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This paper studies the synchronized motions between two complex networks with time delays,
which include individual inner synchronization in each network and outer synchronization
between two networks. Based on the Lyapunov stability theory and the linear matrix equality
(LMI), a synchronous criterion for inner synchronization inside each network is derived.
Numerical examples are given which fit the theoretical analysis. In addition, the involved
numerical results show that the delays between two networks have little effect on inner
synchronization. It is also shown that synchronous motions within each network or between two
networks are not enhanced if individual intranetwork connections are allowed.

1. Introduction

We refer to network synchronization, that is, synchronizing all the nodes inside a network,
as “inner synchronization”, which is widely studied in the science world based on the
appearance of small-world [1] and scale-free [2] network models. Afterwards, the improved
and expanded work in this respect—that is, introducing weighted connections, time varying
coupling matrices, nonlinear coupling function, time delays, and so forth—can be found in
the literature [3–10] and many references cited therein. The main approaches on studying
synchronization inside a network is decoupling network systems, and studying the low-
dimensional systems through the master stability function, or using the tool in equality (LMI
toolbox).

Recently “outer synchronization” was proposed, which aimed at studying synchro-
nization between coupled networks. In [11], the authors theoretically and numerically
demonstrated the possibility of synchronization between two networks. By the open-plus-
closed-loop (OPCL) method [12], synchronization between two networks can be realized
with the same topological structures. In reality, if network nodes are of similar properties



2 Discrete Dynamics in Nature and Society

(same node dynamics), we regard it as one network, otherwise, as more networks. Several
examples on two networks are presented in the literature [11, 13].

Actions between two networks are colorful, such as through the nonlinear signals,
bipartite connection, or by special nodes. Recently, Sorrentino and Ott studied network
synchronization of groups and discussed the feasibility of inner synchronization of individual
network [14]. The problem of collective behavior in a network or between two networks is
of broad interest. As a first example, in subway systems (e.g., Shanghai, China), when the
trains arrive at the platform, the outer and inner doors simultaneously open or close, which
shows that both inner synchronization and outer synchronization happen. Another example
is two unmanned vehicles are assigned to accomplish independent tasks, such as cooperative
searches and attacks [14], which focuses on inner synchronization. If the communicated
information between two networks is not amount to lead to desynchronization, we
should adopt control skills [15–17] to make synchronization happen between them, which
has received increasing attention; see [18–21]. It is also found that present studies on
synchronization inside a network and between two networks simultaneously are much
less.

Time delays commonly exist in natural systems, since the finite speed of signal
transmission over a distance gives rise to finite time delay, which plays an important role
in the stability of synchronization [22]. For the two coupled networks, the signals from
one network to another often create delays due to the distance. Therefore, motivated by
the impact of topological structures and the delays on the dynamics of the networks, this
paper mainly focuses on the effect of delays on inner synchronization inside each network
and outer synchronization between two coupled networks. In Section 2, network models
and synchronization analysis are presented, and numerical examples are shown in Section 3,
including two examples for the same or different dimension of node dynamics. Finally, the
discussions are included in the last section.

2. Model Presentation and Synchronization Analysis

Consider the following network models: the node dynamics in network X is ẋi = f(xi(t)),
i = 1, . . . ,Nx, and ẏj = g(yj(t)), j = 1, . . . ,Ny, for the nodes in network Y, where f(x) : Rnx →
Rnx , g(y) : Rny → Rny are continuously differential functions and xi(yj) is an nx-dimensional
(ny-dimensional) state vector. The dynamical equations of the network systems with time
delays are as follows:

ẋi(t) = f(xi(t)) +
Ny∑

j=1

AijΓ1yj
(
t − τy

)
, i = 1, 2, . . . ,Nx,

ẏj(t) = g
(
yj(t)

)
+

Nx∑

i=1

BjiΓ2xi(t − τx), j = 1, 2, . . . ,Ny,

(2.1)

where A is an Nx × Ny dimensional coupling matrix, whose entries (Aij) represent the
intensity of the direct interaction from i in network X to j in network Y, analogously the
entries of (Bji). Matrix Γ1(Γ2) ∈ Rnx×ny(Rny×nx) is the inner-coupling matrix. τx, τy are the
time delays between networks. The action sketch between two networks with time delays is
shown in Figure 1.
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Figure 1: A simple action sketch between two coupled networks with time delays.

For the more general models, we allow connections in each network, the networked
system then reads as

ẋi(t) = f(xi(t)) +
Ny∑

j=1

AijΓ1yj
(
t − τy

)
+

Nx∑

m=1

CimΓ3xm(t), i = 1, 2, . . . ,Nx,

ẏj(t) = g
(
yj(t)

)
+

Nx∑

i=1

BjiΓ2xi(t − τx) +
Ny∑

k=1

DjkΓ4yk(t), j = 1, 2, . . . ,Ny,

(2.2)

where C = (Cim) ∈ RNx×Nx , D = (Djk) ∈ RNy×Ny are the coupling matrices, satisfying the sum
of every row being zero. Γ3 ∈ Rnx×nx , Γ4 ∈ Rny×ny are also inner-coupling matrices.

Let us now consider the possibility that the individual networks achieve synchroniza-
tion; that is, x1(t) = · · · = xNx(t) = xs(t) and y1(t) = · · · = yNy(t) = ys(t). If there exist such
synchronous states, satisfying

Ny∑

j=1

Aij = μ1, ∀i ∈ X,
Nx∑

i=1

Bji = μ2, ∀j ∈ Y, (2.3)

without loss of generality, we assume that μ1 = μ2 = 1. Thus, the synchronized state equations
are

ẋs(t) = f(xs(t)) + Γ1ys
(
t − τy

)
,

ẏs(t) = g
(
ys(t)

)
+ Γ2xs(t − τx).

(2.4)

Linearizing the synchronous states around xs and ys, we get

δẋi(t) = J(t)δxi(t) +
Ny∑

j=1

AijΓ1δyj
(
t − τy

)
, i = 1, 2, . . . ,Nx,

δẏj(t) =W(t)δyj(t) +
Nx∑

i=1

BjiΓ2δxi(t − τx), j = 1, 2, . . . ,Ny,

(2.5)
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where J(t) = Df(xs(t)) and W(t) = Dg(ys(t)) are the Jacobians of f(x(t)) and g(y(t)) at xs
and ys, respectively.

We assume that the (Nx +Ny)-independent solutions of (2.5) can be expressed in the
form δxi = Φxiδx, i = 1, 2, . . . ,Nx, δyj = Φyj δy, j = 1, 2, . . . ,Ny, where {Φxi}, {Φyj} are the
suitable time-independent scalars and δx, δy are the appropriate variables. If the dimension
of the space vectors given by the values of Φxi ,Φyj (i = 1, 2, . . . ,Nx, j = 1, 2, . . . ,Ny) is
Nx + Ny, we can see that this assumed form includes all possible linear solutions of (2.5).
Substituting this assumption into (2.5), they become

Φxiδẋ(t) = ΦxiJ(t)δx(t) +
Ny∑

j=1

AijΦyjΓ1δy
(
t − τy

)
, i = 1, 2, . . . ,Nx, (2.6)

Φyj δẏ(t) = ΦyjW(t)δy(t) +
Nx∑

i=1

BjiΦxiΓ2δx(t − τx), j = 1, 2, . . . ,Ny. (2.7)

Thus, in order that (2.6) (resp., (2.7)) is satisfied for all i (resp., j), we require that
Φ−1
xi

∑
j AijΦyj = η1, where η1 is independent of i, and Φ−1

yj

∑
i BjiΦxi = η2, where η2 is

independent of j. Set Φx = (Φx1 , . . . ,ΦxNx
) and Φy = (Φy1 , . . . ,ΦyNy

). From this, we get
AΦy = η1Φx, BΦx = η2Φy; that is,

(
0 A

B 0

)(
Φx

Φy

)
=

(
η1Φx

η2Φy

)
. (2.8)

Substituting (2.8) in (2.6) and (2.7), we obtain

δẋ(t) = J(t)δx(t) + η1Γ1δy
(
t − τy

)
,

δẏ(t) =W(t)δy(t) + η2Γ2δx(t − τx).
(2.9)

One particular solution of (2.8) is derived when η1 = η2 = λ, then

Θ

(
Φ∗x
Φ∗y

)
= λ

(
Φ∗x
Φ∗y

)
, Θ =

(
0 A

B 0

)
, (2.10)

where λ is the (possibly complex) eigenvalues of the matrix Θ.
Set η1 = λξ, η2 = λ/ξ, Φx = Φ∗x, Φy = ξΦ∗y, where ξ is a free parameter. Equation (2.10)

becomes

(
0 A

B 0

)(
Φ∗x
ξΦ∗y

)
=

⎛
⎜⎝

(λξ)Φ∗x
(
λ

ξ

)
ξΦ∗y

⎞
⎟⎠, (2.11)
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which shows that the solution of (2.11) contains all the possible solutions of (2.8). We rewrite
(2.9) as

δẋ(t) = J(t)δx(t) + λΓ1δy
(
t − τy

)
,

δẏ(t) =W(t)δy(t) + λΓ2δx(t − τx),
(2.12)

where λ = λ1, λ2, . . . , λNx+Ny .
In [14], the authors gave the explicit analysis on the spectrum of Θ, and two forms of

the constructed matrix Θ were shown. Here, we adopt one that matrix Θ has real eigenvalues
and only study network (2.1). In the sequel, we utilize the LMI to derive a synchronous
theorem.

Theorem 2.1. Consider network model (2.1). If there exist two positive matrices P,Q > 0, satisfying

Ξ =

⎛
⎜⎜⎜⎜⎜⎝

Ψ1 0 0 λPΓ1

0 Ψ2 λQΓ2 0

0 λΓT2Q −Inx 0

λΓT1P 0 0 −Iny

⎞
⎟⎟⎟⎟⎟⎠

< 0, (2.13)

whereΨ1 = J(t)TP +PJ(t)+Inx ,Ψ2 =W(t)TQ+QW(t)+Iny , then the network (2.1) asymptotically
synchronizes to xs, ys defined by (2.4) for the fixed delays τx, τy > 0, respectively.

Proof. Consider (2.12). Choose a Lyapunov-Krasovskii functional as

V (t) = δxT (t)Pδx(t) + δyT (t)Qδy(t) +
∫ t

t−τx
δxT (α)δx(α)dα +

∫ t

t−τy
δyT (α)δy(α)dα. (2.14)

Therefore,

V̇ (t) = δẋ
T
(t)Pδx(t) + δxT (t)Pδẋ(t) + δẏ

T
(t)Qδy(t) + δyT (t)Qδẏ(t)

+ δxT (t)δx(t) − δxT (t − τx)δx(t − τx) + δyT (t)δy(t) − δyT
(
t − τy

)
δy
(
t − τy

)

= δxT (t)Ψ1δx(t) + δy
T(t − τy

)
λΓT1Pδx(t) + δy

T (t)Ψ2δy(t) + δx
T (t − τx)λΓT2Qδy(t)

+ δyT (t)λQΓ2δx
T (t − τx) + δxT (t)λPΓ1δy

T(t − τy
)

− δxT (t − τx)δx(t − τx) − δyT
(
t − τy

)
δy
(
t − τy

)

=

⎛
⎜⎜⎜⎜⎜⎝

δx(t)

δy(t)

δx(t − τx)
δy(t − τy)

⎞
⎟⎟⎟⎟⎟⎠

T

Ξ

⎛
⎜⎜⎜⎜⎜⎝

δx(t)

δy(t)

δx(t − τx)
δy
(
t − τy

)

⎞
⎟⎟⎟⎟⎟⎠
.

(2.15)
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According to the known condition Ξ < 0 and Lyapunov-Krasovskii stability Theorem [6], the
zero solutions of (2.12) are asymptotically stable, which shows that synchronization inside
network X and network Y happens when t tends to +∞.

Remark 2.2. Matrix Ξ relies upon t and τx, τy. The condition can be changed into Ξ < 0 when
t > T for enough big T > 0. The linear matrix equality method is inadequate for assessing the
stability of the synchronous solution when both intragroup and extragroup connections are
allowed in the network (2.2).

3. Numerical Examples

In this section, we will give two examples to illustrate our obtained results, which
includes two cases: nx /=ny and nx = ny. For the case nx /=ny, we only consider the inner
synchronization inside each network. On the other hand, nx = ny, we discuss the inner
synchronization within each network and investigate the outer synchronization between two
networks.

Example 3.1. Consider the coupled network dynamical equations [14] below, which are in the
form (2.1):

ẋi(t) = −a[xi(t) + s(xi(t))] +
Ny∑

j=1

Aijyj1
(
t − τy

)
, i = 1, . . . ,Nx,

ẏj1(t) = −yj1(t) + yj2(t) +
Nx∑

i=1

Bjixi(t − τx),

ẏj2(t) = −byj1(t), j = 1, 2, . . . ,Ny,

(3.1)

where s(x) = m1x + 1/2(m0 −m1)(|x + 1| − |x − 1|). Here, we take a = 4.6, b = 6.02, m0 = −8/7,
m1 = −5/7, for numerical simulation. We introduce two quantities Ex = maxi=1,...,Nx‖xi − xs‖
and Ey = maxj=1,...,Ny‖yj − ys‖ to measure the extent to which synchronization is achieved.
The initial values are randomly chosen in (0, 1).

The intercoupling matrices are

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
1
4

1
2

1
4

0
3
4

0
1
4

1
4

1
4

1
4

1
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

0
1
2

1
2

1
2

0

1
2

0
1
2

1
2

1
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

When a = 4.6, b = 6.02, m0 = −8/7, m1 = −5/7, τx = τy = 0.8 and A,B; by using the
Matlab LMI Toolbox, we solve the LMI (2.13) for P > 0, Q > 0, and obtain

P = (2.5874); Q =

(
10.8749 −0.9036

−0.9036 1.8461

)
, (3.3)
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Figure 2: Inner synchronization evolution curves with τx = τy = 0.8.
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Figure 3: The plot shows Ex + Ey at t = 40 with regard to τx or τy , (a) τy = 0.8; (b) τx = 0.8.

which indicates that inner synchronization inside each network appears. The inner
synchronization evolution curves are depicted in Figure 2. We plots Ex + Ey with different
values of τx or τy in Figure 3, which shows that the delays τx, τy have little influence on inner
synchronization with such intercoupling matrices A,B. Note that the order of magnitude for
Ex + Ey is 10−8.

Next, we change the connection topology ofA,B and consider a special case—globally
connected, the elements of Aij = 1/Ny, Bji = 1/Nx, i = 1, . . . ,Nx, and j = 1, . . . ,Ny with
Nx = 50, Ny = 100. The other parameters are the same as in Figure 2. The numerical results
are given in Figures 4 and 5. It is shown that the node numbers and connection topology
influence the inner synchronization less.
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Figure 4: Inner synchronization evolution curves with globally connected topology, where Nx = 50, Ny =
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Figure 5: The curves of Ex + Ey at t = 40 versus τy , with τx = 0.8, Nx = 50, and Ny = 100.

Example 3.2. In this example, we let nx = ny and Nx = Ny = N. Therefore, we discuss inner
synchronization inside network X or Y and study synchronization between two networks,
that is, outer synchronization proposed in [11], denoting the quantity Eouter = maxi=1,...,N‖xi −
yi‖, to demonstrate that outer synchronization happens. Consider a one-order dynamical
system [23] as the dynamical nodes of the complex networks which is described by

ẋi(t) = −x2
i (t) + ρ1xi(t) + rx

N∑

j=1

Aijyj
(
t − τy

)
, i = 1, 2, . . . ,N,



Discrete Dynamics in Nature and Society 9

20151050

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
,E

y
,E

ou
te

r

Ex
Ey
Eouter

Figure 6: Inner and outer synchronization evolution curves with rx = 0.5, ry = 0.2, τx = 0.3, τy = 0.5,
ρ1 = −0.3, ρ2 = 0.6, and N = 50.

ẏj(t) = −y2
j (t) + ρ2yj(t) + ry

N∑

i=1

Bjixi(t − τx), j = 1, 2, . . . ,N.

(3.4)

The elements of Aij = 1/N, Bji = 1/N, i, j = 1, . . . ,N, and N = 50, when ρ1 = −0.3,
ρ2 = 0.6, τx = 0.3, and τy = 0.5, by solving the LMI (2.13) for P > 0, Q > 0, we obtain

P = (2.0946), Q = (1.9328), (3.5)

satisfying the conditions of a synchronous criterion, then the individual network achieves its
own inner synchronized state. Figure 6 plots the inner and outer synchronization evolution
curves. In addition, we plot the curves of quantities Ex, Ey, Eouter with regard to rx for ry = 0.2
in Figure 7. We find that the individual network easily achieves inner synchronization for the
arbitrary values of rx, while only when rx = 1.2, outer synchronization is realized.

In the following, we numerically discuss the delay effect on inner and outer
synchronization. Fix the values of ρ1 = −0.3, ρ2 = 0.6, ry = 0.2, rx = 1.2, and τy = 0.5, and
let the value of τx vary. We observe that the delay does not influence inner synchronization,
and when τx > 1.5, outer synchronization disappears. Figure 8 plots the curves of Ex, Ey, and
Eouter with regard to τx.

Now, we add the individual connections in network X and network Y, and the
following network systems are written as:

ẋi(t) = −x2
i (t) + ρ1xi(t) + rx

N∑

j=1

Aijyj
(
t − τy

)
+

N∑

m=1

Cimxm(t), i = 1, 2, . . . ,N,

ẏj(t) = −y2
j (t) + ρ2yj(t) + ry

N∑

i=1

Bjixi(t − τx) +
N∑

k=1

Djkyk(t), j = 1, 2, . . . ,N,

(3.6)
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Figure 7: The curves of Ex, Ey , and Eouter versus rx for ry = 0.2. The other parameters are τx = 0.3, τy = 0.5,
ρ1 = −0.3, and ρ2 = 0.6.
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Figure 8: The plot show Ex, Ey , and Eouter versus τx with τy = 0.5, ry = 0.3, rx = 1.2, ρ1 = −0.3, and ρ2 = 0.6.

where (−C) = −{Cim}, (−D) = −{Djk} are the Laplacian matrices:
∑N

m=1 Cim = 0 for all i
and

∑N
k=1 Djk = 0 for all j; obviously, the diffusive couplings

∑N
m=1 Cim,

∑N
k=1 Djk are null in

the synchronized manifold. The parameters are chosen as the same as those in Figure 8, and
individual couplings C,D are taken as two random matrices. Numerical results show that the
adding individual connections have little effect on inner and outer synchronization.



Discrete Dynamics in Nature and Society 11

4. Conclusions

In conclusion, we have studied inner synchronization inside networks X and Y and outer
synchronization between them with time delays. A synchronous criterion for the occurrence
of inner synchronization has been derived. Numerical examples show that the delays have
little effect on inner synchronization, how to estimate the domain of delays τx and τy is an
interesting work. It is noted that in Example 3.2, outer synchronization only happens in the
coupling strength rx = 1.2, and perhaps the node dynamics in networks X and Y plays a
central role, or the bidirectional delayed coupling is weak. Because of the various kinds of
actions between two networks, how to derive the criteria on inner and outer synchronization
simultaneously is an technical challenging. The theoretical understanding is helpful to study
the synchronization between two or more neural networks [24] with appropriate couplings.
We hope that such work will appear elsewhere.
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