 0.916 ARIG

p = proportion of detected infectious
drug sensitive with delay 0.916 ARIG

respectively. By applying [6], we show that system (2.1) has a forward bifurcation at β1 = β∗1.
Therefore, when β1 > β∗1 (i.e., R0 > 1) with β1 close to β∗1, P2 is locally asymptotically stable.

4. Simulations

We use TB data provided by the Antituberculosis Research Institute of Guangdong Province
(ARIG). We collect TB data from 1992 to 2008 and estimate the trend of TB cases in the
near future in Guangdong province. The World Bank Loaned China Infectious and Endemic
Disease Control Project has been carried out since 2000. According to the project plan,
Guangdong province would implement the DOTSwith the coverage rate 100%, the discovery
rate 80%, and the treatment rate 90% in 2010. In this section, we carry out some simulations
to describe the dynamic behavior of system (2.1), and predict the tendency of the TB disease.
Setting one year as unit time, first we determine the values of the parameters using the data
from 1992 to 2002, and then, we verify the model using the data from 2003 to 2008.

Assume that β1 = 0.00000022, β2 = 0.00000002, β3 = 0.00000006, which are adjusted
from the literature [2, 5]. Furthermore, assume that k+k1 = 0.0052 based on the estimation that
10% of the latent cases will develop into infectious person in 20 years [9]. The detected rate in
time k1 and the treatment failure rate σ that we estimate are, respectively, 3.2 × 10−3 and 0.04.
Among the detected infectious patients, about 8.32% are MDR-TB patients from our data, so
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Figure 2: Trend simulation and prediction of the infection cases in Guangdong, China. (a) Contrast
diagram of predicted TB infection cases and actual TB infection cases. (b) Prediction result of TB infection
cases.

we assume that m = p = 0.916. The other parameters in Table 1 can be estimated or derived
from our data using the weighted average method. In Table 1, GHSY means Guangdong
health statistical yearbook.

Using the investigated data in 2002 in Guangdong province as the initial population
sizes

[S(02), E(02), IU(02), IG(02), IR(02), R(02)]

=[41241970, 33600080, 158990, 105250, 5290, 46810],
(4.1)

we predict the TB situation from 2003 to 2008 in Figure 2(a). � and � represent predicted
infection TB cases and actual TB cases, respectively. That the prediction basically coincides
with the actual infection number demonstrates the ability of our model in describing the TB
disease.

To obtain simulation results in a more accurate manner, we adjust some parameters
by using data from 1992 to 2008. Let A = 950000, μ = 0.013, μ′

D = 0.0023, and μ′′
D = 0.02 in

the following simulations. Using the other parameter values given in Table 1 and the data of
2008

[S(08), E(08), IU(08), IG(08), IR(08), R(08)]

=[40241000, 38600000, 98990, 155200, 25200, 96800],
(4.2)

as the initiate state, we obtain the predicted data shown in Figures 2(b) and 3. We observe
that the population of the undetected infected individuals slowly tends to a stable endemic
equilibrium. The total TB infected number will be 3.28 × 105 in 2015. This indicates a very
severe situation, which concurs with the warning from the leading experts [10].
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Figure 3: Simulation of system (2.1) in Guangdong province, China. Disease persistence in the population.
Using the parameters in Table 1, we obtain R0 = 3.5846 > 1.

Figure 4(a) is a graphical representation of total TB infection number under three
different delay discovery rates. It is clear that only when υ ≥ 0.9, the infection number will
keep relatively stable.

Figure 4(b) is a graphical representation of total TB infection number with different
k1’s. It shows the influence of the detected rate in time. If the delay rate k/(k + k1) is about
80%, the total infection number rapidly raises. On the contrary, if the detected rate in time
k1 = 0.0042, the amount of the infection number will basically remains stable from 2014. It
can be seen that the detected rate in time is an important factor for disease control.

Figure 4(c) is a graphical representation of total TB infection number with different
treatment rate of the MDR-TB patients. If r2 = 0.8, the total infection number will be smaller
than 3 × 105 in 2012.

5. Discussions and Conclusions

In this work, combining stability analysis with bifurcation identification, we have inves-
tigated the dynamical behavior of a TB model and taken into account two features, the
undetected TB cases and MDR-TB cases. The model had an influence up on TB prevention
and control. We found that there are two possible steady states: the healthy and the infected
equilibria. We proved the global asymptotic stability of the disease-free equilibrium when
the basic reproduction number is equal to or less than unity. The local asymptotic stability
of the endemic equilibrium has been also established when the basic reproduction number
is bigger than unity. A more delicate analysis based on the center manifold theory indicated
that a forward bifurcation existed under a proper condition. Forward bifurcation showed
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Figure 4: Simulations with different parameters. (a) Different discovery rates. (b) Different detected rates
in time. (c) Different treatment rates of the MDR-TB patients. (d) All TB infection cases are detected in
time.

that there existed a stable endemic equilibrium when the disease-free equilibrium become
unstable. Furthermore, this work does not give proofs of global asymptotical stability of the
endemic equilibrium.

The number of the MDR-TB cases in China is about one third as that of the world.
As a province with the one-tenth TB cases in China, Guangdong province suffers much
from the TB disease. From Figure 3, we can find the undetected infected patients slowly
increase. A primary reason for this is that the detection ratio has been improved thanks to
the implementation of theWorld Bank Loaned China Infectious and Endemic Disease Control
Project. However, due to the facts that the total population of residence is huge in Guangdong
(about 100 millions) and more than 20 percent of residents are temporary immigrants from
the rural inland, the number of infected people will slowly go up. The huge population
of rural migrants makes the in-time detection more difficult. We have analyzed the data
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collected by ARIG and carried out simulations based on our model. First, the parameters
of the model were identified, which justifies the important role that undetected cases play in
the model. Second, we predicted the trend of number of TB infection cases in 20 years and
found that it was difficult to eliminate the TB disease under current conditions. Third, we
analyzed the possibility of controlling the disease by improving the detected rates and other
factors. In particular, when every patient can be detected in time, that is, k = 0, k1 = 0.0052,
and the detected patients have no infectiousness, then we can obtain R0 = 0.1879 < 1 even if
υ = 0.6 and r2 = 0.6. Under these assumptions, the solutions of the system will tend to the
disease-free equilibrium P1, and the TB disease will finally die out as indicated in Figure 4(d).
This once again shows the importance of the detection rate in TB control.
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