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By introducing auxiliary functions, we investigate the oscillation of a class of second-order sub-
half-linear neutral impulsive differential equations of the form [r(t)φβ(z′(t))]

′ + p(t)φα(x(σ(t))) =
0, t /= θk,Δφβ(z′(t))|t=θk + qkφα(x(σ(θk))) = 0,Δx(t)|t=θk = 0, where β > α > 0, z(t) = x(t) +
λ(t)x(τ(t)). Several oscillation criteria for the above equation are established in both the case
0 ≤ λ(t) ≤ 1 and the case −1 < −μ ≤ λ(t) ≤ 0, which generalize and complement some existing
results in the literature. Two examples are also given to illustrate the effect of impulses on the
oscillatory behavior of solutions to the equation.

1. Introduction

Impulsive differential equations appear as a natural description of observed evolution
phenomena of several real-world problems involving thresholds, bursting rhythm models
in medicine and biology, optimal control models in economics, pharmacokinetics, and
frequency modulates systems [1–5]. In recent years, impulsive differential equations have
received a lot of attention.

We are here concerned with the following second-order sub-half-linear neutral
impulsive differential equation:

[
r(t)φβ

(
z′(t)

)]′ + p(t)φα(x(σ(t))) = 0, t /= θk,

Δφβ

(
z′(t)

)|t=θk + qkφα(x(σ(θk))) = 0,

Δx(t)|t=θk = 0,

(1.1)
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where β > α > 0, z(t) = x(t) + λ(t)x(τ(t)), t ≥ t0 and θk ≥ t0 for some t0 ∈ R, {θk}∞k=1 is a
strictly increasing unbounded sequence of real numbers, φγ(u) = |u|γ−1u for γ > 0, and

Δu(t)|t=θk = u
(
θ+
k

) − u
(
θ−
k

)
, u

(
θ±
k

)
= lim

t→ θ±
k

u(t). (1.2)

Let PLC(J, R) denote the set of all real-valued functions u(t) defined on J ⊂ [t0,∞)
such that u(t) is continuous for all t ∈ J except possibly at t = θk where u(θ±

k
) exists and

u(θk) := u(θ−
k
).

We assume throughout this paper that

(a) r(t) ∈ C1([t0,∞), R), r(t) > 0 and
∫∞
t0
[r(t)]−1/βdt = ∞;

(b) λ(t) ∈ C2([t0,∞), R), 0 ≤ λ(t) ≤ 1 or −1 < −μ ≤ λ(t) ≤ 0;

(c) p(t) ∈ PLC([t0,∞), R), p(t) ≥ 0;

(d) qk is a sequence of nonnegative real numbers;

(e) τ(t), σ(t) ∈ C([t0,∞), R, 0 ≤ τ(t), σ(t) ≤ t, limt→∞τ(t) = ∞, and limt→∞σ(t) = ∞.

By a solution of (1.1) we mean a function x(t) defined on [Tx,∞) with Tx ≥ t0 such
that x, z′, z′′ ∈ PLC([t0,∞), R) and x satisfies (1.1). It is tacitly assumed that such solutions
exist. Note the assumption Δx(t)|t=θk = 0; we have that each solution of (1.1) is continuous
on [t0,∞). As usual, a nontrivial solution of (1.1) is said to be oscillatory if it has arbitrarily
large zeros and nonoscillatory otherwise. Equation (1.1) is said to be oscillatory if its every
nontrivial solution is oscillatory.

Compared to equations without impulses, little has been known about the oscillation
problem for impulsive differential equations due to difficulties caused by impulsive
perturbations [6–17].

When β = 1, r(t) ≡ 1, and λ(t) ≡ 0, (1.1) reduces to the following sublinear impulsive
delay equation:

x′′(t) + p(t)φα(x(σ(t))) = 0, t /= θk,

Δx′(t)|t=θk + qkφα(x(σ(θk))) = 0,

Δx(t)|t=θk = 0,

(1.3)

which has received a lot of attention in the literature. However, for the general sub-half-
linear neutral equation (1.1) under the impulse condition given in this paper, little has been
known about the oscillation of (1.1) to the best of our knowledge, especially for the case when
−1 < −μ ≤ λ(t) ≤ 0.

Themain objective of this paper is to establish oscillation criteria for the sub-half-linear
impulsive differential equation (1.1) in both the case 0 ≤ λ(t) ≤ 1 and the case −1 < −μ ≤ λ(t) ≤
0. By introducing an auxiliary function g ∈ C1[t0,∞) and a function H(t, s) defined below,
we establish some new oscillation criteria for (1.1) which complement the oscillation theory
of impulsive differential equations. Examples are also given to show the effect of impulses on
oscillation of solutions of (1.1).
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2. Main Results

Theorem 2.1. Let 0 ≤ λ(t) ≤ 1. If there exists a positive function g ∈ C1[t0,∞) such that

g ′(t)
g(t)

≤ −α
β

r ′(t)
r(t)

, (2.1)

∫∞
[1 − λ(σ(t))]α

[
Rβ(t)

]α
g(t)p(t)dt +

∞∑
[1 − λ(σ(θk))]

αg(θk)r(θk)
[
Rβ(θk)

]α
qk = ∞, (2.2)

where Rβ(t) = r1/β(t)
∫σ(t)
t0

[r(s)]−1/βds, then (1.1) is oscillatory.

Proof. Suppose to the contrary that (1.1) has a nonoscillatory solution x(t). Without loss of
generality, we may assume that x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1 ≥ t0. The case x(t) being
eventually negative can be similarly discussed. From (1.1), we have that

z(t) > 0,
[
r(t)φβ

(
z′(t)

)]′ ≤ 0, t ≥ t1, t /= θk. (2.3)

Based on the impulsive condition Δφβ(z′(t))|t=θk ≤ 0, we can deduce that r(t)φβ(z′(t)) is
nonincreasing on [t1,∞). We may claim that z′(t) > 0 holds eventually. Otherwise, there
exists t∗ ≥ t1 such that z′(t∗) < 0. Noting that z(t) is continuous on [t∗,∞), we have that

z(t) = z(t∗) +
∫ t

t∗
r−1/β(s)r1/β(s)z′(s)ds

≤ z(t∗) + r1/β(t∗)z′(t∗)
∫ t

t∗
r−1/β(s)ds, t ≥ t∗,

(2.4)

which implies that z(t) is eventually negative since
∫∞

r−1/β(s)ds = ∞. This is a contradiction.
Without loss of generality, say z′(t) > 0 for t ≥ t1. Choose sufficiently large t2 ≥ t1 such that
τ(t) ≥ t1 for t ≥ t2, and

∫ t

t1

r−1/β(s)ds ≥ 1
2

∫ t

t0

r−1/β(s)ds, t ≥ t2, (2.5)

which is always possible because
∫∞

r−1/β(s)ds = ∞. Thus, we have

z(t) ≥ r1/β(t)z′(t)
∫ t

t1

r−1/β(s)ds

≥ 1
2
r1/β(t)z′(t)

∫ t

t0

r−1/β(s)ds, t ≥ t2.

(2.6)
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By choosing t3 sufficiently large such that σ(t) ≥ t2 for t ≥ t3 and using (2.6) and the
nonincreasing character of r1/β(t)z′(t), we have

z(σ(t)) ≥ 1
2
r1/β(t)z′(t)

∫σ(t)

t0

r−1/β(s)ds =
Rβ(t)
2

z′(t), t ≥ t3. (2.7)

Since z′(t) > 0 for t ≥ t1 and z(t) is continuous, we have

x(t) = z(t) − λ(t)x(τ(t)) ≥ z(t) − λ(t)z(τ(t)) ≥ [1 − λ(t)]z(t), t ≥ t2. (2.8)

By (1.1), (2.7), and (2.8), we get

[
r(t)φβ

(
z′(t)

)]′ + 2−αp(t)[1 − λ(σ(t))]α
[
Rβ(t)

]α[
z′(t)

]α ≤ 0, t ≥ t3, t /= θk, (2.9)

which implies

g(t)
[
r(t)φβ

(
z′(t)

)]′ + 2−αg(t)p(t)[1 − λ(σ(t))]α
[
Rβ(t)

]α[
z′(t)

]α ≤ 0, t ≥ t3, t /= θk. (2.10)

From (2.1), we get

g(t)
[
r(t)φβ(z′(t))

]′

[z′(t)]α
=

βg(t)r(t)[z′(t)]β−1z′′ + g(t)r ′(t)[z′(t)]β

[z′(t)]α

≥ βg(t)r(t)[z′(t)]β−1z′′ +
(
β/

(
β − α

))[
g(t)r(t)

]′[z′(t)]β

[z′(t)]α

=
β

β − α

[
g(t)r(t)(z′(t))β−α

]′
.

(2.11)

Multiplying (2.10) by ((β − α)/β)[z′(t)]−α, we get

[
g(t)r(t)

(
z′(t)

)β−α]′ + 2−αg(t)p(t)[1 − λ(σ(t))]α
[
Rβ(t)

]α ≤ 0, t ≥ t3, t /= θk. (2.12)

Integrating (2.12) from t3 to t, we have that

∑

t3≤θk<t
g(θk)r(θk)

{[
z′(θk)

]β−α − [
z′
(
θ+
k

)]β−α} + g(t)r(t)
[
z′(t)

]β−α − g(t3)r(t3)
[
z′(t3)

]β−α

+

(
β − α

)
2−α

β

∫ t

t3

[1 − λ(σ(s))]α
[
Rβ(s)

]α
g(s)p(s)ds ≤ 0, t ≥ t3,

(2.13)
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which implies that

∑

t3≤θk<t
g(θk)r(θk)

{[
z′(θk)

]β−α − [
z′
(
θ+
k

)]β−α}

+

(
β − α

)
2−α

β

∫ t

t3

[1 − λ(σ(s))]α
[
Rβ(s)

]α
g(s)p(s)ds ≤ g(t3)r(t3)

[
z′(t3)

]β−α
.

(2.14)

On the other hand, by the given impulsive condition, we get

[
z′(θk)

]β−α − [
z′
(
θ+
k

)]β−α =
[
z′(θk)

]β−α −
{[

z′(θk)
]β − qk[x(σ(θk))]

α
}(β−α)/β

=
[
z′(θk)

]β−α[1 − (1 − uk)(β−α)/β
]
,

(2.15)

where

uk = qk
[x(σ(θk))]

α

[z′(θk)]
β

. (2.16)

Note that 0 < (β − α)/β < 1, 1 − (1 − uk)
(β−α)/β ≥ ((β − α)/β)uk for 1 ≥ uk ≥ 0. Consequently,

we see from (2.7), (2.8), and (2.15) that

[
z′(θk)

]β−α − [
z′
(
θ+
k

)]β−α ≥ β − α

β

qk[x(σ(θk))]
α

[z′(θk)]
α

≥
(
β − α

)
2−α

β
qk[1 − λ(σ(θk))]

α[Rβ(θk)
]α
.

(2.17)

Substituting (2.17) into (2.14) yields

∫∞
[1 − λ(σ(t))]α

[
Rβ(t)

]α
p(t)dt +

∞∑
[1 − λ(σ(θk))]

αg(θk)r(θk)
[
Rβ(θk)

]α
qk < ∞, (2.18)

which contradicts (2.2). This completes the proof.

Theorem 2.2. Let −1 < −μ ≤ λ(t) ≤ 0. If there exists a positive function g ∈ C1[t0,∞) such that
(2.1) holds and

∫∞ [
Rβ(t)

]α
g(t)p(t)dt +

∞∑
g(θk)r(θk)

[
Rβ(θk)

]α
qk = ∞, (2.19)

where Rβ(t) is defined as in Theorem 2.1, then every solution of (1.1) is either oscillatory or tends to
zero.



6 Discrete Dynamics in Nature and Society

Proof. Suppose to the contrary that there is a solution x(t) of (1.1)which is neither oscillatory
nor tends to zero. Without loss of generality, we may let x(τ(t)) > 0 and x(σ(t)) > 0 for
t ≥ t1 ≥ t0. Thus, r(t)φβ(z′(t)) is nonincreasing for t ≥ t1. As a result, z′(t) and z(t) are
eventually of constant sign. Now, we consider the following two cases: (i) z(t) > 0 eventually;
(ii) z(t) < 0 eventually. For the case (i), similar to the analysis as in the proof of Theorem 2.1,
we have z′(t) > 0 eventually and (2.6) holds. Notice that x(t) = z(t) − p(t)x(τ(t)) ≥ z(t)
because p(t) ≤ 0; from (1.1) and (2.6), we get

[
r(t)φβ

(
z′(t)

)]′ + 2−α
[
Rβ(t)

]α
p(t)

[
z′(t)

]α ≤ 0. (2.20)

Following the similar arguments as in the proof of Theorem 2.1, we can get a contradiction
with (2.19).

For the case (ii), assume that z(t) < 0 for t ≥ t2 ≥ t1. It must now hold that τ(t) < t
for t ≥ t2. Let us consider two cases: (a) x(t) is unbounded; (b) x(t) is bounded. If x(t) is
unbounded, then we have

x(t) = z(t) − p(t)x(τ(t)) < −p(t)x(τ(t)) < x(τ(t)), t ≥ t2. (2.21)

On the other hand, there exists a sequence {Tn} satisfying limn→∞Tn = ∞, limn→∞x(t) = ∞,
and maxT1≤t≤Tnx(t) = x(Tn). Let tn be sufficiently large such that Tn > t2 and τ(Tn) > T1. Then,
we have maxτ(Tn)≤t≤Tnx(t) = x(Tn) which contradicts (2.21). If x(t) is bounded, then we can
prove that limt→∞x(t) = 0. In fact,

0 ≥ lim sup
t→∞

z(t) = lim sup
t→∞

[
x(t) + p(t)x(τ(t))

]

≥ lim sup
t→∞

x(t) + lim sup
t→∞

p(t)x(τ(t))

≥ lim sup
t→∞

x(t) − μ lim sup
t→∞

x(τ(t))

≥ (
1 − μ

)
lim sup

t→∞
x(t),

(2.22)

which implies that limt→∞x(t) = 0 since 1 − μ > 0. This is a contradiction. The proof of
Theorem 2.2 is complete.

When there is no impulse, (1.1) reduces to

[
r(t)φβ

(
z′(t)

)]′ + p(t)φα(x(σ(t))) = 0, t ≥ t0. (2.23)

The following oscillation results for (2.23) are immediate.

Corollary 2.3. Let 0 ≤ λ(t) ≤ 1. If there exists a positive function g ∈ C1[t0,∞) such that (2.1)
holds and

∫∞
[1 − λ(σ(t))]α

[
Rβ(t)

]α
g(t)p(t)dt = ∞, (2.24)

where Rβ(t) is the same as in Theorem 2.1, then (2.23) is oscillatory.
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Corollary 2.4. Let −1 < −μ ≤ λ(t) ≤ 0. If there exists a positive function g ∈ C1[t0,∞) such that
(2.1) holds and

∫∞ [
Rβ(t)

]α
g(t)p(t)dt = ∞, (2.25)

where Rβ(t) is the same as in Theorem 2.1, then every solution of (2.23) is either oscillatory or tends
to zero.

Next, we introduce the function defined in [18] to further study oscillation of (1.1).
Say that H(t, s) defined on D = {(t, s) : t ≥ s ≥ t0} belongs to the function class X if ∂H/∂s ∈
Lloc(D,R),H(t, t) = 0, H(t, s) ≥ 0, and (∂H/∂s)(t, s) ≤ 0 for (t, s) ∈ D.

Theorem 2.5. Let 0 ≤ λ(t) ≤ 1. If there exist a positive function g ∈ C1[t0,∞) andH ∈ X such that
(2.1) holds and

1
H(t, t0)

∫ t

t0

H(t, s)[1 − λ(σ(s))]α
[
Rβ(s)

]α
g(s)p(s)ds

+
1

H(t, t0)

∑

t0≤θk<t
H(t, θk)[1 − λ(σ(θk))]

αg(θk)r(θk)
[
Rβ(θk)

]α
qk = ∞,

(2.26)

where Rβ(t) is defined as in Theorem 2.1, then (1.1) is oscillatory.

Proof. Suppose to the contrary that (1.1) has a nonoscillatory solution x(t). Without loss of
generality, we may assume that x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1 ≥ t0. Similar to the
proof of Theorem 2.1, we have that (2.12) holds. Multiplying H(t, s) on both sides of (2.12)
and integrating it from t3 to t, we get

∑

t3≤θk<t
H(t, θk)g(θk)r(θk)

{[
z′(θk)

]β−α − [
z′
(
θ+
k

)]β−α}

−
∫ t

t3

∂H(t, s)
∂s

g(s)r(s)
[
z′(s)

]β−α
ds −H(t, t3)g(t3)r(t3)

[
z′(t3)

]β−α

+

(
β − α

)
2−α

β

∫ t

t3

H(t, s)[1 − λ(σ(s))]α
[
Rβ(s)

]α
g(s)p(s)ds ≤ 0, t ≥ t3,

(2.27)

which implies that

∑

t3≤θk<t
H(t, θk)g(θk)r(θk)

{[
z′(θk)

]β−α − [
z′
(
θ+
k

)]β−α}

+

(
β − α

)
2−α

β

∫ t

t3

H(t, s)[1 − λ(σ(s))]α
[
Rβ(s)

]α
g(s)p(s)ds

≤ H(t, t3)g(t3)r(t3)
[
z′(t3)

]β−α
.

(2.28)
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Therefore,

∑

t0≤θk<t
H(t, θk)g(θk)r(θk)

{[
z′(θk)

]β−α − [
z′
(
θ+
k

)]β−α}

+

(
β − α

)
2−α

β

∫ t

t0

H(t, s)[1 − λ(σ(s))]α
[
Rβ(s)

]α
g(s)p(s)ds

≤ H(t, t0)g(t3)r(t3)
[
z′(t3)

]β−α

+
∑

t0≤θk<t3
H(t, θk)g(θk)r(θk)

{[
z′(θk)

]β−α − [
z′
(
θ+
k

)]β−α}

+

(
β − α

)
2−α

β

∫ t3

t0

H(t, s)[1 − λ(σ(s))]α
[
Rβ(s)

]α
g(s)p(s)ds.

(2.29)

Proceeding as in the proof of Theorem 2.1, we get a contradiction with (2.26). This completes
the proof.

For the case −1 ≤ μ ≤ λ(t) ≤ 0, we have the following oscillation result. Since the proof
is similar to that of Theorem 2.2, we omit it here.

Theorem 2.6. Let −1 ≤ μ ≤ λ(t) ≤ 0. If there exist a positive function g ∈ C1[t0,∞) and H ∈ X
such that (2.1) holds and

1
H(t, t0)

{∫ t

t0

H(t, s)
[
Rβ(s)

]α
g(s)p(s)ds +

∑

t0≤θk<t
H(t, θk)g(θk)r(θk)

[
Rβ(θk)

]α
qk

}

= ∞,

(2.30)

where Rβ(t) is defined as in Theorem 2.1, then every solution of (1.1) is either oscillatory or tends to
zero.

The following two corollaries for (2.23) are immediate.

Corollary 2.7. Let 0 ≤ λ(t) ≤ 1. If there exist a positive function g ∈ C1[t0,∞) and H ∈ X such
that (2.1) holds and

1
H(t, t0)

∫ t

t0

H(t, s)[1 − λ(σ(s))]α
[
Rβ(s)

]α
g(s)p(s)ds = ∞, (2.31)

where Rβ(t) is defined as in Theorem 2.1, then (2.23) is oscillatory.

Corollary 2.8. Let −1 ≤ μ ≤ λ(t) ≤ 0. If there exist a positive function g ∈ C1[t0,∞) and H ∈ X
such that (2.1) holds and

1
H(t, t0)

∫ t

t0

H(t, s)
[
Rβ(s)

]α
g(s)p(s)ds = ∞, (2.32)
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where Rβ(t) is defined as in Theorem 2.1, then every solution of (2.23) is either oscillatory or tends to
zero.

3. Examples

We now present two examples to illustrate the effect of impulses on oscillation of solutions of
(1.1).

Example 3.1. Consider the following impulsive delay differential equation:

[
(|z′(t)|z′(t))

t

]′
+ t−2|x(t − 1)|−1/2x(t − 1) = 0, t /= k,

Δ
(∣∣z′(t)

∣∣z′(t)
)|t=k + k−1/2|x(k − 1)|−1/2x(k − 1) = 0,

Δx(t)|t=k = 0,

(3.1)

where z(t) = x(t) + λx(t − 1), λ is a constant, t ≥ 2, and k ≥ 2. We see that τ(t) = σ(t) = t − 1,
r(t) = 1/t, β = 2, α = 1/2, p(t) = t−2, qk = k−1/2, and θk = k. Let g(t) = 1. A straightforward
computation yields Rβ(t) = (2/3)t−1/2[(t − 1)3/2 − 23/2]. Therefore, when 0 < λ < 1, it is not
difficult to verify that (2.1) and (2.2) hold. Thus, (3.1) is oscillatory by Theorem 2.1. However,
when there is no impulse in (3.1), Corollary 2.3 cannot guarantee the oscillation of (3.1) since
condition (2.24) is invalid for this case. Therefore, the impulsive perturbations may greatly
affect the oscillation of (3.1). If −1 < λ < 0, then we have that every solution of (3.1) is either
oscillatory or tends to zero by Theorem 2.2. Such behavior of solutions of (3.1) is determined
by the impulsive perturbations to a great extent, since Corollary 2.4 fails to apply for this case.

Example 3.2. Consider the following impulsive delay differential equation:

[
t
∣∣z′(t)

∣∣z′(t)
]′ + t−2x(t − 1) = 0, t /= k,

Δ
(∣∣z′(t)

∣∣z′(t)
)|t=k + k−2x(k − 1) = 0,

Δx(t)|t=k = 0,

(3.2)

where z(t) = x(t) + λx(t − 1), λ is a constant, t ≥ 2, and k ≥ 2. We see that τ(t) = σ(t) = t − 1,
r(t) = t, β = 2, α = 1, p(t) = t−2, qk = k−2, and θk = k. Let g(t) = t−1/2. It is not difficult to verify
that (2.1) and (2.2) hold if 0 < λ < 1, which implies that (3.2) is oscillatory by Theorem 2.1.
We also can verify that and (2.1) and (2.19) hold if −1 < λ < 0. Thus, by Theorem 2.2, every
solution of (3.2) is either oscillatory or tends to zero. However, Corollaries (1.1) and (2.1) do
not apply for this case. Therefore, the impulsive perturbations play a key role in the oscillation
problem of (3.2).
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[13] A. Özbekler and A. Zafer, “Interval criteria for the forced oscillation of super-half-linear differential
equations under impulse effects,” Mathematical and Computer Modelling, vol. 50, no. 1-2, pp. 59–65,
2009.

[14] J. Shen, “Qualitative properties of solutions of second-order linear ODE with impulses,”Mathematical
and Computer Modelling, vol. 40, no. 3-4, pp. 337–344, 2004.

[15] X. Liu and Z. Xu, “Oscillation of a forced super-linear second order differential equation with
impulses,” Computers & Mathematics with Applications, vol. 53, no. 11, pp. 1740–1749, 2007.

[16] X. Liu and Z. Xu, “Oscillation criteria for a forcedmixed type Emden-Fowler equationwith impulses,”
Applied Mathematics and Computation, vol. 215, no. 1, pp. 283–291, 2009.

[17] E. M. Bonotto, L. P. Gimenes, and M. Federson, “Oscillation for a second-order neutral differential
equation with impulses,” Applied Mathematics and Computation, vol. 215, no. 1, pp. 1–15, 2009.

[18] Ch. G. Philos, “Oscillation theorems for linear differential equations of second order,” Archiv der
Mathematik, vol. 53, no. 5, pp. 482–492, 1989.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


