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Wu et al. (2009) studied the asymptotic approximation of inverse moments for nonnegative
independent random variables. Shen et al. (2011) extended the result of Wu et al. (2009) to the case
of ρ-mixing random variables. In the paper, we will further study the asymptotic approximation of
inverse moments for nonnegative ρ-mixing random variables, which improves the corresponding
results of Wu et al. (2009), Wang et al. (2010), and Shen et al. (2011) under the case of identical
distribution.

1. Introduction

Firstly, we will recall the definition of ρ-mixing random variables.
Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space

(Ω,F, P). Let n and m be positive integers. Write Fm
n = σ(Xi, n ≤ i ≤ m) and FS = σ(Xi, i ∈

S ⊂ N). Given σ-algebras B,R in F, let

ρ(B,R) = sup
X∈L2(B),Y∈L2(R)

|EXY − EXEY |
√
Var(X) · Var(Y )

. (1.1)

Define the ρ-mixing coefficients by

ρ(n) = sup
k≥1

ρ
(
Fk

1 ,F∞
k+n

)
, n ≥ 0. (1.2)

Definition 1.1. A sequence {Xn, n ≥ 1} of random variables is said to be ρ-mixing if ρ(n) ↓ 0
as n → ∞.
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ρ-mixing sequence was introduced by Kolmogorov and Rozanov [1]. It is easily seen
that ρ-mixing sequence contains independent sequence as a special case.

The main purpose of the paper is to study the asymptotic approximation of inverse
moments for nonnegative ρ-mixing random variables with identical distribution.

Let {Zn, n ≥ 1} be a sequence of independent nonnegative random variables with finite
second moments. Denote

Xn =
∑n

i=1 Zi

Bn
, B2

n =
n∑

i=1

VarZi. (1.3)

It is interesting to show that under suitable conditions the following equivalence relation
holds, namely,

E(a +Xn)−r ∼ (a + EXn)−r , n −→ ∞, (1.4)

where a > 0 and r > 0 are arbitrary real numbers.
Here and below, for two positive sequences {cn, n ≥ 1} and {dn, n ≥ 1}, we write

cn ∼ dn if cnd−1
n → 1 as n → ∞. C is a positive constant which can be different in various

places.
The inverse moments can be applied in many practical applications. For example,

they may be applied in Stein estimation and poststratification (see [2, 3]), evaluating risks
of estimators and powers of tests (see [4, 5]). In addition, they also appear in the reliability
(see [6]) and life testing (see [7]), insurance and financial mathematics (see [8]), complex
systems (see [9]), and so on.

Under certain asymptotic-normality condition, relation (1.4) was established in
Theorem 2.1 of Garcia and Palacios [10]. But, unfortunately, that theorem is not true under the
suggested assumptions, as pointed out by Kaluszka and Okolewski [11]. The latter authors
established (1.4) by modifying the assumptions as follows:

(i) r < 3 (r < 4, in the i.i.d. case);

(ii) EXn → ∞, EZ3
n < ∞;

(iii) (Lc condition)
∑n

i=1 E|Zi − EZi|c/Bc
n → 0 (c = 3).

Hu et al. [12] considered weaker conditions: EZ2+δ
n < ∞, where Zn satisfies L2+δ

condition and 0 < δ ≤ 1. Wu et al. [13] applied Bernstein’s inequality and the truncated
method to greatly improve the conclusion in weaker condition on moment. Wang et al. [14]
extended the result for independent random variables to the case of NOD random variables.
Shi et al. [15] obtained (1.4) for Bn = 1. Sung [16] studied the inverse moments for a class of
nonnegative random variables.

Recently, Shen et al. [17] extended the result of Wu et al. [13] to the case of ρ-mixing
random variables and obtained the following result.

Theorem A. Let {Zn, n ≥ 1} be a nonnegative ρ-mixing sequence with
∑∞

n=1 ρ(n) < ∞. Suppose
that

(i) EZ2
n < ∞, for all n ≥ 1;

(ii) EXn → ∞,where Xn is defined by (1.3);
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(iii) for some η > 0,

Rn

(
η
)
:= B−2

n

n∑

i=1

EZ2
i I

(
Zi > ηBn

) −→ 0, n −→ ∞; (1.5)

(iv) for some t ∈ (0, 1) and any positive constants a, r, C,

lim
n→∞

(a + EXn)r · exp
{

−C · (EXn)t

n

}

= 0. (1.6)

Then for any a > 0 and r > 0, (1.4) holds.

In this paper, we will further study the asymptotic approximation of inverse moments
for nonnegative ρ-mixing random variables with identical distribution. We will show that
(1.4) holds under very mild conditions and the condition (iv) in Theorem A can be deleted.
In place of the Bernstein type inequality used by Shen et al. [17], wemake the use of Rosenthal
type inequality of ρ-mixing random variables. Our main results are as follows.

Theorem 1.2. Let {Zn, n ≥ 1} be a sequence of nonnegative ρ-mixing random variables with
identical distribution and let {Bn, n ≥ 1} be a sequence of positive constants. Let a > 0 and α > 0 be
real numbers. p > max{2, 2α, α + 1}. Assume that

∑∞
n=1 ρ

2/p(2n) < ∞. Suppose that

(i) 0 < EZn < ∞, for all n ≥ 1;

(ii) μn
.= EXn → ∞ as n → ∞, where Xn = B−1

n

∑n
k=1 Zk;

(iii) for all 0 < ε < 1, there exist b > 0 and n0 > 0 such that

EZ1I(Z1 > bBn) ≤ εEZ1, n ≥ n0. (1.7)

Then (1.4) holds.

Corollary 1.3. Let {Zn, n ≥ 1} be a sequence of nonnegative ρ-mixing random variables with
identical distribution and 0 < EZ1 < ∞. Let {Bn, n ≥ 1} be a sequence of positive constants satisfying
Bn = O(nδ) for some 0 < δ < 1 and Bn → ∞ as n → ∞. Let a > 0 and α > 0 be real numbers.
p > max{2, 2α, α + 1}. Assume that

∑∞
n=1 ρ

2/p(2n) < ∞. Then (1.4) holds.

By Theorem 1.2, we can get the following convergence rate of relative error in the
relation (1.4).

Theorem 1.4. Assume that conditions of Theorem 1.2 are satisfied and 0 < EZ2
n < ∞. p >

max{2, 4(α + 1), 2α + 3}. If Bn ≥ Cn1/2 for all n large enough, where C is a positive constant,
then

∣∣(a + EXn)αE(a +Xn)−α − 1
∣∣ = O

(
(a + EXn)−1

)
. (1.8)

Theorem 1.5. Assume that conditions of Theorem 1.2 are satisfied and 0 < EZ2
n < ∞. p >

max{2, 4(α + 1), 2α + 3}. Then
∣∣(a + EXn)αE(a +Xn)−α − 1

∣∣ = O
(
n−1/2

)
. (1.9)
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Taking Bn ≡ 1 in Theorem 1.2, we have the following asymptotic approximation
of inverse moments for the partial sums of nonnegative ρ-mixing random variables with
identical distribution.

Theorem 1.6. Let {Zn, n ≥ 1} be a sequence of nonnegative ρ-mixing random variables with
identical distribution. Let a > 0 and α > 0 be real numbers. p > max{2, 2α, α + 1}. Assume that∑∞

n=1 ρ
2/p(2n) < ∞. Suppose that

(i) 0 < EZn < ∞, ∀ n ≥ 1;

(ii) νn
.= EYn → ∞ as n → ∞, where Yn =

∑n
k=1 Zk;

(iii) for all 0 < ε < 1, there exist b > 0 and n0 > 0 such that

EZ1I(Z1 > b) ≤ εEZ1, n ≥ n0. (1.10)

Then E(a + Yn)
−α ∼ (a + EYn)

−α.

Remark 1.7. Theorem 1.2 in this paper improves the corresponding results of Wu et al. [13],
Wang et al. [14], and Shen et al. [17]. Firstly, Theorem 1.4 in this paper is based on the
condition EZn < ∞, for all n ≥ 1, which is weaker than the condition EZ2

n < ∞, for all
n ≥ 1 in the above cited references. Secondly, {Bn, n ≥ 1} is an arbitrary sequence of positive
constants in Theorem 1.2, while B2

n =
∑n

i=1 VarZi in the above cited references. Thirdly, the
condition (iv) in Theorem A is not needed in Theorem 1.2. Finally, (1.7) is weaker than (1.5)
under the case of identical distribution. Actually, by the condition (1.5), we can see that

B−1
n

n∑

i=1

EZiI
(
Zi > ηBn

) ≤ η−1B−2
n

n∑

i=1

EZ2
i I

(
Zi > ηBn

) −→ 0, n −→ ∞, (1.11)

which implies that for all 0 < ε < 1, there exists a positive integer n0 such that

B−1
n

n∑

i=1

EZiI
(
Zi > ηBn

) ≤ εμn = εB−1
n

n∑

i=1

EZi, n ≥ n0, (1.12)

that is, (1.7) holds.

2. Proof of the Main Results

In order to prove the main results of the paper, we need the following important moment
inequality for ρ-mixing random variables.

Lemma 2.1 (c.f. Shao [18, Corollary 1.1]). Let q ≥ 2 and {Xn, n ≥ 1} be a sequence of ρ-mixing
random variables. Assume that EXn = 0, E|Xn|q < ∞ and

∞∑

n=1

ρ2/q(2n) < ∞. (2.1)
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Then there exists a positive constant K = K(q, ρ(·)) depending only on q and ρ(·) such that for any
k ≥ 0 and n ≥ 1,

E

(
max
1≤i≤n

|Sk(i)|q
)

≤ K

[(
n max
k<i≤k+n

EX2
i

)q/2

+ n max
k<i≤k+n

E|Xi|q
]

, (2.2)

where Sk(i) =
∑k+i

j=k+1 Xj , k ≥ 0 and i ≥ 1.

Remark 2.2. We point out that if {Xn, n ≥ 1} is a sequence of ρ-mixing random variables with
identical distribution and the conditions of Lemma 2.1 hold, then we have

E

(
max
1≤i≤n

|Sk(i)|q
)

≤ K

[(
nEX2

1

)q/2
+ nE|X1|q

]
,

E

⎛

⎝max
1≤i≤n

∣
∣∣∣∣∣

i∑

j=1

Xj

∣
∣∣∣∣∣

q⎞

⎠ ≤ K

[(
nEX2

1

)q/2
+ nE|X1|q

]

= K

⎡

⎢
⎣

⎛

⎝
n∑

j=1

EX2
j

⎞

⎠

q/2

+
n∑

j=1

E
∣∣Xj

∣∣q

⎤

⎥
⎦.

(2.3)

The inequality above is the Rosenthal type inequality of identical distributed ρ-mixing
random variables.

Proof of Theorem 1.2. It is easily seen that f(x) = (a + x)−α is a convex function of x on [0,∞),
therefore, we have by Jensen’s inequality that

E(a +Xn)−α ≥ (a + EXn)−α, (2.4)

which implies that

lim inf
n→∞

(a + EXn)αE(a +Xn)−α ≥ 1. (2.5)

To prove (1.4), it is enough to prove that

lim sup
n→∞

(a + EXn)αE(a +Xn)−α ≤ 1. (2.6)

In order to prove (2.6), we need only to show that for all δ ∈ (0, 1),

lim sup
n→∞

(a + EXn)αE(a +Xn)−α ≤ (1 − δ)−α. (2.7)

By (iii), we can see that for all δ ∈ (0, 1),

EZ1I(Z1 > bBn) ≤ δ

2
EZ1, n ≥ n0. (2.8)
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Let

Un = B−1
n

n∑

k=1

ZkI(Zk ≤ bBn), (2.9)

E(a +Xn)−α = E(a +Xn)−αI
(
Un ≥ μn − δμn

)
+ E(a +Xn)−αI

(
Un < μn − δμn

)

.= Q1 +Q2.
(2.10)

For Q1, since Xn ≥ Un, we have

Q1 ≤ E(a +Xn)−αI
(
Xn ≥ μn − δμn

) ≤ (
a + μn − δμn

)−α
. (2.11)

By (2.8), we have for n ≥ n0 that

μn − EUn = B−1
n

n∑

k=1

EZkI(Zk > bBn) ≤
δμn

2
. (2.12)

Therefore, by (2.12), Markov’s inequality, Remark 2.2 and Cr ’s inequality, for any p > 2 and
all n sufficiently large,

Q2 ≤ a−αP
(
Un < μn − δμn

)

= a−αP
(
EUn −Un > δμn −

(
μn − EUn

))

≤ a−αP
(
EUn −Un >

δμn

2

)

≤ a−αP
(
|Un − EUn| >

δμn

2

)
≤ Cμ

−p
n E|Un − EUn|p

≤ Cμ
−p
n

[
B−2
n nEZ2

1I(Z1 ≤ bBn)
]p/2

+ Cμ
−p
n

[
B
−p
n nEZ

p

1I(Z1 ≤ bBn)
]

≤ Cμ
−p
n

[
B−1
n nEZ1I(Z1 ≤ bBn)

]p/2
+ Cμ

−p
n B−1

n nEZ1I(Z1 ≤ bBn)

≤ Cμ
−p
n

(
μ
p/2
n + μn

)
= C

(
μ
−p/2
n + μ

−(p−1)
n

)
.

(2.13)

Taking p > max{2, 2α, α + 1}, we have by (2.10), (2.11), and (2.13) that

lim sup
n→∞

(
a + μn

)α
E(a +Xn)−α

≤ lim sup
n→∞

(
a + μn

)α(
a + μn − δμn

)−α + lim sup
n→∞

(
a + μn

)α[
Cμ

−p/2
n + Cμ

−(p−1)
n

]

= (1 − δ)−α,

(2.14)

which implies (2.7). This completes the proof of the theorem.
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Proof of Corollary 1.3. The condition Bn = O(nδ) for some 0 < δ < 1 implies that

μn
.= EXn = B−1

n

n∑

k=1

EZk = nB−1
n EZ1, (2.15)

thus, μn ≥ Cn1−δ → ∞ as n → ∞.
The fact 0 < EZ1 < ∞ and Bn → ∞ yield that EZ1I(Z1 > bBn) → 0 as n → ∞, which

implies that for all 0 < ε < 1, there exists n0 > 0 such that

EZ1I(Z1 > bBn) ≤ εEZ1, n ≥ n0. (2.16)

That is to say condition (iii) of Theorem 1.2 holds. Therefore, the desired result follows from
Theorem 1.2 immediately.

Proof of Theorem 1.4. Firstly, we will examine VarXn. By Remark 2.2, 0 < EZ2
1 < ∞ and the

condition Bn ≥ Cn1/2 for all n large enough, we can get that

VarXn = B−2
n Var

(
n∑

i=1

Zi

)

≤ B−2
n E

(
n∑

i=1

Zi

)2

≤ CnB−2
n EZ2

1 ≤ C1 (2.17)

for all n large enough.
Denote φ(x) = (a + x)−α for x ≥ 0. By Taylor’s expansion, we can see that

φ(Xn) = φ(EXn) + φ′(ξn)(Xn − EXn), (2.18)

where ξn is between Xn and EXn. It is easily seen that {φ′(x)}2 is decreasing in x ≥ 0.
Therefore, by (2.18), Cauchy-Schwartz inequality, (2.17) and (1.4), we have

[
Eφ(Xn) − φ(EXn)

]2 = E
[
φ′(ξn)(Xn − EXn)

]2

≤ E
[
φ′(ξn)

]2 VarXn ≤ C1E
[
φ′(ξn)

]2

= C1E
[
φ′(ξn)

]2
I(Xn ≤ EXn) + C1E

[
φ′(ξn)

]2
I(Xn > EXn)

≤ C1E
[
φ′(Xn)

]2 + C1E
[
φ′(EXn)

]2

∼ 2C1E
[
φ′(EXn)

]2 = 2C1α
2(a + EXn)−2(α+1).

(2.19)

This leads to (1.8). The proof is complete.

Proof of Theorem 1.5. The proof is similar to that of Theorem 1.4. In place of VarXn ≤ C1, we
make the use of VarXn ≤ CnB−2

n EZ2
1
.= C2nB

−2
n . The proof is complete.
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