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The mixed function method is extended from the (1 + 1)-dimensional space to the (2 + 1)-
dimensional one, even those forms of exact solution do not exist in (1 + 1)-dimensional NDDEs.
By using this extended method, the Toda lattice and (2 + 1)-dimensional Toda lattice equations are
studied. Some new solutions such as discrete solitary wave solutions, discrete kink and antikink
wave solutions, and discrete breather soliton solutions are obtained, and their dynamic properties
are discussed.

1. Introduction

In [1], motivated by the structures of the exact solutions obtained from Darboux
transformation, the authors constructed the mixed function method in (1 + 1)-dimensional
space. Further, they studied the generalized Hybrid lattice equation and the two-component
Volterra lattice equation by using this method, then they obtained some new exact solutions
such as discrete solitary wave solutions and kink wave solutions. By this token, the mixed
function method is as powerful as the exp method [2–7] and tanh method [8–10]. In
this paper, we will extend this method from the (1 + 1)-dimensional space to the (2 +
1)-dimensional one and present some new forms on establishing different kinds of exact
solutions, then this extended method will be applied to many higher-order nonlinear
differential-difference equations (NDDEs). Moreover, we provide a simplified way to solve
large numbers of high-power algebraic equations using a computer. Of course, these high-
power algebraic equations mentioned above are all derived from high-order or high-power
NDDEs. Therefore, the procedure of computation can be greatly simplified, and time is
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saved. We notice that this extended method is as powerful as the other symbolic computation
methods such as tanh-function method, sine-cosine function method, exp-function method,
Jacobian elliptic function method, (G′/G)-expansion method, and Adomian decomposition
method, and these methods (please refer to [2–18] and references cited therein) are popular
tools in the field of the nonlinear differential-difference equations.

We consider the following (2 + 1)-dimensional Toda lattice equation [19]

∂2un

∂x∂t
=
(
∂un

∂t
+ 1
)
(un−1 − 2un + un+1), (1.1)

and the Toda lattice equation [20]

d2un

dt2
=
(
dun

dt
+ 1
)
(un−1 − 2un + un+1). (1.2)

It is well known that there is another form for the (2 + 1)-dimensional Toda lattice equation

∂2yn

∂x∂t
= exp

(
yn−1 − yn

) − exp
(
yn − yn+1

)
, (1.3)

and there are another two forms for the Toda lattice equation

d2yn

dt2
= exp

(
yn−1 − yn

) − exp
(
yn − yn+1

)
, (1.4)

u̇n = un(vn−1 − vn), v̇n = un − un+1. (1.5)

Under the transformation ∂un/∂t = exp(yn−1 − yn) − 1, (1.3) and (1.4) can be reduced to
(1.1) and (1.2), respectively. For (1.1) and (1.2), there are important physical models and
biological models which have been studied bymany authors, see [7, 10, 21–39] and references
cited therein. For example, the Toda lattice equation was used as DNA models [36–38], this
equation can also be used as a model to describe the pressure pulse wave in aorta.

Recently, by using the exp-function method, Zhu [7] studied (2 + 1)-dimensional
Toda lattice equation and obtained some exact solutions of exp-function type. By using tanh
method, S. Zhang and H.-Q. Zhang [10] studied the same equation, they obtained some
exact solutions of hyperbolic function type. By using the symbolic computation of hyperbolic
tangent solutions, Baldwin et al. [11] studied both (1.1) and (1.2), and they obtained some
exact solutions of tanh-function type. By using the modified hyperbolic function method, Zhi
et al. [34] studied (1.2), they obtained some discrete soliton solutions of hyperbolic function
type. In this paper, using the extended mixed function method, we discuss (1.1) and (1.2),
and new solutions which are different from the results in [7, 10, 11, 34] are obtained.

The rest of this paper is organized as follows. In Section 2, we introduce the extended
mixed function method. In Section 3, by using the extended method, we obtain new exact
solutions of (1.1), and discuss their dynamic properties. In Section 4, we will obtain new
exact solutions of (1.2), and also discuss their dynamic properties.
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2. The Extended Mixed Function Method

In this section, we begin formally introducing the extended mixed function method moti-
vated by [1].

First, we extend the mixed function method from (1 + 1)-dimensional space to (2 + 1)-
dimensional one, and later, we present some new forms of solutions on establishing different
kinds of exact solutions of NDDEs. Without loss of generality, we suppose that a polynomial
(2 + 1)-dimensional NDDEs and (1 + 1)-dimensional NDDEs have the following form:

Ψ

(
. . . , un−2, un−1, un, un+1, un+2, . . . ,

∂un

∂t
,
∂un

∂x
,
∂2un

∂x∂t
, . . .

)
= 0, (2.1)

Ψ

(
. . . , un−2, un−1, un, un+1, un+2, . . . ,

∂un

∂t
,
∂2un

∂t2
, . . .

)
= 0, (2.2)

respectively, where un = u(t, n, x) in (2.1) and un = u(t, n) in (2.2), n is a discrete variable,
and x and t are two continuous variable. The general framework of the extended method for
NDDEs is shown in the following.

Step 1. Corresponding to (2.1), as in [1], we suppose that its exact solutions has the following
three expansions:

un =
m∑
p=0

ap

[
ωneαx−βt+γ0 − Be−(αx−βt+γ0)

ωneαx−βt+γ0 + Ce−(αx−βt+γ0)

]p
, (2.3)

un =
m∑
p=0

ap

[
wn

w2neαx−βt+γ0 + Ce−(αx−βt+γ0)

]p
, (2.4)

un =

∑m
p=0 ap

[
wn exp

(
αx − βt + γ0

)]p
∑m

p=0 bp
[
wn exp

(
αx − βt + γ0

)]p , (2.5)

where m is a positive integer which can be given by the homogeneous balance principle
or the character of the idiographic NDDEs, the parameters B, C, w, α, β, γ0, ap, bp (p =
0, 1, . . . , m) are constants which need to be determined later, and k ∈ N, B /= −
C, a0/b0 /=a2/b2 /= · · · /=am/bm.

Besides the above forms of solutions, we will add three new expansions. If (2.1) has
no term ∂un/∂x, then we suppose their expansions as follows:

un = Anf(x) +
m∑
p=0

bp

[
ωneβt+γ0 − Be−(βt+γ0)

ωneβt+γ0 + Ce−(βt+γ0)

]p
, (2.6)

un = Anf(x) +
m∑
p=0

bp

[
wn

w2neβt+γ0 + Ce−(βt+γ0)

]p
, b2k+1 = 0, (2.7)

un = Anf(x) +
m∑
p=0

cp(wn)p(
eβt+γ0

)p + B(wn)p
, c2k+1 = 0, (2.8)
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where f(x) is an arbitrary function which can be chosen as hyperbolic functions and
trigonometric functions. In [1], we supposed that (2.2)’s exact solution is one of the following
two kinds of expansion forms:

un =
m∑
i=0

ai

[
wneΩt − Be−Ωt

wneΩt + Ce−Ωt

]i
, (2.9)

un =
m∑
i=0

ai

[
wn

w2neΩt + Ce−Ωt

]i
. (2.10)

We add two new forms of solutions for (2.2) here

un =

∑m
p=0 ap

(
wneΩt

)p
∑m

p=0 bp
(
wneΩt

)p , a2k+1 = 0, b2k+1 = 0, (2.11)

un =
m∑
p=0

ap(wn)p(
eΩt
)p + B(wn)p

, a2k+1 = 0, (2.12)

where m is a positive integer which can be given by the homogeneous balance principle
or the character of the idiographic NDDEs, the parameters B, C, w, Ω, ap, bp (p = 0,
1, . . . , m) are constants which need to be determined later, and k ∈ N, B /= −
C, a0/b0 /=a2/b2 /= · · · /=am/bm.

Step 2. By using the homogeneous balance principle or according to character of the
idiographic NDDEs, we determine the value of m then substitute it in the expressions (2.3)–
(2.12) of Step 1. Sometimes, we can directly assume that m = 1 or m = 2. In [8], by using the
homogeneous balance method, the balance number of the generalized hybrid equation has
been obtained successfully.

Step 3. Substituting the presupposed solutions determined by Step 2 in the original equation
(2.1) or (2.2), then setting the coefficients of all independent terms in ekξ, e−kξ (k =
0, 1, 2, . . . ,N, ξ = αx − βt + γ0 or ξ = Ωt) to zero, and we get a series of algebraic equations
from which the corresponding undetermined constants are explicitly solved by the use of
mathematical software Maple or Mathematica.

Step 4. Substituting the values of these constants B, C, w, Ω, α, β, γ0, ap, bp (p = 0,
1, . . . , m) given by Step 3 in the solutions presupposed by Step 2, thus, the exact solutions
of the original equation (2.1) or (2.2) are obtained finally.

3. New Exact Solutions of (2 + 1)-Dimensional Toda Lattice Equation
and Their Dynamic Properties

In this section, by using the extended method shown in the Section 2, we discuss exact
solutions of (2 + 1)-dimensional Toda lattice equation (1.1) and their dynamic properties.
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3.1. Exact Solutions of the Form (2.3)

Suppose that (1.1) has exact solutions of the form (2.3). By using the balance procedure, we
easily obtain m = 1. Thus, we let

un = a0 + a1

[
wn exp

(
αx − βt + γ0

) − B exp
(−(αx − βt + γ0

))
wn exp

(
αx − βt + γ0

)
+ C exp

(−(αx − βt + γ0
))
]
, (3.1)

where a0, a1,w,α, β,γ0,B,C are constants to be determined later, andB /=−C. After substituting
(3.1) into (1.1), multiplying both sides by the common denominator (ωneαx−βt+γ0 +
Ce−(αx−βt+γ0))3(ωn−1eαx−βt+γ0+Ce−(αx−βt+γ0))(ωn+1eαx−βt+γ0+Ce−(αx−βt+γ0)) and dividing both sides
by the common factor a1(B + C), it follows:

A−3e−3(αx−βt+γ0) −A−1e−(αx−βt+γ0) +A1e
αx−βt+γ0 +A3e

3(αx−βt+γ0) = 0, (3.2)

where

A−3 = −C3
[
wn+1 +

(
4αβ − 2

)
wn +wn−1

]
,

A−1 = C
[(−4αβC + 2a1βB − C + 2a1βC

)
w2n+1 +

(−4a1βB + 2C − 4a1βC + 4αβC
)
w2n

+
(−4αβC + 2a1βB − C + 2a1βC

)
w2n−1

]
,

A1 =
(−4αβC + 2a1βB − C + 2a1βC

)
w3n+1 − (−4a1βB + 2C − 4a1βC + 4αβC

)
w3n

− (−4αβC + 2a1βB − C + 2a1βC
)
w3n−1,

A3 = w4n+1 +
(
4αβ − 2

)
w4n +w4n−1.

(3.3)

In (3.2), setting the coefficients of all independent terms e−3(αx−βt+γ0), e−(αx−βt+γ0),
eαx−βt+γ0 , e3(αx−βt+γ0) to zero, we get a series of algebraic equations as follows:

A−3 = 0, A−1 = 0, A1 = 0, A3 = 0. (3.4)

Equation (3.4) is a group of high-power algebraic equations, so the computational load may
be heavy when we use computer to solve it. Notice that A−3 = −C3wn−1[w2 + (4αβ − 2)w + 1],
we let

M−3 =
A−3(−C3wn−1) = w2 +

(
4αβ − 2

)
w + 1. (3.5)
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As a result, the equation A−3 = 0 becomes M−3 = 0, that is, w2 + (4αβ − 2)w + 1 = 0, which is
a low-power equation. Similarly, we obtain

M−1 =
A−1(

Cw2n−1) =
(−4αβC + 2a1βB − C + 2a1βC

)
w2 +

(−4a1βB + 2C − 4a1βC + 4αβC
)
w

+
(−4αβC + 2a1βB − C + 2a1βC

)
,

M1 =
A1(−w3n−1) =

(−4αβC + 2a1βB − C + 2a1βC
)
w2 +

(−4a1βB + 2C − 4a1βC + 4αβC
)
w

+
(−4αβC + 2a1βB − C + 2a1βC

)
,

M3 =
A3

w4n−1 = w2 +
(
4αβ − 2

)
w + 1.

(3.6)

Notice that M3 = M−3, M1 = M−1, thus, (3.4) can be reduced to a group of low-power
algebraic equations as follows:

M1 = 0, M3 = 0. (3.7)

Solving (3.7) yields

B =
C(2α − a1)

a1
, (3.8)

w1,2 = 1 − 2αβ ± 2
√
αβ
(
αβ − 1

)
, (3.9)

and C, α, β, γ0, a0, a1 are arbitrary nonzero constants. The process of computation can be
greatly simplified by the above settings, and time is saved.

From (3.1), (3.8), and (3.9), we obtain two exact solutions of (1.1) as follows:

un = a0 + a1

[
wn

1 exp
(
αx − βt + γ0

) − (C(2α − a1)/a1) exp
(−αx + βt − γ0

)
wn

1 exp
(
αx − βt + γ0

)
+ C exp

(−αx + βt − γ0
)

]
, (3.10)

un = a0 + a1

[
wn

2 exp
(
αx − βt + γ0

) − (C(2α − a1)/a1) exp
(−αx + βt − γ0

)
wn

2 exp
(
αx − βt + γ0

)
+ C exp

(−αx + βt − γ0
)

]
, (3.11)

where w1,2 are given by (3.9).
In fact, (3.10) and (3.11) are solutions of local discretization because the n is a

discrete variable while the x, t are continuous variables. Here we still call them discrete
exact solutions. In order to describe the dynamic properties of these two discrete soliton
solutions intuitively, we plot their profile figures for some fixed parametric values, as shown
in Figure 1. Setting a0 = 2, a1 = 0.3, α = −1.5, β = 2, γ0 = −1, t = 1, when C = 4 > 0,
the solution (3.10) shows a shape of discrete kink soliton, see Figure 1(a); when C = −4 < 0,
the solution un (3.10) shows another shape of discrete kink soliton, see Figure 1(b). The shape
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Figure 1: The solutions un in (3.10) and (3.11) show four shapes of discrete kink and antikink solitons for
fixed parametric values of a0, a1, α, β, γ0, t and different kinds of C values: (a) C = 4 > 0; (b) C = −4 < 0;
(c) C = 1.4 > 0; (d) C = −1.4 < 0.

shown by Figure 1(b) has jumping phenomenon, but this is not the case shown by Figure 1(a).
Setting a0 = 2, a1 = 0.3, α = 0.8, β = 1.5, γ0 = 3, t = 1, when C = 1.4 > 0, the solution (3.11)
shows a shape of discrete antikink soliton, see Figure 1(c); when C = −1.4 < 0, the solution un

(3.11) shows another shape of discrete antikink soliton, see Figure 1(d). From Figures 1(c) to
1(d), the waveforms have both discrete and continuous character, and the soliton is discrete
along the n-axes and is continuous along the x-axes.

3.2. Exact Solutions of the Form (2.5)

Suppose that (1.1) has exact solution of the form (2.5). By using the balance procedure, we
obtain m = 2. For simplicity, here we only consider the case of a1 = b1 = 0. Suppose that

un =
a0 + a2w

2n exp
[
2
(
αx − βt + γ0

)]
b0 + b2w2n exp

[
2
(
αx − βt + γ0

)] , (3.12)

where a0, a2, b0, b2, w, α, β are constants to be determined later, and a0/b0 /=a2/b2,
the γ0 is an arbitrary constant. As in Section 3.1, after substituting (3.12) into (1.1),
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multiplying both sides of the result by the common denominator (b0 + b2w
2ne2(αx−βt+γ0))3(b0 +

b2w
2(n−1)e2(αx−βt+γ0))(b0 + b2w

2(n+1)e2(αx−βt+γ0)), it follows:

A2e
2(αx−βt+γ0) +A4e

4(αx−βt+γ0) +A6e
6(αx−βt+γ0) +A8e

8(αx−βt+γ0) = 0, (3.13)

where

A2 =
(
b30w

2n−2
)[

(b2a0 − a2b0)w4 + 2(b2a0 − a2b0)
(
2αβ − 1

)
w2 + b2a0 − a2b0

]
,

A4 =
(
b0w

4n−2
)[

(b2a0 − a2b0)
(
2b2a0β + 4b2b0αβ + b0b2 − 2a2b0β

)
w4

− 2(b2a0 − a2b0)
(
2b2a0β + 2b2b0αβ + b0b2 − 2a2b0β

)
w2 + (b2a0 − a2b0)

×(2b2a0β + 4b2b0αβ + b0b2 − 2a2b0β
)]
,

A6 =
(
−b2w6n−2

)[
(b2a0 − a2b0)

(
2b2a0β + 4b2b0αβ + b0b2 − 2a2b0β

)
w4

− 2(b2a0 − a2b0)
(
2b2a0β + 2b2b0αβ + b0b2 − 2a2b0β

)
w2 + (b2a0 − a2b0)

×(2b2a0β + 4b2b0αβ + b0b2 − 2a2b0β
)]
,

A8 =
(
−b32w8n−2

)[
(b2a0 − a2b0)w4 + 2(b2a0 − a2b0)

(
2αβ − 1

)
w2 + b2a0 − a2b0

]
.

(3.14)

In (3.13), setting the coefficients of all independent exp-function terms to zero, it follows

A2 = 0, A4 = 0, A6 = 0, A8 = 0. (3.15)

Let M2 = A2/(b30w
2n−2), M4 = A4/(b0w4n−2), M6 = A6/(−b2w6n−2), M8 = A8/(−b32w8n−2).

Then

M2 = M8 = (b2a0 − a2b0)w4 + 2(b2a0 − a2b0)
(
2αβ − 1

)
w2 + b2a0 − a2b0,

M4 = M6 = (b2a0 − a2b0)
(
2b2a0β + 4b2b0αβ + b0b2 − 2a2b0β

)
w4

− 2(b2a0 − a2b0)
(
2b2a0β + 2b2b0αβ + b0b2 − 2a2b0β

)
w2 + (b2a0 − a2b0)

×(2b2a0β + 4b2b0αβ + b0b2 − 2a2b0β
)]
.

(3.16)

Thus, (3.15) can be reduced to the following equations:

M2 = 0, M4 = 0. (3.17)
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Solving (3.17), we obtain

α =
b0a2 − a0b2

2b0b2
, (3.18)

w1,2 = ±

√
b0b2
(
b0b2 − b0a2β + a0b2β +

√
β(b2a0 − a2b0)

(
a0b2β + 2b0b2 − a2b0β

))

b0b2
, (3.19)

w3,4 = ±

√
b0b2
(
b0b2 − b0a2β + a0b2β −

√
β(b2a0 − a2b0)

(
a0b2β + 2b0b2 − a2b0β

))

b0b2
,

(3.20)

and a0, a2, b0, b2, β, γ0 are arbitrary nonzero constants with a0/b0 /=a2/b2.
Based on (3.12), (3.18), (3.19), and (3.20), we obtain four exact solutions of (1.1) as

follows:

un =
a0 + a2(w1)2n exp

(
((b0a2 − a0b2)/b0b2)x − 2βt + 2γ0

)
b0 + b2(w1)2n exp

(
((b0a2 − a0b2)/b0b2)x − 2βt + 2γ0

) , (3.21)

un =
a0 + a2(w2)2n exp

(
((b0a2 − a0b2)/b0b2)x − 2βt + 2γ0

)
b0 + b2(w2)2n exp

(
((b0a2 − a0b2)/b0b2)x − 2βt + 2γ0

) , (3.22)

un =
a0 + a2(w3)2n exp

(
((b0a2 − a0b2)/b0b2)x − 2βt + 2γ0

)
b0 + b2(w3)2n exp

(
((b0a2 − a0b2)/b0b2)x − 2βt + 2γ0

) , (3.23)

un =
a0 + a2(w4)2n exp

(
((b0a2 − a0b2)/b0b2)x − 2βt + 2γ0

)
b0 + b2(w4)2n exp

(
((b0a2 − a0b2)/b0b2)x − 2βt + 2γ0

) , (3.24)

where w1, w2, w3, w4 are given by (3.19), (3.20), and w1,2,3,4 /= 1, b0a2 /=a0b2.
The dynamic properties of solutions (3.21), (3.22), (3.23), and (3.24) are similar to those

of (3.10) and (3.11). As an example, we plot two profile figures of the solutions (3.21) and
(3.22), see Figure 2.

3.3. Exact Solutions of the Form (2.6)

Suppose that (1.1) has exact solution of the form (2.6). By using the balance procedure, we
obtain m = 1. So, we suppose that (1.1)’s solution has the following form:

un = Anf(x) + b0 + b1

(
wneβt+γ0 − Be−βt−γ0

wneβt+γ0 + Ce−βt−γ0

)
, (3.25)
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Figure 2: The solutions un in (3.21) and (3.22) show two shapes of discrete antikink and kink solitons for
fixed parametric values: a0 = 2, b0 = 3, a2 = −1.5, b2 = 2.5, β = 0.8, γ0 = 5, t = 2.

whereA, B, C, b0, b1,w, β are constants to be determined later, γ0 is an arbitrary constant, and
f(x) is an arbitrary function. As in Section 3.1, after substituting (3.25) into (1.1), multiplying
both sides of the result by the common denominator (wneβt+γ0 + Ce−βt−γ0)3(wn−1eβt+γ0 +
Ce−βt−γ0)(wn+1eβt+γ0 + Ce−βt−γ0), it follows:

A−3e−3(βt+γ0) +A−1e−(βt+γ0) +A1e
βt+γ0 +A3e

3(βt+γ0) = 0, (3.26)

where

A−3 = −a1C
3(B + C)wn−1(w − 1)2,

A−1 = −a1C(B + C)
(
2a1βB + C + 2a1βC

)
w2n−1(w − 1)2,

A1 = a1(B + C)
(
2a1βB + C + 2a1βC

)
w3n−1(w − 1)2,

A3 = a1(B + C)w4n−1(w − 1)2.

(3.27)

In (3.26), setting the coefficients of all independent exp-function terms to zero, we
obtain

A−3 = 0, A−1 = 0, A1 = 0, A3 = 0. (3.28)

Directly solving (3.28), we obtainw = 1 andA, B, C, β, b0, b1 are arbitrary constants. Thus,
we obtain a class of exact solutions of (1.1) as follows:

un = Anf(x) + b0 + b1

(
eβt+γ0 − Be−βt−γ0

eβt+γ0 + Ce−βt−γ0

)
, (3.29)
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where f(x) is an arbitrary function, for which let us set f(x) to be tanh(x), sech(x), sin(x),
cos(x), tanh(x) + sin(x), sech(x) + cos(x); respectively, we obtain a series of soliton solutions
and breather solutions as follows:

un = An tanh(x) + b0 + b1

(
eβt+γ0 − Be−βt−γ0

eβt+γ0 + Ce−βt−γ0

)
, (3.30)

un = An sech(x) + b0 + b1

(
eβt+γ0 − Be−βt−γ0

eβt+γ0 + Ce−βt−γ0

)
, (3.31)

un = An sin(x) + b0 + b1

(
eβt+γ0 − Be−βt−γ0

eβt+γ0 + Ce−βt−γ0

)
, (3.32)

un = An cos(x) + b0 + b1

(
eβt+γ0 − Be−βt−γ0

eβt+γ0 + Ce−βt−γ0

)
, (3.33)

un = An[tanh(x) + sin(x)] + b0 + b1

(
eβt+γ0 − Be−βt−γ0

eβt+γ0 + Ce−βt−γ0

)
, (3.34)

un = An[sech(x) + cos(x)] + b0 + b1

(
eβt+γ0 − Be−βt−γ0

eβt+γ0 + Ce−βt−γ0

)
. (3.35)

In order to describe the dynamic properties of the above solutions intuitively, as
examples, we draw the profile figures of the solutions (3.31), (3.34), and (3.35) in Figure 3.
Setting A = 0.5, B = 3, C = 5, b0 = 2, b1 = −2, β = 1, γ0 = −2, t = 1, n ∈ [−15, 15], x ∈
[−15, 15], the solution (3.31) shows a shape of discrete soliton, see Figure 3(a); the solutions
(3.34) and (3.35) show two shapes of discrete breather oscillations, see Figures 3(c) and 3(e).
Setting A = 0.5, B = 3, C = 5, b0 = 2, b1 = −2, β = 1, γ0 = −2, n = 2, t ∈ [−15, 15], x ∈
[−15, 15], the solution (3.31) shows a shape of continuous double soliton, see Figure 3(b); the
solutions (3.34) and (3.35) show two shapes of continuous breather oscillations, see Figures
3(d) and 3(f). From Figure 3, the solutions (3.30)–(3.35) have diplex dynamic characters, that
is, the discrete character and the continuous character coexist. If the parameter t is fixed, the
profiles show discrete dynamic character, see Figures 3(a), 3(c), and 3(e); while the parameter
n is fixed, the profiles show continuous dynamic character, see Figures 3(b), 3(d), and 3(f).

3.4. Exact Solutions of the Form (2.7)

Suppose that (1.1) has exact solution of the form (2.7). By using the balance procedure, we
obtain m = 2. So, we suppose that (1.1) has exact solution as the following form:

un = Anf(x) + b0 + b2

(
wn

w2neβt+γ0 + Ce−βt−γ0

)2

, (3.36)
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Figure 3: The solutions un in (3.31), (3.34), and (3.35) show six shapes of discrete and continuous solitons
and discrete and continuous breather oscillations.

where A, C, b0, b2, w, β are constants to be determined later, γ0 is an arbitrary constant, and
f(x) is an arbitrary function. As in Section 3.3, by using (3.36) and (1.1), we can obtain the
exact solution of (1.1); here, we omit those processes and directly give the result as follows:

un = Anf(x) + b0 + b2

(
1

eβt+γ0 + Ce−βt−γ0

)2

. (3.37)

Similarly, setting f(x) to be tanh2(x), sech2(x), sin2(x), cos2(x), tanh2(x)+sin2(x), sech2(x)+
cos2(x), respectively, we obtain a series of soliton solutions and breather solutions as follows:

un = An tanh2(x) + b0 + b2

(
1

eβt+γ0 + Ce−βt−γ0

)2

, (3.38)

un = An sech2(x) + b0 + b2

(
1

eβt+γ0 + Ce−βt−γ0

)2

, (3.39)
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un = An sin2(x) + b0 + b2

(
1

eβt+γ0 + Ce−βt−γ0

)2

, (3.40)

un = An cos2(x) + b0 + b2

(
1

eβt+γ0 + Ce−βt−γ0

)2

, (3.41)

un = An
[
tanh2(x) + sin2(x)

]
+ b0 + b2

(
1

eβt+γ0 + Ce−βt−γ0

)2

, (3.42)

un = An
[
sech2(x) + cos2(x)

]
+ b0 + b2

(
1

eβt+γ0 + Ce−βt−γ0

)2

. (3.43)

The dynamic properties of solutions (3.38)–(3.43) are similar to those of solutions
(3.30)–(3.35). As examples, we plot six profile figures of the solutions (3.39), (3.42), and
(3.43), see Figure 4. Setting A = 0.2, C = 3, b0 = 4, b2 = 200, β = 0.8, γ0 = −2, t = 1, n ∈
[−20, 20], x ∈ [−20, 20], the solution (3.39) shows a shape of discrete soliton, see Figure 4(a);
the solutions (3.42) and (3.43) show two shapes of discrete breather oscillations, see Figures
4(c) and 4(e). Setting A = 0.2, C = 3, b0 = 4, b2 = 2, β = 0.8, γ0 = −2, n = 1, t ∈ [−5, 8], x ∈
[−6, 6], (3.39) shows a shape of continuous double soliton, see Figure 4(b); the solutions (3.42)
and (3.43) show two shapes of continuous breather oscillations, see Figures 4(d) and 4(f).

3.5. Exact Solutions of the Form (2.8)

Suppose that (1.1) has exact solution of the form (2.8). By using the balance procedure, we
obtain m = 2. So, we suppose that (1.1) has exact solution as the following form:

un = Anf(x) +
c0

1 + B
+

c2w
2n

e2(βt+γ0) + Bw2n
, (3.44)

where A, B,c0,c2, w,β are constants to be determined later, γ0 is an arbitrary constant, and
f(x) is an arbitrary function. As in Section 3.3, by using (3.44) and (1.1) and the expatiatory
computation, we obtain w = ±1. So we obtain a family of exact solutions with arbitrary
function as follows:

un = Anf(x) +
c0

1 + B
+

c2

e2(βt+γ0) + B
. (3.45)

Similarly, assume f(x) the same functions as in Section 3.3, we obtain a series of soliton
solutions and breather solutions as follows:

un = An tanh(x) +
c0

1 + B
+

c2

e2(βt+γ0) + B
, (3.46)

un = An sech(x) +
c0

1 + B
+

c2

e2(βt+γ0) + B
, (3.47)
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Figure 4: The solutions un in (3.39), (3.42), and (3.43) show six shapes of discrete and continuous solitons
and discrete and continuous breather oscillations.

un = An sin(x) +
c0

1 + B
+

c2

e2(βt+γ0) + B
, (3.48)

un = An cos(x) +
c0

1 + B
+

c2

e2(βt+γ0) + B
, (3.49)

un = An[tanh(x) + sin(x)] +
c0

1 + B
+

c2

e2(βt+γ0) + B
, (3.50)

un = An[sech(x) + cos(x)] +
c0

1 + B
+

c2

e2(βt+γ0) + B
. (3.51)

The dynamic properties of solutions (3.46)–(3.51) are similar to those of solutions
(3.30)–(3.35). As examples, we plot six profile figures of the solutions (3.46), (3.47), and
(3.48), see Figure 5. Setting A = 0.2, C = 3, b0 = 4, b2 = 200, β = 0.8, γ0 = −2, t =
1, n ∈ [−20, 20], x ∈ [−20, 20], the solution (3.46) shows a shape of discrete kink soliton,
see Figure 5(a); the solution (3.47) shows a shape of discrete soliton, see Figure 5(c); the
solution (3.48) shows a shape of discrete breather oscillations, see Figure 5(e). SettingA = 0.2,
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Figure 5: The solutions un in (3.46), (3.47) and (3.48) show six shapes of discrete and continuous solitons,
and discrete and continuous breather oscillations.

C = 3, b0 = 4, b2 = 2, β = 0.8, γ0 = −2, n = 1, t ∈ [−5, 8], x ∈ [−6, 6], the solution (3.46)
shows a shape of continuous double kink soliton, see Figure 5(b); the solution (3.47) shows
a shape of continuous double soliton, see Figure 5(c); the solution (3.48) shows a shape of
continuous breather oscillations, see Figure 5(e).

4. New Exact Solutions of Toda Lattice Equation and Its
Dynamic Properties

In this section, using the extended method offered in Section 2, we discuss the exact solutions
of the Toda lattice equation (1.2).
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4.1. Exact Solutions of the Form (2.9)

Suppose that (1.2) has exact solution of the form (2.9) as follows:

un = a0 + a1

(
wneΩt − Be−Ωt

wneΩt + Ce−Ωt

)
. (4.1)

After substituting (4.1) in (1.2), multiplying both sides by the common denominator (wneΩt+
Ce−Ωt)3(wn−1eΩt + Ce−Ωt)(wn+1eΩt + Ce−Ωt), it follows:

A−3e−3Ωt +A−1e−Ωt +A1e
Ωt +A3e

3Ωt = 0, (4.2)

where

A−3 = −a1C
3(B + C)wn−1

[
w2 − (4Ω + 2)w + 1

]
,

A−1 = −a1C(B + C)w2n−1
[(

2a1BΩ + 2a1CΩ + C − 4CΩ2
)
w2

+
(
4CΩ2 − 4a1BΩ − 4a1CΩ − 2C

)
w

+2a1BΩ + 2a1CΩ + C − 4CΩ2
]
,

A1 = a1(B + C)w3n−1
[(

2a1BΩ + 2a1CΩ + C − 4CΩ2
)
w2

+
(
4CΩ2 − 4a1BΩ − 4a1CΩ − 2C

)
w

+2a1BΩ + 2a1CΩ + C − 4CΩ2
]
,

A3 = a1(B + C)w4n−1
[
w2 − (4Ω + 2)w + 1

]
.

(4.3)

In (4.2), setting the coefficients of all independent exp-function terms to zero, we obtain

A−3 = 0, A−1 = 0, A1 = 0, A3 = 0. (4.4)

Let M−3 = A−3/[−a1C
3(B + C)wn−1], M−1 = A−1/[−a1C(B + C)w2n−1], M1 = A1/[a1(B +

C)w3n−1], M3 = A3/[a1(B + C)w4n−1], then

M3 = M−3 = w2 − (4Ω + 2)w + 1,

M1 = M−1 =
(
2a1BΩ + 2a1CΩ + C − 4CΩ2

)
w2

+
(
4CΩ2 − 4a1BΩ − 4a1CΩ − 2C

)
w + 2a1BΩ + 2a1CΩ + C − 4CΩ2

]
.

(4.5)
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Thus, (4.4) can be reduced to

M1 = 0, M3 = 0. (4.6)

Solving (4.6) yields

B =
C(2Ω − a1)

a1
,

w1,2 = 2Ω2 + 1 ± 2Ω
√
Ω2 + 1

(4.7)

andC, a0, a1, Ω are arbitrary constants. From (4.1), (4.7), we obtain discrete kink or antikink
soliton solution of (1.2) as follows:

un = a0 + a1

⎡
⎢⎣
(
2Ω2 + 1 + 2Ω

√
Ω2 + 1

)n
eΩt − (C(2Ω − a1)/a1)e−Ωt

wneΩt + Ce−Ωt

⎤
⎥⎦,

un = a0 + a1

⎡
⎢⎣
(
2Ω2 + 1 − 2Ω

√
Ω2 + 1

)n
eΩt − (C(2Ω − a1)/a1)e−Ωt

wneΩt + Ce−Ωt

⎤
⎥⎦.

(4.8)

Similarly, by using the samemethod, we can obtain exact solutions as the form of (2.10); here,
we omit them.

4.2. Exact Solutions of the Form (2.11)

Suppose that (1.2) has exact solution of the form (2.11) as follows:

un =
a0 + a2w

2ne2Ωt + a4w
4ne4Ωt

b0 + b2w2ne2Ωt + b4w4ne4Ωt
, (4.9)

where a0, a2,a4, b0, b2, b4 are constants to be determined later and a0/b0 /=a2/b2 /=a4/b4.
After substituting (4.9) in (1.2), multiplying both sides by the common denominator
(b0 + b2w

2ne2Ωt + b4w
4ne4Ωt)3(b0 + b2w

2(n−1)e2Ωt + b4w
4(n−1)e4Ωt)(b0 + b2w

2(n+1)e2Ωt +
b4w

4(n+1)e4Ωt), it follows:

A18e
18Ωt +A16e

16Ωt +A14e
14Ωt +A12e

12Ωt +A10e
10Ωt +A8e

8Ωt +A6e
6Ωt +A4e

4Ωt +A2e
2Ωt = 0,
(4.10)

where
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A18 = −b34(a2b4 − a4b2)w18n−2[w4 − (4Ω2 + 2)w2 + 1],
A16 = b4w

16n−4[(a4b0b
2
4 − a0b

3
4)w

8 + (a2b4 − a4b2)(2Ωb4a2 − b2b4 + 4b4Ω2b2 − 2Ω4b2)w6 +
(−2a4b0b

2
4+16Ω

2a0b
3
4−4Ωa2

2b
2
4−2a4b

2
2b4−4Ωa2

4b
2
2+8Ωa2b4a4b2+2a2b

2
4b2+2a0b

3
4−16Ω2a4b0b

2
4−

4Ω2a2b
2
4b2 +4Ω

2a4b
2
2b4)w

4 +(a2b4 −a4b2)(2Ωb4a2 −b2b4 +4b4Ω2b2 −2Ω4b2)w2 +a4b0b
2
4 −a0b

3
4],

A14 = w14n−4[(−3a0b2b
3
4 + 2a2b0b

3
4 + 4Ω2a2b0b

3
4 + 2Ωa2b

3
4a0 − 2Ωa4b2a0b

2
4 + a4b0b2b

2
4 +

2Ωa2
4b0b2b4−2Ωa2b

2
4a4b0−4Ω2a4b0b2b

2
4)w

8+(4Ωa2b
3
4a0+a0b2b

3
4+4Ω

2a4b
3
2b4−a4b

3
2b4−2Ωa2

4b
3
2−

2Ωa2
2b

2
4b2+a2b

2
2b

2
4−4a2b0b

3
4+4Ωa2b4a4b

2
2−16Ω2a4b0b2b

2
4+16Ω

2a0b2b
3
4+4Ωa2

4b0b2b4−4Ω2a2b
2
4b

2
2+

3a4b0b2b
2
4 − 4Ωa4b2a0b

2
4 − 4Ωa2b

2
4a4b0)w6 + (4a0b2b

3
4 + 4a2b0b

3
4 − 12Ωa2b

3
4a0 − 12Ωa2

4b0b2b4 +
12Ωa4b2a0b

2
4−2a2b

2
2b

2
4+4Ωa2

4b
3
2−8a4b0b2b

2
4+2a4b

3
2b4−24Ω2a2b0b

3
4+12Ωa2b

2
4a4b0+4Ω2a2b

2
4b

2
2+

12Ω2a4b0b2b
2
4 + 12Ω2a0b2b

3
4 + 4Ωa2

2b
2
4b2 − 4Ω2a4b

3
2b4 − 8Ωa2b4a4b

2
2)w

4 + (4Ωa2b
3
4a0 + a0b2b

3
4 +

4Ω2a4b
3
2b4 − a4b

3
2b4 − 2Ωa2

4b
3
2 − 2Ωa2

2b
2
4b2 + a2b

2
2b

2
4 − 4a2b0b

3
4 + 4Ωa2b4a4b

2
2 − 16Ω2a4b0b2b

2
4 +

16Ω2a0b2b
3
4 + 4Ωa2

4b0b2b4 − 4Ω2a2b
2
4b

2
2 + 3a4b0b2b

2
4 − 4Ωa4b2a0b

2
4 − 4Ωa2b

2
4a4b0)w2 − 3a0b2b

3
4 +

2a2b0b
3
4 + 4Ω2a2b0b

3
4 + 2Ωa2b

3
4a0 − 2Ωa4b2a0b

2
4 + a4b0b2b

2
4 + 2Ωa2

4b0b2b4 − 2Ωa2b
2
4a4b0 −

4Ω2a4b0b2b
2
4],

A12 = w12n−4[(−3a0b
2
2b

2
4 +a4b

2
4b

2
0 −a0b

3
4b0+4Ωa2

0b
3
4 +4a2b0b2b

2
4 −a4b0b4b

2
2 −16Ω2a4b

2
0b

2
4 +

16Ω2a0b
3
4b0 − 4Ωa2

2b0b
2
4 − 2Ωa2

4b0b
2
2 + 4Ωa2

4b
2
0b4 + 2Ωa0b2a2b

2
4 + 6Ωa2b0a4b2b4 − 8Ωa4b0a0b

2
4 −

2Ωa0b
2
2a4b4 + 4Ω2a4b0b4b

2
2 − 4Ω2a2b0b2b

2
4)w

8 + (−4Ωa0b2a2b
2
4 + 12Ω2a0b

2
2b

2
4 + 8Ω2a4b0b4b

2
2 +

a0b
2
2b

2
4 + 2a4b0b4b

2
2 + 4Ωa0b

2
2a4b4 − 3a2b0b2b

2
4 − 20Ω2a2b0b2b

2
4 + 2Ωa2

2b0b
2
4 − 2Ωa2

4b0b
2
2 + a2b

3
2b4 −

a4b
4
2)w

6 + (4a0b
2
2b

2
4 + 2a0b

3
4b0 − 4Ω2a2b

3
2b4 + 2a4b

4
2 + 20Ω2a0b

2
2b

2
4 + 4Ω2a4b

4
2 − 2a4b0b4b

2
2 −

16Ω2a0b
3
4b0 + 4Ωa2

2b0b
2
4 − 4Ω2a2b0b2b

2
4 − 2a2b

3
2b4 − 2a2b0b2b

2
4 + 8Ωa2

4b0b
2
2 + 16Ω2a4b

2
0b

2
4 −

2a4b
2
4b

2
0−4Ωa0b

2
2a4b4−8Ωa2

4b
2
0b4−16Ω2a4b0b4b

2
2−12Ωa2b0a4b2b4+16Ωa4b0a0b

2
4+4Ωa0b2a2b

2
4−

8Ωa2
0b

3
4)w

4 − (4Ωa0b2a2b
2
4 − 12Ω2a0b

2
2b

2
4 − 8Ω2a4b0b4b

2
2 − a0b

2
2b

2
4 − 2a4b0b4b

2
2 − 4Ωa0b

2
2a4b4 +

3a2b0b2b
2
4+20Ω

2a2b0b2b
2
4−2Ωa2

2b0b
2
4+2Ωa2

4b0b
2
2−a2b

3
2b4+a4b

4
2)w

2−3a0b
2
2b

2
4+a4b

2
4b

2
0−a0b

3
4b0+

4Ωa2
0b

3
4 + 4a2b0b2b

2
4 −a4b0b4b

2
2 − 16Ω2a4b

2
0b

2
4 + 16Ω2a0b

3
4b0 − 4Ωa2

2b0b
2
4 − 2Ωa2

4b0b
2
2 + 4Ωa2

4b
2
0b4 +

2Ωa0b2a2b
2
4 + 6Ωa2b0a4b2b4 − 8Ωa4b0a0b

2
4 − 2Ωa0b

2
2a4b4 + 4Ω2a4b0b4b

2
2 − 4Ω2a2b0b2b

2
4],

A10 = w10n−4[(−a4b0b
3
2 − 2a4b2b4b

2
0 − a0b

3
2b4 + 4a2b

2
4b

2
0 + 12Ω2a0b2b0b

2
4 − 2a0b2b0b

2
4 −

24Ω2a2b
2
4b

2
0−6Ωa2

4b2b
2
0+2a2b0b4b

2
2+12Ω

2a4b2b4b
2
0+6Ωa2

0b2b
2
4+12Ωa2b

2
0a4b4−12Ωa2b0a0b

2
4)w

8−
(4Ωa2

0b2b
2
4 − 2a2b0b4b

2
2 + 6a2b

2
4b

2
0 − 4Ω2a0b

3
2b4 + a0b

3
2b4 + 8Ω2a2b0b4b

2
2 + a4b0b

3
2 − 3a4b2b4b

2
0 −

4Ω2a4b0b
3
2−3a0b2b0b

2
4−8Ωa2b0a0b

2
4−4Ωa2

4b2b
2
0+8Ωa2b

2
0a4b4)w6+(4a2b

2
4b

2
0−8a2b0b4b

2
2+4a0b

3
2b4+

4a4b0b
3
2 − 4Ω2a4b2b4b

2
0 − 4Ω2a0b2b0b

2
4 + 8Ω2a2b

2
4b

2
0 − 2a4b2b4b

2
0 − 8Ωa2b

2
0a4b4 + 12Ω2a4b0b

3
2 −

2a0b2b0b
2
4 + 8Ωa2b0a0b

2
4 + 4Ωa2

4b2b
2
0 − 4Ωa2

0b2b
2
4 − 24Ω2a2b0b4b

2
2 + 12Ω2a0b

3
2b4)w

4 − (4Ωa2
0b2b

2
4 −

2a2b0b4b
2
2 + 6a2b

2
4b

2
0 − 4Ω2a0b

3
2b4 + a0b

3
2b4 + 8Ω2a2b0b4b

2
2 + a4b0b

3
2 − 3a4b2b4b

2
0 − 4Ω2a4b0b

3
2 −

3a0b2b0b
2
4 − 8Ωa2b0a0b

2
4 − 4Ωa2

4b2b
2
0 + 8Ωa2b

2
0a4b4)w2 − a4b0b

3
2 − 2a4b2b4b

2
0 − a0b

3
2b4 + 4a2b

2
4b

2
0 +

12Ω2a0b2b0b
2
4 − 2a0b2b0b

2
4 − 24Ω2a2b

2
4b

2
0 − 6Ωa2

4b2b
2
0 + 2a2b0b4b

2
2 + 12Ω2a4b2b4b

2
0 + 6Ωa2

0b2b
2
4 +

12Ωa2b
2
0a4b4 − 12Ωa2b0a0b

2
4],

A8 = w8n−4[−(4Ω2a2b2b4b
2
0 + 4Ωa2

4b
3
0 + 3a4b

2
2b

2
0 − b20a0b

2
4 + b30a4b4 − 2Ωa4b0a0b

2
2 +

2Ωa4b
2
0a2b2−4a2b2b4b

2
0−4Ωa2

2b4b
2
0+a0b4b0b

2
2−2Ωa2

0b4b
2
2+4Ωa2

0b
2
4b0−16Ω2a4b

3
0b4−4Ω2a0b4b0b

2
2+

16Ω2a0b
2
4b

2
0−8Ωa4b

2
0a0b4+6Ωa2b4a0b2b0)w8+(a2b0b

3
2−a0b

4
2+2Ωa2

0b4b
2
2+2a0b4b0b

2
2−2Ωa2

2b4b
2
0+

a4b
2
2b

2
0+8Ω

2a0b4b0b
2
2−20Ω2a2b2b4b

2
0+12Ω

2a4b
2
2b

2
0−3a2b2b4b

2
0+4Ωa4b

2
0a2b2−4Ωa4b0a0b

2
2)w

6−
(8Ωa2

0b4b
2
2+2b

2
0a0b

2
4+4Ωa2

2b4b
2
0−4a4b

2
2b

2
0−16Ω2a0b

2
4b

2
0−2b30a4b4+4Ω2a2b2b4b

2
0+16Ω

2a0b4b0b
2
2+

2a2b2b4b
2
0 − 8Ωa2

4b
3
0 + 4Ωa4b

2
0a2b2 + 2a0b4b0b

2
2 + 16Ωa4b

2
0a0b4 − 8Ωa2

0b
2
4b0 − 4Ωa4b0a0b

2
2 +

16Ω2a4b
3
0b4+2a2b0b

3
2−12Ωa2b4a0b2b0−4Ω2a0b

4
2−2a0b

4
2+4Ω

2a2b0b
3
2−20Ω2a4b

2
2b

2
0)w

4+(a2b0b
3
2−

a0b
4
2 + 2Ωa2

0b4b
2
2 + 2a0b4b0b

2
2 − 2Ωa2

2b4b
2
0 +a4b

2
2b

2
0 + 8Ω2a0b4b0b

2
2 − 20Ω2a2b2b4b

2
0 + 12Ω2a4b

2
2b

2
0 −

3a2b2b4b
2
0 + 4Ωa4b

2
0a2b2 − 4Ωa4b0a0b

2
2)w

2 − 4Ω2a2b2b4b
2
0 − 4Ωa2

4b
3
0 − 3a4b

2
2b

2
0 + b20a0b

2
4 − b30a4b4 +

2Ωa4b0a0b
2
2−2Ωa4b

2
0a2b2+4a2b2b4b

2
0+4Ωa2

2b4b
2
0−a0b4b0b

2
2+2Ωa2

0b4b
2
2−4Ωa2

0b
2
4b0+16Ω

2a4b
3
0b4+

4Ω2a0b4b0b
2
2 − 16Ω2a0b

2
4b

2
0 + 8Ωa4b

2
0a0b4 − 6Ωa2b4a0b2b0],

A6 = w6n−4[−(2Ωa2b
3
0a4−4Ω2a2b

3
0b4−a0b2b4b

2
0−2Ωa2b

2
0a0b4+2Ωa2

0b2b4b0−2Ωa4b
2
0a0b2−

2a2b
3
0b4+3a4b

3
0b2+4Ω

2a0b2b4b
2
0)w

8+(2Ωa2
2b

2
0b2−4Ω2a2b

2
0b

2
2−a0b

3
2b0+16Ω

2a4b
3
0b2+4Ω

2a0b
3
2b0+
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3a0b2b4b
2
0 − 4a2b

3
0b4 + a2b

2
2b

2
0 + a4b

3
0b2 + 2Ωa2

0b
3
2 − 16Ω2a0b2b4b

2
0 − 4Ωa2b0a0b

2
2 + 4Ωa4b

2
0a0b2 +

4Ωa2b
2
0a0b4−4Ωa2

0b2b4b0−4Ωa2b
3
0a4)w6−(24Ω2a2b

3
0b4−12Ωa2b

3
0a4+8a0b2b4b

2
0+12Ωa4b

2
0a0b2−

12Ωa2
0b2b4b0 − 4a2b

3
0b4 − 12Ω2a0b2b4b

2
0 − 4a4b

3
0b2 + 12Ωa2b

2
0a0b4 + 2a2b

2
2b

2
0 − 2a0b

3
2b0 + 4Ωa2

0b
3
2 +

4Ω2a0b
3
2b0 + 4Ωa2

2b
2
0b2 − 12Ω2a4b

3
0b2 − 4Ω2a2b

2
0b

2
2 − 8Ωa2b0a0b

2
2)w

4 + (2Ωa2
2b

2
0b2 − 4Ω2a2b

2
0b

2
2 −

a0b
3
2b0+16Ω

2a4b
3
0b2+4Ω

2a0b
3
2b0+3a0b2b4b

2
0−4a2b

3
0b4+a2b

2
2b

2
0+a4b

3
0b2+2Ωa2

0b
3
2−16Ω2a0b2b4b

2
0−

4Ωa2b0a0b
2
2 +4Ωa4b

2
0a0b2 +4Ωa2b

2
0a0b4 −4Ωa2

0b2b4b0 −4Ωa2b
3
0a4)w2 −2Ωa2b

3
0a4 +4Ω2a2b

3
0b4 +

a0b2b4b
2
0 + 2Ωa2b

2
0a0b4 − 2Ωa2

0b2b4b0 + 2Ωa4b
2
0a0b2 + 2a2b

3
0b4 − 3a4b

3
0b2 − 4Ω2a0b2b4b

2
0],

A4 = −b0w4n−4[(a4b
3
0−a0b4b

2
0)w

8+(2Ωa2
2b

2
0+a2b

2
0b2−4Ω2a2b

2
0b2+2Ωa2

0b
2
2−4Ωa2b0a0b2+

4Ω2a0b
2
2b0 − a0b

2
2b0)w

6 − (4Ω2a0b
2
2b0 − 2a0b4b

2
0 + 2a2b

2
0b2 − 4Ω2a2b

2
0b2 + 16Ω2a4b

3
0 + 4Ωa2

2b
2
0 +

4Ωa2
0b

2
2−8Ωa2b0a0b2+2a4b

3
0−2a0b

2
2b0−16Ω2a0b4b

2
0)w

4+(2Ωa2
2b

2
0a2b

2
0b2−4Ω2a2b

2
0b2+2Ωa2

0b
2
2−

4Ωa2b0a0b2 + 4Ω2a0b
2
2b0 − a0b

2
2b0)w

2 + a4b
3
0 − a0b4b

2
0],

A2 = b30(a0b2 − a2b0)w2n−2[w4 − (4Ω2 + 2)w2 + 1].
In (4.10), we let

A18 = 0, A16 = 0, A14 = 0, A12 = 0, A10 = 0,

A8 = 0, A6 = 0, A4 = 0, A2 = 0.
(4.11)

Solving the group of (4.11), we obtain three group of parametric conditions which satisfy
(4.10).

Case 1. We have the following:

a0 =
a2b0
b2

± w2 − 1
w

, a4 = b4 = 0, Ω = ±w
2 − 1
2w

, (4.12)

where a2, b0, b2, w are arbitrary nonzero constants with a2 /= b0 /= b2, w /= ± 1.

Case 2. We have the following:

a0 = −p4w
4 ± p3w

3 + p2w
2 ± p1w + p0

b24(w
3 −w2 −w + 1)(w + 1)

, b0 =
±q2w2 + q1w ± q0

b34(w − 1)2(w + 1)2
,

Ω = ±w
2 − 1
2w

,

(4.13)

where p4 = −a2b
3
4b2 + a4b

2
2b

2
4, p3 = 2a2

4b
2
2b4 − 3a2b

2
4a4b2 + a2

2b
3
4, p2 = −2a2

4b4b2a2 − 2a4b
2
2b

2
4 +

2a2b
3
4b2 + a4b

2
4a

2
2 + a3

4b
2
2, p1 = 3a2b

2
4a4b2 − 2a2

4b
2
2b4 − a2

2b
3
4, p0 = −a2b

3
4b2 + a4b

2
2b

2
4, q2 = a4b

2
2b4 −

a2b
2
4b2, q1 = −2b4b2a4a2 + b24a

2
2 + b22a

2
4, q0 = a2b

2
4b2 − a4b

2
2b4 and a2, a4, b2, b4, w are arbitrary

nonzero constants with a2 /=a4 /= b2 /= b4, w /= ± 1.

Under Case 1, substituting (4.12) in (4.9), we obtain discrete kink or antikink soliton
solution of (1.2) as follows:

un =
a2b0 ± (w − (1/w)) + a2b2w

2n exp[±(w − (1/w))t]

b0b2 + b22w
2n exp[±(w − (1/w))t]

, (4.14)

where a2, b0, b2, w are arbitrary nonzero constants with a2 /= b0 /= b2, w /= ± 1.
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Figure 6: The solution un in (4.15) shows shapes of discrete antikink and kink solitons.

Under Case 2, substituting (4.13) into (4.9), we obtain discrete kink or antikink soliton
solution of (1.2) as follows:

un =
L + a2w

2n exp[±(w − (1/w))t] + a4w
4n exp[±(2w − (2/w))t]

S + b2w2n exp[±(w − (1/w))t] + b4w4n exp[±(2w − (2/w))t]
, (4.15)

where L denotes −((p4w4 ± p3w
3 + p2w

2 ± p1w + p0)/(w3 − w2 − w + 1)) and S denotes
(±q2w2 + q1w ± q0)/(b4(w + 1)(w − 1)2), and p4, p3, p2, p1, p0, q2, q1, q0 have been given above,
and a2, a4, b2, b4, w are arbitrary nonzero constants with a2 /=a4 /= b2 /= b4, w /= ± 1.

In order to describe the dynamic properties of the above solutions intuitively, as an
example, we draw the profile figures of the solution (4.15), see Figure 6. Setting a2 = 0.8, a4 =
2, b2 = −0.5 < 0, b4 = 1.5, w = 4, t = 1, n ∈ [−20, 25], the solution (4.15) shows a shape
of discrete antikink wave, see Figure 6(a). Setting a2 = 0.8, a4 = 2, b2 = 0.5 > 0, b4 =
1.5, w = 4, t = 1, n ∈ [−20, 25], the solution (4.15) shows a shape of discrete kink wave, see
Figure 6(b).

4.3. Exact Solutions of the Form (2.12)

Suppose that (1.2) has exact solution of the form (2.12) as follows:

un = ã0 +
a2w

2n

e2Ωt + b2w2n
, (4.16)

where ã0 = a0/(1 + b2) and a0, a2, b2 are constants to be determined later. After substituting
(4.16) in (1.2), multiplying both sides by the common denominator (e2Ωt + b2w

2n)3(e2Ωt +
b2w

2(n−1))(e2Ωt + b2w
2(n+1)), it follows

a2w
2n−2M8e

8Ωt + a2w
4n−2M6e

6Ωt − b2a2w
6n−2M4e

4Ωt + b32a2w
8n−2M2e

2Ωt = 0, (4.17)
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whereM8 = −1−w4+(4Ω2+2)w2,M6 = (−b2+2a2Ω+4Ω2b2)w4+(2b2−4Ω2b2−4a2Ω)w2−b2+
2a2Ω+4Ω2b2,M4 = (−b2+2a2Ω+4Ω2b2)w4+(2b2−4Ω2b2−4a2Ω)w2−b2+2a2Ω+4Ω2b2,M2 =
1 +w4 + (−4Ω2 − 2)w2.

In (4.17), we let

M8 = 0, M6 = 0, M4 = 0, M2 = 0. (4.18)

Solving the group of (4.18), we obtain two groups of parametric conditions which satisfy
(4.17).

Case 1. We have the following:

a2 = −2b2Ω, w = −Ω ±
√
Ω2 + 1, (4.19)

where b2, Ω are two arbitrary nonzero constants.

Case 2. We have the following:

a2 = −2b2Ω, w = Ω ±
√
Ω2 + 1, (4.20)

where b2, Ω are also two arbitrary nonzero constants.

Under Case 1, substituting (4.19) in (4.16), we obtain discrete kink or antikink soliton
solution of (1.2) as follows:

un =
a0

1 + b2
−

2b2Ω
(
−Ω ±

√
Ω2 + 1

)2n

e2Ωt + b2
(
−Ω ±

√
Ω2 + 1

)2n , (4.21)

where a0, b2, Ω are arbitrary nonzero constants.
Under Case 2, substituting (4.20) in (4.16), we obtain discrete kink or antikink soliton

solution of (1.2) as follows:

un =
a0

1 + b2
−

2b2Ω
(
Ω ±

√
Ω2 + 1

)2n

e2Ωt + b2
(
Ω ±

√
Ω2 + 1

)2n , (4.22)

where a0, b2,Ω are arbitrary nonzero constants.
The dynamic properties of solutions (4.21) and (4.22) are similar to those of solutions

(4.14) and (4.15). So we omit their profile figures here.

5. Conclusion

In this work, we introduced an extended method based on the mixed function method.
Using this extended method, we studied the Toda lattice equation and (2 + 1)-dimensional
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Toda lattice equation. We obtained some new exact solutions of discrete type for these two
classic Toda lattice equations. As for the (2 + 1)-dimensional Toda lattice equation, its exact
solutions which we obtained contain the discrete soliton solutions (3.31), (3.38), (3.39), and
(3.47), the discrete kink and antikink wave solutions (3.10)-(3.11), (3.21)–(3.23) and (3.46),
and the discrete breather soliton solutions (3.32)–(3.35), (3.40)–(3.43) and (3.48)–(3.51). These
exact solutions have both discrete and continuous dynamic properties. In other words, their
waveforms have discrete character along the n-axes and have continuous character along the
x-axes.

Among the above discrete soliton solutions and kink (or antikink)wave solutions, the
waveforms of the solutions (3.10), (3.21), (3.31), (3.39), (3.46), and (3.47) are similar to those
smooth traveling waves which appear in continuous systems except their discrete characters,
see Figures 1(a), 1(c), 2(a), 3(a), 4(a), 5(a), and 5(c); the waveforms of the solutions (3.11) and
(3.22) are similar to those nonsmooth traveling waves such as peakon, and cusp wave which
appear in continuous systems except their discrete characters, see Figures 1(b), 1(d), and
2(b). It is worthy to regard that Li et al. [40–42] explained the causes of the smooth traveling
waves, nonsmooth traveling waves, peakons and cusp waves by the bifurcation theory. In
addition, the waveforms with continuous characters of the breather soliton solutions and
double kink wave solutions obtained in this paper are very similar to those in [43] though
the studied problems (model equations) are different. This shows that the waveforms of these
exact solutions obtained by us are partly similar to some of traveling waves appeared in
continuous systems though the obtained solutions and the studied problems are different.
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[16] İ. Aslan, “The Ablowitz-Ladik lattice system by means of the extended (G’/G)-expansion method,”
Applied Mathematics and Computation, vol. 216, no. 9, pp. 2778–2782, 2010.

[17] S. Zhang, L. Dong, J.-M. Ba, and Y.-N. Sun, “The (G’/G)-expansion method for nonlinear differential-
difference equations,” Physics Letters A, vol. 373, no. 10, pp. 905–910, 2009.

[18] L. Wu, L. Xie, and J. Zhang, “Adomian decomposition method for nonlinear differential-difference
equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 1, pp. 12–18,
2009.

[19] K. Kajiwara and J. Satsuma, “The conserved quantities and symmetries of the two-dimensional Toda
lattice hierarchy,” Journal of Mathematical Physics, vol. 32, no. 2, pp. 506–514, 1991.

[20] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, Berlin, Germany, 1981.
[21] T. Kuusela, “Ac-driven damped Toda lattice,” Computers & Mathematics with Applications, vol. 28, no.

10–12, pp. 327–351, 1994.
[22] C. Schiebold, “An operator-theoretic approach to the Toda lattice equation,” Physica D: Nonlinear

Phenomena, vol. 122, no. 1–4, pp. 37–61, 1998.
[23] P. A. Damianou and R. L. Fernandes, “From the Toda lattice to the Volterra lattice and back,” Reports

on Mathematical Physics, vol. 50, no. 3, pp. 361–378, 2002.
[24] W. X. Ma and K. Maruno, “Complexiton solutions of the Toda lattice equation,” Physica A: Statistical

Mechanics and its Applications, vol. 343, no. 1–4, pp. 219–237, 2004.
[25] Z. Horii, “Mass transport theory for the Toda lattices, dispersive and dissipative,” Physica A: Statistical

Mechanics and its Applications, vol. 350, no. 2–4, pp. 349–378, 2005.
[26] F. Peherstorfer, “On Toda lattices and orthogonal polynomials,” Journal of Computational and Applied

Mathematics, vol. 133, no. 1-2, pp. 519–534, 2001.
[27] A. M. Bloch, “Asymptotic hamiltonian dynamics: the Toda lattice, the three-wave interaction and the

non-holonomic Chaplygin sleigh,” Physica D: Nonlinear Phenomena, vol. 141, no. 3-4, pp. 297–315, 2000.
[28] L. Casian and Y. Kodama, “Singular structure of Toda lattices and cohomology of certain compact Lie

groups,” Journal of Computational and Applied Mathematics, vol. 202, no. 1, pp. 56–79, 2007.
[29] P. A. Damianou, “The negative Toda hierarchy and rational Poisson brackets,” Journal of Geometry and

Physics, vol. 45, no. 1-2, pp. 184–202, 2003.
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