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The second-order one-dimensional linear hyperbolic equation with time and space variable coef-
ficients and nonlocal boundary conditions is solved by using stable operator-difference schemes.
Two new second-order difference schemes recently appeared in the literature are compared numer-
ically with each other and with the rather old first-order difference scheme all to solve abstract
Cauchy problem for hyperbolic partial differential equations with time-dependent unbounded
operator coefficient. These schemes are shown to be absolutely stable, and the numerical results
are presented to compare the accuracy and the execution times. It is naturally seen that the second-
order difference schemes are much more advantages than the first-order ones. Although one of
the second-order difference scheme is less preferable than the other one according to CPU (central
processing unit) time consideration, it has superiority when the accuracy weighsmore importance.

1. Introduction

Second-order hyperbolic differential equations with variable coefficients are of common
occurrence in mathematical physics, electromagnetic fluid dynamics, elasticity, and several
other areas of science and engineering [1–7]. There is a tremendous amount of work for
numerically solving these equations [8–14] and the equations with constant coefficients
[15–19]. Difference schemes without using any necessary condition have received great
importance and attention for solving these equations.

Various initial-nonlocal boundary value problems for hyperbolic equations can be
reduced to the initial-value problem

d2u(t)
dt2

+A(t)u(t) = f(t) 0 ≤ t ≤ T,

u(0) = ϕ, u′(0) = ψ,

(1.1)
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where A(t) is an unbounded self-adjoint positive linear operator with domain D(A(t)) in
an arbitrary Hilbert space H. In particular, (1.1) with the Laplace operator A(t) = Δ is the
well-known wave equation.

In recent years, a large cycle of research has been done on the finite difference schemes
for the numerical solution of the special cases of the initial-value problem (1.1); see [8–11]
and the references therein for example. These methods are stable under the inequalities and
contain the connection between the grid step sizes of time and space variables.

The study of difference schemes for hyperbolic equations without using any necessary
condition concerning the grid step sizes is of great interest. Such a difference scheme for
solving the initial-value problem (1.1) was studied for the first time in [20]. The stability
estimate for the solution of the following first-order difference scheme:

τ−2(uk+1 − 2uk + uk−1) +Akuk+1 = fk,

Ak = A(tk), fk = f(tk), tk = kτ, 1 ≤ k ≤N − 1, Nτ = T,

τ−1(u1 − u0) + iA1/2
1 u1 = iA

1/2
0 u0 + ψ, u0 = ϕ,

(1.2)

and for its first- and second-order difference derivatives was established.
In [21], the numerical solution of a wave equation with Dirichlet boundary conditions

using only the first type error, defined in the third section, is studied by using the first-order
difference method (1.2) and one of the second-order difference method which is defined in
the following section; however, the computation time is not considered therein.

In the present paper, two different types of second-order difference methods con-
sidered in [22, 23] are introduced for solving the initial-value problem (1.1) in the following
section. Applying these difference schemes and the first-order difference scheme (1.2), the
numerical methods are supported in the third section by considering one-dimensional wave
equation with time and space variable coefficients and nonlocal boundary conditions. Finally,
the fourth section contains important conclusions of the paper.

2. Difference Schemes

Using the Taylor expansion, we can write the difference formulas

u(tk+1) − 2u(tk) + u(tk−1)
τ2

− u′′(tk) = O
(
τ2
)
, (2.1)

u(tk) − u(tk+1) + 2u(tk) + u(tk−1)
4

= O
(
τ2
)
. (2.2)

Using the above difference formulas in the equation

u′′(tk) = −A(tk)u(tk) + f(tk), (2.3)
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and the formula (2.1) in the same equation separately,

u(tk+1) − 2u(tk) + u(tk−1)
τ2

+
1
4
A(tk)(u(tk+1) + 2u(tk) + u(tk−1)) = f(tk) +O

(
τ2
)
, (2.4)

u(tk+1) − 2u(tk) + u(tk−1)
τ2

+A(tk)

(
u(tk) +

τ2

4
A(tk)u(tk+1)

)
= f(tk) +O

(
τ2
)

(2.5)

are obtained, respectively (see [22]).
Further, we have

(
I + τ2A(0)

)u(τ) − u(0)
τ

=
τ

2
(−A(0)u(0) + f(0)

)
+ ψ +O

(
τ2
)
. (2.6)

Neglecting the small terms O(τ2) in (2.4) and (2.5), the following two-step second-order
difference schemes

uk+1 − 2uk + uk−1
τ2

+
1
2
Akuk +

1
4
Ak(uk+1 + uk−1) = fk,

Ak = A(tk), fk = f(tk), tk = kτ, 1 ≤ k ≤N − 1, Nτ = T,
(
I + τ2A0

)
τ−1(u1 − u0) = τ

2
(
f0 −A0u0

)
+ ψ, f0 = f(0), u0 = ϕ,

(2.7)

uk+1 − 2uk + uk−1
τ2

+Akuk +
τ2

4
A2
kuk+1 = fk,

Ak = A(tk), fk = f(tk), tk = kτ, 1 ≤ k ≤N − 1, Nτ = T,
(
I + τ2A0

)
τ−1(u1 − u0) = τ

2
(
f0 −A0u0

)
+ ψ, f0 = f(0), u0 = ϕ

(2.8)

are obtained. The stability estimates for the solutions of the above difference methods
and for their first- and second-order difference derivatives are established using the
properties of an unbounded self-adjoint positive operator in Hilbert space without using any
necessary condition in [22, 23], respectively. These difference schemes are also applicable to
multidimensional linear hyperbolic equations with both time and space variable coefficients.

Remark 2.1. The stability estimates are satisfied in the case of operator

A(t)u = −a(t, x)∂
2u

∂x2
+ b(t, x)

∂u

∂x
+ c(t, x)u, (2.9)

with nonlocal boundary conditions u(t, 0) = u(t, l), ux(t, 0) = ux(t, l), 0 ≤ t ≤ T . In this case,
A(t) is not self-adjoint operator in H = L2[0, l]. Nevertheless, A(t)u = A0(t)u + B(t)u and
A0(t) is a self-adjoint positive definite operator in H and B(t)A−1

0 (t) is bounded in H. The
proof of this statement is based on the abstract results of [22, 23] and difference analogy of
integral inequality.
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Note that in [24, 25], the first- and second-order difference methods generated by an
integer power of A are studied for solving the main equation in (1.1) for A(t) = A with
various nonlocal boundary conditions with respect to time variable. In [26, 27], the first- and
second-order difference methods generated by an integer power of A are studied for solving
the hyperbolic-parabolic equation for A(t) = A with various nonlocal boundary conditions
with respect to time variable.

Finally, in [28], high-order differencemethods generated by an exact difference scheme
or by the Taylor’s decomposition of functions on the three points are studied for solving the
initial-value problem (1.1); the stability estimates for solutions produced by these difference
methods are also obtained.

3. Numerical Analysis

We have not been able to obtain a sharp estimate for the constants figuring in the stability
inequalities in [22, 23]. So, we will provide the following results of numerical experiments of
the initial-nonlocal boundary value problem

utt − (1 + t + x)(uxx − u) = (1 + 5(1 + t + x))e−t sin(2x), 0 < t < 1, 0 < x < π,

u(0, x) = sin(2x), u′(0, x) = − sin(2x), 0 ≤ x ≤ π,

u(t, 0) = u(t, π), ux(t, 0) = ux(t, π), 0 ≤ t ≤ 1,

(3.1)

by using the second-order difference schemes (2.7) and (2.8) and compare the results with
those obtained by the first-order difference scheme (1.2).

The exact solution of this problem is

u(t, x) = e−t sin(2x). (3.2)

As the first step, using the simple formulas

u′(x0) =
u(x0 + h) − u(x0)

h
+O(h), u′(xM) =

u(xM) − u(xM − h)
h

+O(h), (3.3)

and applying the first-order difference scheme (1.2), we obtain a system of linear equations,
then writing them in the matrix form, we get the second-order difference equation

Ak+1Uk+1 + BUk + CUk−1 = Dfk, 1 ≤ k ≤M − 1,

U0 = ϕ̃, U1 = (1 − τ)U0.
(3.4)
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In this equation,

Ak+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 −1
ak+11 bk+11 ak+11 · · · 0 0 0

0 ak+12 bk+12 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · bk+1M−2 ak+1M−2 0

0 0 0 · · · ak+1M−1 bk+1M−1 ak+1M−1
1 −1 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(M+1)×(M+1)

, (3.5)

B is a diagonal matrix with B(1, 1) = B(M + 1,M + 1) = 0, all the other diagonal elements are
c, C is a diagonal matrix with C(1, 1) = C(M + 1,M + 1) = 0, all the other diagonal elements
are d, D is an identity matrix with order (M + 1) × (M + 1), and

fk =
[
fk0 fk1 · · · fkM

]T
1×(M+1)

, ϕ =
[
ϕ0 ϕ1 · · · ϕM

]T
1×(M+1), (3.6)

Us =
[
Us

0 Us
1 · · · Us

M

]T
1×(M+1), for s = k ± 1, k. (3.7)

Further,

ak+1n = −1 + tk+1 + xn
h2

, bk+1n =
1
τ2

+ (1 + tk+1 + xn)
(

2
h2

+ 1
)
, 0 ≤ k ≤N − 1, 0 ≤ n ≤M,

c = − 2
τ2
, d =

1
τ2
,

(3.8)

fkn =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, n = 0,

(1 + 5(1 + tk + xn))e−t sin(2xn), 1 ≤ n ≤M − 1, ϕn = sin(2xn), 0 ≤ n ≤M,

0, n =M.

(3.9)

To solve the resulting difference equation (3.4), we apply iterative method.
Second, using the difference formulas

u′(x0) =
−3u(x0) + 4u(x0 + h) − u(x0 + 2h)

2h
+O
(
h2
)
,

u′(xM) =
3u(xM) − 4u(xM − h) + u(xM − 2h)

2h
+O
(
h2
)
,

(3.10)
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and applying the second-order difference scheme (2.7), we obtain again a system of linear
equations, then writing them in the matrix form, we get the second-order difference equation

AkUk+1 + BkUk + CkUk−1 = Dfk, 1 ≤ k ≤M − 1,

U0 = ϕ̃, EU1 = vU0 + γ̃ .
(3.11)

In (3.11),

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0 0 −1
ak1 bk1 ak1 0 · · · 0 0 0 0

0 ak2 bk2 ak2 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · akM−2 bkM−2 akM−2 0

0 0 0 0 · · · 0 akM−1 bkM−1 akM−1
−3 4 −1 0 · · · 0 −1 4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(M+1)×(M+1)

,

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 0

ck1 dk1 ck1 · · · 0 0 0

0 ck2 dk2 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · dkM−2 ckM−2 0

0 0 0 · · · ckM−1 dkM−1 ckM−1
0 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(M+1)×(M+1)

,

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0 0 −1
p1 q1 p1 0 · · · 0 0 0 0

0 p2 q2 p2 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · pM−2 qM−2 pM−2 0

0 0 0 0 · · · 0 pM−1 qM−1 pM−1

−3 4 1 0 · · · 0 −1 4 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(M+1)×(M+1)

,

(3.12)

Ck is the same with Ak excluding the first and last rows which are zeros, D is an identity
matrix with order (M + 1) × (M + 1); fk, ϕ and Us are as defined before in (3.6) and (3.7),
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respectively, and

v =
1
τ
, γ =

[
γ0 γ1 · · · γM

]T
1×(M+1). (3.13)

Further,

akn = −1 + tk + xn
4h2

, bkn =
1
τ2

+
1 + tk + xn

2h2
+
1 + tk + xn

4h
, 0 ≤ k ≤N, 0 ≤ n ≤M,

ckn = −1 + tk + xn
2h2

, dkn = − 2
τ2

+
1 + tk + xn

h2
+
1 + tk + xn

2
, 0 ≤ k ≤N, 0 ≤ n ≤M,

pn = −τ(1 + xn)
2h2

, qn =
1
τ2

+
τ(1 + xn)

h2
+
τ(1 + xn)

2
, 0 ≤ n ≤M,

γn =
(
−1 + τ

2
(1 + 5(1 + xn))

)
sin(2xn), 0 ≤ n ≤M,

(3.14)

fkn and ϕn are as defined before in (3.9).
To solve the difference equation (3.11), we apply the same procedure used for (3.4).
Finally, using the formulas (3.10) and the difference formulas

u′′(x0) =
2u(x0) − 5u(x0 + h) + 4u(x0 + 2h) − u(x0 + 3h)

h2
+O
(
h2
)
,

u′′(xM) =
2u(xM) − 5u(xM − h) + 4u(xM − 2h) − u(xM − 3h)

h2
+O
(
h2
)
,

u′′′(x0) =
−5u(x0) + 18u(x0 + h) − 24u(x0 + 2h) + 14u(x0 + 3h) − 3u(x0 + 4h)

2h3
+O
(
h2
)
,

u′′′(xM) =
5u(xM) − 18u(xM − h) + 24u(xM − 2h) − 14u(xM − 3h) + 3u(xM − 4h)

2h3
+O
(
h2
)
,

(3.15)

and applying the second-order difference scheme (2.8), we get the same system of linear
equations in the matrix form

AkUk+1 + BkUk + CUk−1 = Dfk, 1 ≤ k ≤M − 1,

U0 = ϕ̃, EU1 = vU0 + γ̃ .
. (3.16)
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In these equations,

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 · · · 0 0 0 0 0 −1
−3 4 −1 0 0 0 · · · 0 0 0 −1 4 −3
ak2 bk2 ck2 dk2 ek2 0 · · · 0 0 0 0 0 0

0 ak3 bk3 ck3 dk3 ek3 · · · 0 0 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

0 0 0 0 0 0 · · · akM−3 bkM−3 ckM−3 dkM−3 ekM−3 0

0 0 0 0 0 0 · · · 0 akM−2 bkM−2 ckM−2 dkM−2 ekM−2
2 −5 4 −1 0 0 · · · 0 0 1 −4 5 −2
−5 18 −24 14 −3 0 · · · 0 −3 14 −24 18 −5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(M+1)×(M+1)

,

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 · · · 0 0 0 0 0
0 0 yk2 jk2 yk2 · · · 0 0 0 0 0
0 0 0 yk3 jk3 · · · 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 · · · ykM−3 jkM−3 ykM−3 0 0

0 0 0 0 0 · · · 0 ykM−2 jkM−2 ykM−2 0
0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 · · · 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(M+1)×(M+1)

,

(3.17)

C is a diagonal matrix with C(1, 1) = C(2, 2) = C(M,M) = C(M + 1,M + 1) = 0, all the other
diagonal elements are z, D is an identity matrix as defined before, fk, ϕ, andUs are the same
as defined in (3.6) and (3.7), respectively, and E and v, γ are also the same as defined in (3.12)
and (3.13). Further,

akn =
(1 + tk + xn)2τ2

4h4
− (1 + tk + xn)τ2

4h3
, 0 ≤ k ≤N, 0 ≤ n ≤M,

bkn =− (1 + tk+xn)
2τ2

h4
+
(1+tk+xn)τ2

2h3
− (1+tk+xn)2τ2

2h2
+
(1+tk+xn)τ2

4h
, 0 ≤ k ≤N, 0 ≤ n ≤M,

ckn =
1
τ2

+
6(1 + tk + xn)2τ2

4h4
+
(1 + tk + xn)2τ2

h2
+
(1 + tk + xn)2τ2

4
, 0 ≤ k ≤N, 0 ≤ n ≤M,

dkn=−
(1+tk+xn)2τ2

h4
− (1+tk+xn)τ2

2h3
− (1+tk+xn)2τ2

2h2
− (1+tk+xn)τ2

4h
, 0 ≤ k ≤N, 0 ≤ n ≤M,

ekn =
(1 + tk + xn)2τ2

4h4
+
(1 + tk + xn)τ2

4h3
, 0 ≤ k ≤N, 0 ≤ n ≤M,

ykn = − (1 + tk + xn)
h2

, jkn = − 2
τ2

+
2(1 + tk + xn)

h2
+ (1 + tk + xn),

z =
1
τ2
, 0 ≤ k ≤N, 0 ≤ n ≤M,

(3.18)

fkn , ϕn, and γn are as defined before.
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Figure 1: Exact solution of the initial-nonlocal boundary value problem (3.1).

To solve the difference equation (3.16), we again apply the same procedure used for
(3.11).

The exact solution and the numerical solutions obtained by using the first-order
difference scheme (1.2) and the second-order difference schemes (2.7) and (2.8) are shown
in Figures 1, 2, 3, and 4, respectively, forN = M = 15 as an example. The difference between
Figures 1 and 2 is fairly obvious; however, the solutions of the second-order difference
schemes shown in Figures 3 and 4 are hardly differentiable from each other and from the
exact solution in Figure 1 as well. For higher values of N = M, these differences are not so
obvious, and the errors should be computed for the accurate comparison of the numerical
and exact solutions as well as for the comparison of the three different difference schemes.

The errors in the numerical solutions are computed by

E0 = max
1≤k≤N−1

(
M−1∑
n=1

∣∣∣u(tk, xn) − ukn
∣∣∣
2
h

)1/2

,

E1 = max
1≤k≤N−1

⎛
⎝

M−1∑
n=1

∣∣∣∣∣ut(tk, xn) −
uk+1n − uk−1n

2τ

∣∣∣∣∣
2

h

⎞
⎠

1/2

,

E2 = max
1≤k≤N−1

⎛
⎝

M−1∑
n=1

∣∣∣∣∣utt(tk, xn) −
uk+1n − 2ukn + u

k−1
n

τ2

∣∣∣∣∣
2

h

⎞
⎠

1/2

,

(3.19)

where N and M are the step numbers for the time and space variables respectively. Here,
u(tk, xn) represents the exact solution, and ukn represents the numerical solution at (tk, xn).
The values of the errors E0, E1, andE2 and the relevant CPU times are shown in Tables 1, 2,
3, 4, 5, and 6, respectively, forN = M = 20, 30, 40, 50, 60, 70, 80, 90, and 100. In these Tables
and the sequel, FO, SO1 and SO2 refer to the first-order difference scheme (2.1), the first type
of second-order difference scheme (2.7), and the second type of the second-order difference
scheme (2.8), respectively. The executions are carried by MATLAB 7.01 and obtained by a PC
Pentium (R) 2CPV, 2.00 6Hz, 2.87 GB of RAM.
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Figure 2: Numerical solution obtained by using the first-order difference scheme.
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Figure 3: Numerical solution obtained by using the second-order difference scheme (2.7).
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Figure 4: Numerical solution obtained by using the second-order difference scheme (2.8).
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Though the CPU times do not seem reliable for N ≤ 20, the following observations
deserve to be noted for the comparison of the numerical results appearing in these tables.

(i) In Tables 1 and 2, it is seen that almost the same accuracy is achieved by FO
(E = 0.0133,N = 90) and by SO1 (E = 0.0134,N = 20) in different CPU times;
0.3438 s and 0.0156 s, respectively. This means the use of the SO1 difference scheme
accelerates the computation with a ratio of more than 22 times, that is SO1 is much
faster than FO.

(ii) During the same CPU time (0.0781 s, Table 2), SO1 reaches the solution with an
error (0.0034, N = 40, Table 1), which is almost 7 times smaller than the error
(0.0240,N = 50, Table 1) reached by FO. Roughly speaking, this means SO1 yields
7 times more accurate results than FO does.

(iii) Although both types of the second-order difference schemes reaches approximately
the same accuracy for the sameN =M (≥30, Table 1), the CPU time for the second
type is always greater than that of the first one (Table 2). The ratio of the CPU times
start from 2.5 when N = 30 and decreases to the approximate value 1.6 when
N is increased to 100. Hence, SO1 seems superior than SO2 with respect to the
computation time.

(iv) The same conclusion relevant to the same accuracy for the sameN =Mmentioned
in the above item is not valid for the errors E1 and E2. Considering E1 in Table 3,
the ratio of the error for SO1 to that for SO2 increases from 1.25 to 1.4, asN changes
from 20 to 100 and SO2 seems better due to its lower error for the same N. In
opposition to this advantage, SO2 has longer CPU times (starting from 2 times
decreasing to 1.57 times as N is changing from 20 to 100, Table 4). For the same
order of errors (0.0046,N = 60; 0.0047,N = 50; for SO1 and SO2, resp., Table 3),
their CPU times are 0.2500 s and 0.2969 s, respectively (Table 4). Hence, SO1 is still
better than the type SO2 slightly. This conclusion does not change when the error
E2 is considered. For example, during the same CPU time (0.1719 s,N = 50 for SO1,
N = 40 for SO2, Table 2), the error E2 (Table 5) for SO2 is 0.0292 whilst for SO1 is
smaller (0.0234 s).

(v) Finally, we need to mention that the execution times for the solution of the problem
with different difference schemes are taken approximately as the CPU times which
also include the computation times of the different errors E0, E1, and E2. In fact, the
time spent for computing the error is very small as compared to the time spent for
solving the problem. This is obvious from the CPU times recorded in Tables 2, 4, and
6, especially for more reliable range of the CPU times, as N gets larger where the
numerical results become approximately the same for each difference scheme. This
indicates that the approximation made for the execution time is valid. The small
differences are due to the computation times spent for the different error formulas.
Even this difference does not appear in Tables 4 and 6 according to 4 decimal digits.

Though SO1 seems superior over that of SO2, SO2 may be preferable in cases where
the accuracy plays a dominant role; in fact when the figure of merit is defined as 1/CPU time
× error2, SO2 gets superior over SO1 especially when E1 is considered andN ≥ 40.

It is certainly true that the speed and accuracy levels recorded in the above
observations depend on the chosen grid numbers, error levels, and specific problem. But this
fact does not prevent us from arriving to the following result: the second-order difference
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Table 1: Comparison of errors (E0) for approximate solutions.

Method 20 30 40 50 60 70 80 90 100
FO 0.0596 0.0399 0.0299 0.0240 0.0200 0.0171 0.0150 0.0133 0.0120
SO1 0.0134 0.0060 0.0034 0.0021 0.0015 0.0011 0.0008 0.0006 0.0005
SO2 0.0140 0.0060 0.0034 0.0021 0.0015 0.0011 0.0008 0.0006 0.0005

Table 2: CPU times.

Method 20 30 40 50 60 70 80 90 100
FO 0.0000 0.0156 0.0469 0.0781 0.1250 0.1875 0.2500 0.3438 0.4331
SO1 0.0156 0.0313 0.0781 0.1563 0.2334 0.3594 0.5156 0.7031 0.9375
SO2 0.0313 0.0781 0.1563 0.2813 0.4219 0.6250 0.8594 1.1406 1.4844

Table 3: Comparison of errors (E1) for approximate solutions.

Method 20 30 40 50 60 70 80 90 100
FO 0.1270 0.0846 0.0633 0.0505 0.0420 0.0359 0.0314 0.0279 0.0251
SO1 0.0405 0.0184 0.0104 0.0067 0.0046 0.0034 0.0026 0.0021 0.0017
SO2 0.0322 0.0135 0.0075 0.0047 0.0033 0.0024 0.0018 0.0014 0.0012

Table 4: CPU times.

Method 20 30 40 50 60 70 80 90 100
FO 0.0000 0.0313 0.0625 0.0938 0.1406 0.2031 0.2813 0.3750 0.4844
SO1 0.0156 0.0469 0.0938 0.1719 0.2500 0.3750 0.5313 0.7188 0.9531
SO2 0.0313 0.0938 0.1719 0.2969 0.4375 0.6406 0.8750 1.1563 1.5000

Table 5: Comparison of errors (E2) for approximate solutions.

Method 20 30 40 50 60 70 80 90 100
FO 0.6565 0.4204 0.3075 0.2419 0.1992 0.1692 0.1470 0.1300 0.1165
SO1 0.1437 0.0646 0.0365 0.0234 0.0163 0.0120 0.0092 0.0073 0.0059
SO2 0.1724 0.0550 0.0292 0.0186 0.0129 0.0095 0.0073 0.0058 0.0047

Table 6: CPU times.

Method 20 30 40 50 60 70 80 90 100
FO 0.0000 0.0313 0.0625 0.0938 0.1406 0.2031 0.2813 0.3750 0.4844
SO1 0.0156 0.0469 0.0938 0.1719 0.2500 0.3750 0.5313 0.7188 0.9531
SO2 0.0313 0.0938 0.1719 0.2969 0.4375 0.6406 0.8750 1.1563 1.5000

schemes are much more advantages than the first-order one, and the first type of the second-
order scheme is more preferable than the second type as far as the CPU time and the error
level are considered simultaneously. However, SO2 may get superior over SO1 depending on
the type of the error defined and the weight of the error on the figure of merit.

Though grid step numbers N and M for time and space variables, respectively, are
chosen equal in the given example, this is not necessary for the stability of the difference
schemes and to get the solutions. Further, there is no relationship between the grid step sizes
of time and space variables in contrast to many other methods (see [8–11] and the references
therein).
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4. Concluding Remarks

In this work, two second-order difference schemes recently appeared in the literature are
compared numerically with each other and with a first-order difference scheme to solve
abstract Cauchy problem for hyperbolic partial differential equations with time-dependent
unbounded operator coefficient. The numerical example for solving one-dimensional wave
equation with time and space variable coefficients and nonlocal boundary conditions
illustrates that both of the second-order difference schemes are absolutely stable and more
accurate compared to the first-order difference scheme. Although the first type of the second-
order difference method is more preferable than the second type in regard of execution time,
the second type second-order difference method gets advantages when the accuracy is more
important than the computation time. Similarly, the numerical solution of multidimensional
linear hyperbolic differential equations with time or space variable coefficients and nonlocal
boundary conditions would be explored in the future work.
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