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Consideration is given to the free drainage of an Oldroyd four-constant liquid from a vertical po-
rous surface. The governing systems of quasilinear partial differential equations are solved by
the Fourier-Galerkin spectral method. It is shown that Fourier-Galerkin approximations are con-
vergent with spectral accuracy. An efficient and accurate algorithm based on the Fourier-Galerkin
approximations for the governing system of quasilinear partial differential equations is developed
and implemented. Numerical results indicating the high accuracy and effectiveness of this algo-
rithm are presented. The effect of the material parameters, elasticity, and porous medium constant
on the centerline velocity and drainage rate is discussed.

1. Introduction

Thin-film drainage down porous vertical surfaces is important in industry. Draining films
occur in processes as diverse as dip coating, electroplating, enameling, emptying storage
vessels, and oil recovery mechanisms [1, 2]. Spectral projection and corresponding error ana-
lysis of the system of nonlinear partial differential equations arising in the free drainage start-
up flow of Oldroyd four constant liquids over a porous vertical surface is considered.

Literature review reveals that this problem is not considered. But for the case of im-
permeable wall, Goshawk and Waters [3] and Pennington and Waters [4] investigated the
drainage of an Oldroyd four-constant liquid from a vertical surface via a finite difference
method. But the problem they consider is a special case of the expended investigation in this
paper, and error analysis is not explored in their work. Again, for case of steady flow (or start-
up phase neglected), the literature more richer, in this case, Keeley et al. [5] investigate the
drainage of thin films of non-Newtonian liquids from vertical surface, and the behavior of the
Phan Thain-Tanner models are investigated in detail [6, 7]. In the present study, Galerkin’s
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method of the system of quasilinear partial differential equations governing the free drainage
problem is investigated for a porous vertical surface. It is shown that method converges and
that the convergence is not at all dependent on whether or not the physical parameters of the
problem assume special values. The paper is organized as follows. The problem is defined
in Section 2, and some basic results on Fourier approximations are given. A suitable Fourier-
Galerkin approximation for the problem under consideration is proposed in Section 3 and
error analysis given following [8–11]. Efficient and robust algorithms for the problem under
consideration are constructed and numerical results presented in Section 4.

2. Mathematical Formulation and Preliminary Results on
Fourier Approximation

Consider a thin liquid film draining down a flat porous vertical surface defined by Cartesian
coordinates (x, y, z). The x axis points vertically downwards, the solid surface lies in the
plane y = 0 with the thickness of the liquid film measured in the positive y direction, and
the z axis is positioned perpendicular to the gravitational force completing a set of right-
handed axes. The nondimensionalized equations of motion and the dimensionless Oldroyd
four constant constitutive model form a quasilinear system of PDEs, where (details can be
found in [3, 4, 12, 13] for the interested reader)

∂Sxy

∂y
=
∂u

∂t
− 1 + α2u, (2.1)

Sxy + S1
∂Sxy

∂t
+
1
2
μ1Sxx

∂u

∂y
=

(
∂u

∂y
+ S2

∂2u

∂y∂t

)
, (2.2)

Sxx + S1
∂Sxx
∂t

− 2S1Sxy
∂u

∂y
= −2S2

(
∂u

∂y

)2

, (2.3)

where above we used the following dimensionless parameters as in [3]
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,
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ν1/3
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(
g2
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)1/3

, α2 =

(
νg
)1/3
ρg

.

(2.4)

And here u = u(y, t), Sxy = Sxy(y, t), Sxx = Sxx(y, t) are the dimensionless velocity and the
dimensionless deviatoric stress tensor; α2, S1, S2, and μ1 represent the porous medium cons-
tant, dimensionless relaxation and retardation time constants, and a dimensionless material
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parameter, respectively. No slip at the wall y = 0 and zero shear rate on the free surface of the
liquid are assumed,

u(0, t) = 0, t ≥ 0,
∂u

∂y
= 0 on y = h. (2.5)

The liquid is at rest at t = 0, therefore initial conditions are

u
(
y, 0
)
= Sxy

(
y, 0
)
= Sxx

(
y, 0
)
= 0. (2.6)

To calculate the shape of the film profile at a given time t, the thickness h is allowed to vary
with x while assuming the flow is still locally parallel. Combining the material derivative at
the free surface

v(x, h, t) =
∂h

∂t
+ u(x, h, t)

∂h

∂x
, (2.7)

with the equation of continuity yields a differential equation in h,

−∂h
∂x

(∫h
0

∂u

∂h
dy + u

)
=
∂h

∂t
. (2.8)

Introducing the flow rate Q(h, t) per unit width across the film thickness h,

Q(h, t) =
∫h
0
u
(
x, y, t

)
dy, (2.9)

differentiating Q with respect to h, and substituting the result into (2.8) and integrating give

x(h, t) − x0(h) =
∫ t
0

∂Q

∂h
dτ, (2.10)

where x0(h) = x(h, 0) is the initial profile and can be chosen to represent any suitable initial
shape. Equation (2.10) effectively determines the position of the free surface x as a function
of h and t.

Next some mathematical notation is introduced. Denote the inner product in L
2(0, h)

by

(
f, g
)
=
∫h
0
f
(
y
)
g
(
y
)
dy. (2.11)

If f ∈ L
2(0,H), then Fourier sine series is defined as

f
(
y
)
=

∞∑
k=1

f̂s(k) sin
((

(2k − 1)π
2h

)
y

)
, (2.12)



4 Discrete Dynamics in Nature and Society

where

f̂s(k) =
2
h

∫π
0
sin
(
(2k − 1)πy

2h

)
f
(
y
)
dy k = 1, 2, . . . . (2.13)

Similarly, Fourier cosine series is defined as

f
(
y
)
=
f̂c(0)
2

+
∞∑
k=1

f̂c(k) cos
((

(2k − 1)π
2h

)
y

)
, (2.14)

where

f̂c(k) =
2
H

∫H
0

cos
(
(2k − 1)πy

2

)
f
(
y
)
dy k = 1, 2, . . . . (2.15)

Denote by ‖ ‖Hm the Sobolev norm, given by

∥∥f∥∥2Hm =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
k=1

(
1 +
∣∣∣∣2k − 1

2

∣∣∣∣
2
)m∣∣∣f̂s(k)∣∣∣2,∣∣∣f̂c(0)∣∣∣2

2
+

∞∑
k=1

(
1 +
∣∣∣∣2k − 1

2

∣∣∣∣
2
)m∣∣∣f̂c(k)∣∣∣2.

(2.16)

The space of periodic Sobolev functions on the interval [0, h] is defined as the closure
of the space of smooth periodic functions with respect to the Hm-norm and will be simply
denoted byHm. In particular, the space L

2(0, h) with norm denoted by ‖ ‖
L2 is recovered for

m = 0. We now define subspaces of L
2(0, h) spanned by the set

D∗
N =

{√
2 sin

(
(2k − 1) πy/2h

)
√
h

, 1 ≤ k ≤N
}
,

D∗∗
N =

{√
2 cos

(
(2k − 1) πy/2h

)
√
h

, 1 ≤ k ≤N
}
.

(2.17)

The operators PN and P ∗
N denote the orthogonal, self-adjoint projection of L

2 onto D∗
N and

D∗∗
N defined, respectively, by

PNf
(
y
)
=

N∑
k=1

sin
(
(2k − 1)πy

2h

)
f̂s(k),

P ∗
Nf
(
y
)
=
f̂c(0)
2

+
N∑
k=1

cos
(
(2k − 1)πy

2h

)
f̂c(k).

(2.18)
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For f ∈ Hm, the estimates:

∥∥f − PNf
∥∥
L2 ≤ CpN

−m
∥∥∥∂my f∥∥∥

L2
,

∥∥f − PNf
∥∥
Hn ≤ CpN

n−m
∥∥∥∂my f∥∥∥

L2
,

(2.19)

hold for an appropriate constant Cp and a positive integer n. The reader is referred to [8] for
the proof of these inequalities.

The space of continuous functions from the interval [0, T] into the spaceHn is denoted
by C([0, T],Hn). Similarly, we also consider the space C([0, T], D∗

N), where the topology on
the finite-dimensional space D∗

N can be given by any norm. Finally, note the inverse inequa-
lity

∥∥∥∂my ϕ∥∥∥
L2

≤Nm
∥∥ϕ∥∥L2 , (2.20)

which holds for integers m > 0 and ϕ ∈ D∗
N . A proof of this estimate can also be found in

[11]. We will make use of the Sobolev lemma, which guarantees the existence of a constant c
such that

sup
y

∣∣f(y)∣∣ ≤ c∥∥f∥∥H1 . (2.21)

We now note that exactly the same estimates hold for P ∗
N . In the following, it will

always be assumed that a solution of our problem (2.11)–(2.15) exists on some time inter-
val [0, T]with a certain amount of spatial regularity. In particular, we suppose that a solution
exists in the (C([0, T],H1))3 space for some T > 0. With these preliminaries in place, we are
now set to tackle the problem of defining a suitable spectral projection of (2.11)–(2.15) and
proving the convergence of such a projection. First, the Fourier-Galerkin method is presented
and a proof of convergence given.

3. The Fourier-Galerkin Method

{ek(y), kεN} = {√2 sin((2k − 1)πy/2h)/
√
h, k ∈ N} and {fk(y), kεN} ={√2 cos((2k −

1)πy/2h)/
√
h, k ∈ N} are chosen to be an orthonormal basis of the Hilbert space L

2
0[0, h]

and L
2[0, h], respectively. Then, the subspace of these Hilbert spaces spanned by the D∗

N =
{√2 sin((2k − 1) πy/2h)/

√
h, 1 ≤ k ≤ N} and D∗∗

N = {√2 cos((2k − 1)πy/2h)/
√
h, 0 ≤

k ≤ N}, respectively. Fourier-Galerkin approximation of (2.1)–(2.5) are find the functions
uN(t) ∈ D∗

N , SNxy(t), and S
N
xx ∈ D∗∗

N for all 0 ≤ t ≤ T , such that

(
∂tu

N − 1 − ∂YSNxy,ω1 + β2u, ω1

)
= 0, t ∈ [0, T], (3.1)

(
SNxy + S1∂tS

N
xy +

1
2
μ1S

N
xx∂yu

N − ∂yuN − S2∂
2
tyu

N,ω2

)
= 0, t ∈ [0, T], (3.2)



6 Discrete Dynamics in Nature and Society
(
SNxx + S1∂tS

N
xx − 2S1S

N
xy∂yu

N − 2S2

(
∂yu

N
)2
, ω2

)
= 0, t ∈ [0, T], (3.3)

uN(0) = 0, SNxy(0) = 0, SNxx(0) = 0, (3.4)

for all ω1 ∈ D∗
N and for all ω2 ∈ D∗∗

N . Since for each t, uN(·, t), SNxy(·, t), and SNxy(·, t) have the
form

uN
(
y, t
)
=

N∑
k=1

ûN(k, t)

√
2 sin

(
(2k − 1) πy/2h

)
√
h

,

SNxy
(
y, t
)
=

N∑
k=1

ŝNxy(k, t)

√
2 cos

(
(2k − 1)πy/2h

)
√
h

,

SNxx
(
y, t
)
=

N∑
k=1

ŝNxx(k, t)

√
2 cos

(
(2k − 1)πy/2h

)
√
h .

(3.5)

Taking ω1 =
√
2/H sin((2k − 1) πy/2h), ω2 =

√
2/H cos((2k − 1)πy/2h), 1 ≤ k ≤

N in (3.1)–(3.3) yields the following system of equations for the Fourier coefficients of uN ,
SNxy, and S

N
xx:

d

dt
ûN(k, t) = − (2k − 1)π

2h
ŝNxy(k, t) +

√
2
h

2h
π(2k − 1)

, (3.6)

ŝNxy(k, t) + S1
d

dt
ŝNxy(k, t) =

(2k − 1)π
2h

ûN(k, t) + S2
(2k − 1)π

2h
d

dt
ûN(k, t)

+ μ1
(2k − 1)π

4h

√
2
h

N∑
i,j=1

cijNŝ
N
xx(i, t)û

N(k, t),
(3.7)

ŝNxx(k, t) + S1
d

dt
ŝNxx(k, t) −

(2k − 1)π
2h

ûN(k, t)

− 2S1
(2k − 1)π

4h

√
2
h

N∑
i,j=1

cijNŝ
N
xy(i, t)û

N(k, t)

= −2S2

(
(2k − 1)π

4h

)2
√

2
h

N∑
i,j=1

dijNû
N(i, t)ûN

(
j, t
)
,

(3.8)

ûN(k, t) = 0, ŝNxy(k, t) = 0, ŝNxx(k, t) = 0, (3.9)

cijN =
∫h
0
cos
(
(2i − 1)πy

2h

)
sin

((
2j − 1

)
πy

2h

)
cos
(
(2N − 1)πy

2h

)
dy,

dijN =
∫h
0
sin
(
(2i − 1)πy

2h

)
sin

((
2j − 1

)
πy

2h

)
cos
(
(2N − 1)πy

2h

)
dy.

(3.10)
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This is a nonlinear system of ordinary differential equations for the functions
{ûN(k, t), ŝNxy(k, t), ŝ

N
xx(k, t)}Nk=1; by standard existence theory, there is a unique solution which

exists on some time interval [0, TN), where TN possibly may be equal to T . Since the
argument is standard, the proof is omitted here. The main result of this paper is the fact
that the Galerkin approximation {uN, SNxy, SNxx} converges to the exact solution {u, Sxy, Sxx}
when u is smooth enough. This is stated in the next theorem.

Theorem 3.1. Suppose that a solution {u, Sxy, Sxx} of (2.1)–(2.5) exists in the space
(C([0, T], Hm))3 for m ≥ 1 and for some time T > 0. If ‖PNu(h, t) − uN(u, t)‖ ≤ cN1−m and
‖P ∗

NSxy − SNxy‖ ≤ cN1−m, then, for large enoughN, there exists a unique solution {uN, SNxy, SNxx} of
the finite dimensional problem (3.1)–(3.4). Moreover, there exist constants Γ1, Γ2, and Γ3 such that

sup
t∈[0,T]

∥∥∥u − uN
∥∥∥
L2

≤ Γ1N1−m, sup
t∈[0,T]

∥∥∥Sxy − SNxy∥∥∥
L2

≤ Γ2N1−m,

sup
t∈[0,T]

∥∥∥Sxx − SNxx∥∥∥
L2

≤ Γ3N1−m.
(3.11)

Before the proof is given, note that the assumptions of the theorem encompass the exis-
tence of constants κ, κ1, and κ2 such that

sup
t∈[0,T]

∥∥u(y, t)∥∥Hm ≤ κ, sup
t∈[0,T]

∥∥Sxx(y, t)∥∥Hm ≤ κ1, sup
t∈[0,T]

∥∥Sxy(y, t)∥∥Hm ≤ κ2. (3.12)

In particular, it follows that there are other constants ψ, ψ1, and ψ2 such that

sup
t∈[0,T]

∥∥u(y, t)∥∥Hm ≤ ψ, sup
t∈[0,T]

∥∥Sxx(y, t)∥∥Hm ≤ ψ1, sup
t∈[0,T]

∥∥Sxy(y, t)∥∥Hm ≤ ψ2. (3.13)

The main ingredient in the proof of the theorem is a local error estimate which will be estab-
lished by the following lemma.

Lemma 3.2. Suppose that the solution {uN, SNxy, SNxx} of (3.1)–(3.4) exists on the time interval
[0, t∗N] and that supt∈[0,t∗N]‖uN(y, t)‖H2 ≤ 2ψ, supt∈[0,t∗N]‖SNxy(y, t)‖H2 ≤ 2ψ1, supt∈[0,t∗N]

‖SNxx(y, t)‖H2 ≤ 2ψ2, supt∈[0,t∗N]|PNu(h, t) − uN(h, t)| ≤ βN1−m, and supt∈[0,t∗N]|P ∗
NSxy(h, t) −

SNxy(h, t)| ≤ β1N1−m, then the error estimate:

sup
t∈[0,t∗N]

∥∥∥u − uN
∥∥∥
L2

≤ Γ1N1−m, sup
t∈[0,t∗N]

∥∥∥Sxy − SNxy∥∥∥
L2

≤ Γ2N1−m,

sup
t∈[0,t∗N]

∥∥∥Sxx − SNxx∥∥∥
L2

≤ Γ3N1−m,
(3.14)

holds for constant Γ1 which is the function of T, α2, Cp, κ, β, and c, constant Γ2 which is
the function of T, S1, S2, κ1, ψ, ψ1, ψ2, c1, β1, and c, and constant Γ3 which is the function of
T, S1, κ1, ψ, ψ1, c1, κ, and c.
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Proof. Let σ1 = PNu−uN, σ2 = P ∗
NSxy−SNxy, σ3 = P ∗

NSxx− SNxx. Also, from the definition of PN
and P ∗

N, we have ∂yσ1 = P
∗
N∂yu−∂yuN, ∂yσ2 = PN∂ySxy − ∂yS

N
xy
, ∂yσ3 = PN∂ySxx− ∂yS

N
xx
.

We apply PN, P ∗
N and P ∗

N to both sides of (2.1)–(2.3), respectively. Since PN , P ∗
N commute

with derivation, we obtain

∂tPNu+α2u = 1 + ∂yPNSxy,

P ∗
N Sxy + S1∂tP

∗
NSxy +

1
2
μ1P

∗
N

(
Sxx∂yu

)
= P ∗

N∂yu + S2∂tP
∗
N∂yu,

P ∗
NSxx + S1∂tP

∗
NSxx − 2S1P

∗
N

(
Sxy∂yu

)
= −2S2P

∗
N

(
∂yu
)2
.

(3.15)

We multiply these equations with test functions σ1 ∈ D∗
N, σ2 ∈ D∗∗

N , and σ3 ∈ D∗∗
N , res-

pectively, integrate over [0, h], and subtract the resulting expressions from (3.1), (3.2), and
(3.3) to get

1
2
d

dt
‖σ1‖2L2 + α2‖σ1‖2L2 = (PN1 − 1N, σ1) +

(
PN∂y

(
Sxy − SNxy

)
, σ1
)
,

‖σ2‖2L2 + S1
1
2
d

dt
‖σ2‖2L2 +

1
2
μ1

(
P ∗
N

(
Sxx∂yu

) − SNxx∂yuN, σ2)

=
(
P ∗
N∂y

(
u − uN

)
, σ2
)
+ S2

(
P ∗
N∂

2
ty

(
u − uN

)
, σ2
)
,

‖σ2‖2L2 + S1
1
2
d

dt
‖σ2‖2L2 +

1
2
μ1

(
P ∗
N

(
Sxx∂yu

) − SNxx∂yuN, σ2)

=
(
P ∗
N∂y

(
u − uN

)
, σ2
)
+ S2

(
∂tP

∗
N∂y
(
u − uN

)
, σ2
)
,

‖σ3‖2L2 + S1
1
2
d

dt
‖σ3‖2L2 − 2S1

(
P ∗
N

(
Sxy∂yu

) − SNxy∂yuN, σ3)

= −2S2

(
P ∗
N

(
∂yu
)2 − (∂yuN)2, σ3

)
.

(3.16)

Since σ1 ∈ D∗
N, (σ2, σ3) ∈ D∗∗

N ,

1
2
d

dt
‖σ1‖2L2 + α2‖σ1‖2L2 =

(
∂yσ2, σ1

) ≤ ∥∥∂yσ2∥∥L2‖σ1‖L2 , (3.17)

then we have

1
2
d

dt
‖σ1‖2L2 + α2‖σ1‖2L2 ≤

∥∥∂yσ2∥∥L2 ≤ |σ2(H, t)|. (3.18)
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Consequently, from hypothesis and Gronwall’s inequality, we obtain

sup
t∈[0,t∗N]

‖σ1‖L2 ≤ Γ1N1−m
, (3.19)

where Γ1 is a function of T, β, α2, and c:

‖σ2‖2L2 + S1
1
2
d

dt
‖σ2‖2L2 +

1
2
μ1

(
Sxx∂yu − SNxx∂yuN, σ2

)
=
(
∂yσ1, σ2

)
+ S2

(
∂2tyσ1, σ2

)
. (3.20)

Hence, we get

‖σ2‖2L2 + S1
1
2
d

dt
‖σ2‖2L2 +

1
2
μ1

(
Sxx∂yu − SNxx∂yuN, σ2

)

≤ ∥∥∂yσ1∥∥L2‖σ2‖L2 + S2

∥∥∥∂2tyσ1∥∥∥
L2
‖σ2‖L2 ,

(3.21)

‖σ3‖2L2 + S1
1
2
d

dt
‖σ3‖2L2 − 2S1

(
Sxy∂yu − SNxy∂yuN, σ3

)

= −2S2

((
∂yu
)2 − (∂yuN)2, σ3

)
.

(3.22)

Let us estimate third term on the left-hand side of (3.20) in the time interval [0, TN):

(
Sxx∂yu − SNxx∂yuN, σ2

)
=
((
Sxx − SNxx

)(
∂y
(
u + uN

))

+SNxx
(
∂y
(
u − uN

))
+ ∂yuN

((
Sxx − SNxx

)
, σ2
))
.

(3.23)

Thus,

∣∣∣(Sxx∂yu − SNxx∂yuN, σ2
)∣∣∣ ≤ sup

y

∣∣∣∂y(u + uN
)∣∣∣∥∥∥Sxx − SNxx∥∥∥

L2
‖σ2‖L2

+ sup
y

∣∣∣SNxx∣∣∣∥∥∥∂y(u − uN
)∥∥∥

L2
‖σ2‖L2 + sup

y

∣∣∣∂yuN∣∣∣∥∥∥Sxx − SNxx∥∥∥
L2
‖σ2‖L2

≤
(
c
∥∥∥u + uN

∥∥∥
H2

+ c
∥∥∥uN∥∥∥

H2

)(
‖Sxx − PNSxx‖L2 +

∥∥∥PNSxx − SNxx∥∥∥
L2

)
‖σ2‖L2

+ c
∥∥∥SNxx∥∥∥

H1

(
‖u − PNu‖H1 +

∥∥∥PNu − uN
∥∥∥
H1

)
‖σ2‖L2 ≤ 5cψ

× (CpN
−m‖Sxx‖Hm + ‖σ2‖L2

)‖σ2‖L2 + 2c
∧

1

(
CpN

1−m‖u‖Hm + ‖σ2‖L2

)
‖σ2‖L2 .

(3.24)



10 Discrete Dynamics in Nature and Society

Hence,

‖σ2‖2L2 + S1
d

dt
‖σ2‖L2 ≤ ψ2‖σ2‖L2 + 5cψκN−m + 2cκ1ψ1CpN

1−m +
∥∥∥∂yσ1

∥∥∥
L2

≤ (ψ2 − 1
)‖σ2‖L2 + 5cψCpκN

−m + 2cκ1ψ1CpN
1−m +

∥∥∥∂yσ1

∥∥∥
L2

≤ c1‖σ2‖L2 + cN1−m +
∥∥∥∂yσ1

∥∥∥
L2

+ S2

∥∥∥∂2tyσ1

∥∥∥
L2
.

(3.25)

Using the hypothesis and Gronwall’s inequality,

sup
t∈[0,t∗N]

‖σ2‖L2 ≤ Γ2N1−m, (3.26)

Γ1 is a function of T, S1, S2, κ1, ψ, ψ1, ψ2, c1, β1, and c. Estimating the RHS of (3.22) in the
time interval [0, TN),

((
∂yu
)2 − (∂yuN)2, σ3

)
=
(
∂y
{(
u + uN

)(
u − uN

)}
, σ3
)

=
(
∂y
(
u + uN

)(
u − uN

)
, σ3
)
+
((
u + uN

)
∂y
(
u − uN

)
, σ3
)

=
(
∂y
(
u + uN

)(
u − uN

)
, σ3
)
+
((
u + uN

)
∂y(u − PNu), σ3

)
+
((
u + uN

)
∂y
(
PNu − uN

)
, σ3
)
,

(3.27)

∣∣∣∣(∂yu)2 − (∂yuN)2, σ3
∣∣∣∣ ≤ sup

y

∣∣∣∂y(u + uN
)∣∣∣∥∥∥u − uN

∥∥∥
L2
‖σ3‖L2

+ sup
y

∣∣∣∂y(u + uN
)∣∣∣∥∥∂y(u − PNu)

∥∥
L2‖σ3‖L2

+

∣∣∣∣∣
∫H
0

(
u + uN

)
∂y(σ3)σ3dy

∣∣∣∣∣
≤ c
∥∥∥u + uN

∥∥∥
H2

(
‖u − PNu‖L2 +

∥∥∥PNu − uN
∥∥∥
L2

)
‖σ3‖L2

+ c
∥∥∥u + uN

∥∥∥
H1

‖u − PNu‖H1‖σ3‖L2 +
1
2

∫H
0
σ2
3

∣∣∣∂y(u + uN
)
dy
∣∣∣

≤ 3cψ
(
CpN

−m‖u‖Hm + ‖σ3‖L2

)‖σ3‖L2

+ 3cψCpN
1−m‖u‖Hm‖σ3‖L2 +

1
2
sup
y

∣∣∣∂y(u + uN
)∣∣∣
∫H
0
σ2
3dy.

(3.28)

Noting that the last integral is bounded by (1/2)3cψ, the estimate is

∣∣∣∣(∂yu)2 − (∂yuN)2, σ3
∣∣∣∣ ≤ 3cψ‖σ3‖L2

(
3
2
‖σ3‖L2 + Cp‖u‖Hm

(
N−m +N1−m

))
. (3.29)
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(Sxy∂yu −SNxy∂yuN, σ3) can be estimated in exactly the same way as (Sxx∂yu −SNxx∂yuN, σ2).
Then, (3.22) as a whole is estimated as

‖σ3‖L2 + S1
d

dt
‖σ3‖L2 ≤

(
ψ2‖σ3‖L2 + 5cψCpκN

−m + 2cκ1ψ1CpN
1−m
)

+ 3cψ
(
3
2
‖σ3‖L2 + Cpκ

(
N−m +N1−m

))
.

(3.30)

Therefore, we get

c1‖σ3‖L2 + S1
d

dt
‖σ3‖L2 ≤ cN1−m. (3.31)

Then, using the Gronwall’s inequality,

sup
t∈[0,t∗N]

‖σ3‖L2 ≤ Γ3N1−m, (3.32)

where Γ3 is a function of T, S1, κ1, ψ, ψ1, c1, and c. Since

∥∥∥u − uN
∥∥∥
L2

=
∥∥∥u + PNu − PNu − uN

∥∥∥
L2

≤ ‖u − PNu‖L2 +
∥∥∥PNu − uN

∥∥∥
L2
,

(3.33)

∥∥∥Sxy − SNxy∥∥∥
L2

=
∥∥∥Sxy + P ∗

NSxy − P ∗
NSxy − SNxy

∥∥∥
L2

≤ ∥∥Sxy − P ∗
NSxy

∥∥
L2 +

∥∥∥P ∗
NSxy − SNxy

∥∥∥
L2
,

(3.34)

∥∥∥Sxx − SNxx∥∥∥
L2

=
∥∥∥Sxx + P ∗

NSxx − P ∗
NSxx − SNxx

∥∥∥
L2

≤ ∥∥Sxx − P ∗
NSxx

∥∥
L2 +

∥∥∥P ∗
NSxx − SNxx

∥∥∥
L2
.

(3.35)

Using (2.18) and (3.19) in (3.33), (2.18) and (3.26) in (3.34), (2.18) and (3.32) in (3.35), respec-
tively, we obtain

sup
t∈[0,t∗N]

∥∥∥u − uN
∥∥∥
L2

≤ Γ1N1−m, sup
t∈[0,t∗N]

∥∥∥Sxy − SNxy∥∥∥
L2

≤ Γ2N1−m,

sup
t∈[0,t∗N]

∥∥∥Sxx − SNxx∥∥∥
L2

≤ Γ3N1−m,
(3.36)

where Γ1, Γ2, and Γ3 are constants, functions of (T, α2, Cp, κ, β, and c), (T, S1, S2, κ1,
ψ, ψ1, ψ2, c1, β1, and c), and of (T, S1, κ1, ψ, ψ1, c1, κ, and c), respectively.
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Figure 1: Comparison of exact analytical and numerical solutions of centerline velocity field for μ1 = 0,
S1 = 2, S2 = 1, and h = 1 for both permeable wall (α = 1) and impermeable wall.
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Figure 2: The effect of the nonlinear parameter μ1 on the centerline velocity profile for S1 = 2, S2 = 1, α = 0,
and h = 1.

Lemma 3.3. Suppose that the solution {uN, SNxy, SNxx} of (3.1)–(3.3) exists on the time interval
[0, t∗N] and that supt∈[0,t∗N]‖uN(y, t)‖H2 ≤ 2ψ, supt∈[0,t∗N]‖SNxy(y, t)‖H2 ≤ 2ψ1, supt∈[0,t∗N]

‖SNxx(y, t)‖H2 ≤ 2ψ2, supt∈[0,t∗N]|PNu(h, t) − uN(h, t)| ≤ βN1−m, and supt∈[0,t∗N]|P ∗
NSxy(h, t) −

SNxy(h, t)| ≤ β1 N1−m, then the error estimate:

sup
t∈[0,t∗N]

∥∥∥u − uN
∥∥∥
H2

≤ Γ1N3−m, sup
t∈[0,t∗N]

∥∥∥Sxy − SNxy∥∥∥
H2

≤ Γ2N3−m,

sup
t∈[0,t∗N]

∥∥∥Sxx − SNxx∥∥∥
H2

≤ Γ3N3−m,
(3.37)
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Figure 3: The effect of the porous medium parameter α2 on the centerline velocity profile for S1 = 2, S2 = 1,
μ1 = 10, and h = 1.

holds for the constants Γ1, Γ2, and Γ3. The proof of the Lemma follows from (3.19), (3.26), and (3.32)
after application of the triangle inequality and the inverse inequality (2.19).

Proof of Theorem 3.1. To extend the estimate of the first inequality in (3.14) to the time inter-
val [0, T] t∗N unspecified in Lemma 3.2 is defined as

t∗N = sup
{
t ∈ [0, T] | for all t′ ≤ t,

∥∥∥uN(y, t′)∥∥∥
H2

≤ 2ψ
}
. (3.38)

Thus, the time t∗N corresponds to the largest time in [0, T] for which the H2-norm of uN is
uniformly bounded by 2ψ. Since ‖uN(y, 0)‖H2 = ‖PN(y, 0)‖H2 ,

∥∥∥uN(y, 0)∥∥∥
H2

≤ ∥∥u(y, 0)∥∥H2 ≤ ψ, (3.39)

therefore t∗N > 0 for allN. Note that t∗N is smaller than the maximum time of existence of the
solution TN . Now, we need to show that there existsNL such that

t∗N = T ∀N ≥NL, (3.40)

and therefore the supremum in (3.14) holds on [0, T]. From the definition (3.38), we either
have t∗N = T or t∗N < T in which case ‖uN(y, t′)‖H2 = 2ψ. Now assume that t∗N < T , then

2ψ =
∥∥∥uN(y, t∗N)∥∥∥H2

≤
∥∥∥uN(y, t∗N) − u(y, t)∥∥∥H2

+
∥∥u(y, t)∥∥H2

=
∥∥∥uN(y, t∗N) − u(y, t)∥∥∥H2

+ ψ.
(3.41)
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Figure 4: The effect of the elasticity on the centerline velocity profile for μ1 = 10 and h = 1 for permeable
wall (α = 1).

Hence, we obtain

ψ ≤
∥∥∥uN(y, t∗N) − u(y, t)∥∥∥H2

. (3.42)

On the other hand, Lemma 3.3 implies

ψ ≤ Γ1N3−m (3.43)

or

N ≤
(
Γ1
ψ

)1/m−3
. (3.44)

In conclusion, for NL > (Γ1/ψ)
1/m−3, we cannot have t∗N < T and claim (3.40) holds. It follows

thatN ≥ NL the solution uN of (3.1) is defined on [0, T], since as noted before t∗N < TN , and,
from (3.14),

sup
t∈[0,T]

∥∥∥u(y, t) − uN(y, t)∥∥∥
L2

≤ Γ1N1−m. (3.45)
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Figure 5: The effect of the elasticity on the centerline velocity profile for μ1 = 10 and h = 1 for impermeable
wall.

In exactly the same way, we can extend the estimate of the second and third inequali-
ties in (3.14) to the time interval [0, T] and show that

sup
t∈[0,T]

∥∥∥Sxy(y, t) − SNxy(y, t)∥∥∥
L2

≤ Γ2N1−m,

sup
t∈[0,T]

∥∥∥Sxx(y, t) − SNxx(y, t)∥∥∥
L2

≤ Γ3N1−m.
(3.46)

4. Numerical Results and Discussion

The system of differential equations (3.6)–(3.9) is of the following form

d

dt
ûN(k, t) = G1

(
ŝNxy(k, t)

)
,

d

dt
ŝNxy(k, t) = G2

(
ŝNxx(i, t), ŝ

N
xy(k, t), û

N(k, t), S1, S2

)
,

d

dt
ŝNxx(k, t) = G3

(
ŝNxx(i, t), ŝ

N
xy(k, t), û

N(k, t), S1, S2

)
,

ûN(k, t) = 0, ŝNxy(k, t) = 0, ŝNxx(k, t) = 0.

(4.1)

Runge-Kutta method is applied to this system. The integrals in equations (2.8) and (2.9) are
calculated analytically and numerically, respectively, with ∂Q/∂h approximated by a central
difference formula. To illustrate the spectral accuracy, the time step is chosen to be sufficiently
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Figure 6: The effect of the material parameter μ1 on the drainage rate for S1 = 2, S2 = 1 for impermeable
wall.

Table 1

N (number of modes) log10 (error) impermeable wall log10 (error) permeable wall (α = 1)

10 −5.1 −5.3
15 −6.45 −6.55
20 −7.12 −7.14

small so that the error is dominated by the spatial discretization. The free drainage of the
Oldroyd-B liquid (μ1 = 0) for which an exact analytical solution is possible is considered first
[14]. Figure 1 compares the exact analytical solution in [14] with the approximate solution
withN = 5 nodes only for both permeable and impermeable wall. The exact and approximate
solutions are indistinguishable in the figure. The error log10(‖uN − u‖L∞[0,h]) at t = 1 of
the Fourier-Galerkin approximations with increasing number of nodes for the drainage of
Oldroyd-B liquid is listed in Table 1.

This shows that numerical results are at least accurate up to the seventh decimal for
N = 20. The aim of this paper is to elaborate the effects of the nonlinear parameter μ1 and
porous medium parameter α2 on the centerline velocity and drainage rate. The effect of these
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Figure 7: The effect of porous medium parameter α2 on the drainage rate for S1 = 2, S2 = 1, and μ1 = 10.

parameters on the velocity field is shown in Figures 2 and 3. Figure 2 displays the effect of the
nonlinear parameter μ1 on the centerline velocity when the wall is impermeable α = 0, and
S1 = 2, S2 = 1, and h = 1. Clearly, the overshoot gradually disappears as numerical values of
the nonlinear parameter μ1 increase. In addition, the steady centerline velocity increases with
increasing values of μ1. Figure 3 explores the effect of porosity on the centerline velocity for
μ1 = 10. Increasing the porosity parameter triggers a decrease in the value of the centerline
velocity. The difference between the relaxation and retardation times, S1 −S2, is a measure of
the elasticity of the Oldroyd four-constant liquid, the greater the difference is the more elastic
the liquid is. The effect of elasticity on the centerline velocity of constant viscosity Oldroyd
four-constant liquids is shown in Figures 4 and 5 for permeable and impermeable walls,
respectively. In either case, the centerline velocity increases with an increase in elasticity. The
effect of the nonlinear parameter μ1 and porous medium parameter α2 on the drainage rate is
examined in Figures 6 and 7, respectively. Since in all cases the nonlinear parameter μ1 has an
increasing effect on the velocity, we expect increasing μ1 will lead to a thinner film over either
type of wall, impermeable or permeable. That is evident in Figure 6, which shows that liquid
drain more rapidly as μ1 is increased from zero. Since the porous medium parameter α2 has
a decreasing effect on the velocity in all cases (both permeable and impermeable wall), we
expect increasing α2 will lead to a thicker film over either impermeable or permeable wall,
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Figure 8: The effect of elasticity on the drainage rate for α = 1 and μ1 = 1.

Figure 7. The effect of the elasticity on the drainage rate is shown in Figure 8 for three liquids
of which liquid 1 is the most elastic and liquid 3 is the least elastic. Liquid 1 drains more
rapidly than liquid 2, which in turn drains more rapidly than liquid 3.
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